






Another 448 canonical transformations 
on 700 pages 
 
Main results: 
 

-  Moon’s longitude: 53 pages 
-  Moon’s latitude: 52 pages 
 
Remaining errors O(10-4) 



H. Poincaré, Bulletin Astronomique (1908) 



Two lessons: 
 
-  Canonical transformation are very useful for 

 

“Classical dynamics in systems with many coupled 
degrees of freedom”  
 

-  Do not worry too much about convergence 
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1. Real time evolution in classical mechanics:  
       Canonical perturbation theory 
 

2. Real time evolution in quantum mechanics:  
       Unitary perturbation theory 
 

3. Unitary perturbation theory in practice: 
Flow equation method 
 

4. Applications (impurity models, local quenches):  
- Spin-boson model 
- Time-dependent ferromagnetic Kondo model 
 

5. Applications (bulk models, global quenches):  
- Quantum quench in a Fermi liquid 
- Quantum quench for 1d fermions with dimerization 
 

6. Outlook 
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Method 



“Real time evolution” with small anharmonic terms 

Ansatz: 

“Secular term” 

Secular terms invalidate naive perturbation theory for large times! 

2. Real time evolution in classical mechanics:  
    Canonical perturbation theory 
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Much better … Canonical perturbation theory 

Find canonical transformation (q,p) → (Q,P) that brings H to normal form: 

H(q, p) =
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à  exact solution of dynamics for Q(t), P(t) 
      possible (no secular terms): 
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Generating function: F2(q, P ) = qP + g

✓
5

32
P q3 +

3

32
P 3 q

◆

Q =
@F2

@P
= q + g

✓
5

32
q3 +

9

32
P 2 q

◆
, p =

@F2

@q
= . . .

Insert solution Q(t), P(t) and reexpress in terms of q(t), p(t): 

q(t) = Q0 sin(!t+ �0)� g
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also calculation in first order in g 

vanishing Poisson bracket 
(H0 = E0 conserved) �



Problem of naive perturbation theory: 
   naive expansion in coupling constant  
   produces secular terms 

canoncial perturbation theory naive perturbation theory in coupling 

⇒  Same recipe for dynamics of quantum systems:  
 

       Perturbation theory based on unitary transformations  
       instead of “naive” perturbation expansion 

red line: exact 
 
green line: naive 
     pert. theory 

black line: 
 canonical pert. 
 theory 



2. Real time evolution in quantum mechanics:  
    Unitary perturbation theory 

U 

Time evolution 

U� 

Non-perturbative solution 
of Heisenberg equations of 
motion for operator O(t) 

No secular terms! 

U: unitary transformation that diagonalizes the Hamiltonian (approximately) 

“Forward-backward transformation” 



3. Unitary perturbation in practice: Flow equations 

Successively integrate 
out high energy  
degrees of freedom 

Effective  
low-energy 
Hamiltonian 
(fixed point)  

Stable expansion for systems with very different energy scales  
→ Energy-scale separation 
→  Scaling theory / Renormalization theory (K.G. Wilson) 

Problem: 
 

   Information on full Hilbert space required to construct unitary transformation 
   for forward-backward transformation 

Problem: How to construct U for non-integrable models with a continuum 
               of energy scales?   
Wanted:  Perturbative method for finding U 



F. Wegner (1994) 
 

S. K., The Flow Equation Approach to Many-Body Problems (Springer 2006) 

Make Hamiltonian 
successively more 
energy-diagonal 

Energy- 
diagonal 
Hamiltonian 

One-parameter family of unitarily equivalent Hamiltonians generated by 
solving the differential equation (“flow equations”) 
 
�
�
�
with H(B=0) the initial Hamiltonian and an anti-hermitean generator η(B). 

Implementation of flow: Sequence of infinitesimal unitary transformations 

Flow Equation Method 



Advantages: 
 

•  RG-like analytical method 
•  Controlled solution in certain strong-coupling problems  
  (e.g., Kondo model) 
•  Keeps all states in Hilbert space 
  → correlation functions on all energy scales 
  → important in non-equilibrium (real time evolution, steady states) 

Challenge: Generation of higher and higher order interaction terms 
 → need suitable expansion parameter (typically running coupling) 

Canonical choice of generator (Wegner 1994): 
 

       H(B) = H0(B) [diagonal part]  +  Hint(B) [interaction part] 
 

→ define anti-hermitean generator  η(B) = [H0(B), Hint(B)] 
 
 
 

→ generates band-diagonal Hamiltonians H(B) with B-1/2 = Λfeq   

•  Avoids secular terms in real time evolution! 

) lim
B!1

⌘(B) = 0



4. Applications (impurity models): Spin-boson model 

Paradigmatic 2-state system for dissipative quantum mechanics: 

Flow equation diagonalization: 

Environment degrees of 
freedom → Decoherence and 
                   dissipation 

Time evolution with respect to H(B=∞) is trivial 
 

→  Where is dissipation/decoherence? 

→  Transformation of observables! 

Energy scale 
separation 

Non-perturbative energy 
scale (frequency) 
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Transformation of Observables 

Ansatz for σz : 

B→∞ 

0 

}
 

Observable becomes completely entangled  
with environment degrees of freedom 

Decoherence in “conventional” 
framework: 
 

System degrees of freedom  
become entangled with 
environment 

Decoherence in flow equation 
framework: 
 

Hamiltonian diagonal, therefore 
system observables become  
entangled with environment 

Transformation of observable O to diagonal basis (“Forward” transformation): 



Equilibrium Dynamics (T=0) 

B = 0 B = ∞ U 

Time evolution 

U� 

Non-perturbative solution 
of Heisenberg equations of 
motion for operator O(t) 

Equilibrium: | ψi > is trivially given as ground state |GS> of H ~� ~�



→   Incoherent spin dynamics: 

Ohmic bath 

Structured bath (coupling to bath  
via harmonic oscillator Ω) 
[ S. Kleff, S. K., J. von Delft, Phys. Rev. B 70 2004 ] 

Spin operator in diagonal basis: 

Practical evaluation:  Numerical evaluation of O(103) ordinary differential equations 
                                  (qualitative behavior: analytical calculation!) 



A. Hackl and S. K., Phys. Rev. B 78 (2008), J. Phys. C 21 (2009)  

Forward-backward transformation (numerical implementation): 

Evaluate for arbitrary initial state, e.g. here: 

Initial state: 

Real time evolution 

Expectation values: 

Shows exponential decay (possibly with oscillations) 
already in this order of flow equation calculation 





Stable long time asymptotics (no secular terms): 

Comparison with NRG data from Costi et al., PRA 68 (2003) 



Applications (impurity models): Ferromagnetic Kondo model  

A. Hackl, D. Roosen, S. K., W. Hofstetter, Phys. Rev. Lett. 102, 196601 (2009) 
A. Hackl, M. Vojta and S. K., Phys. Rev. B 80, 195117 (2009) 

⇒  Product initial state:  

Coupling constant flows to zero 
⇒   Expansion becomes better  
      (asymptotically exact) for long times 

infinitesimal magnetic field 

ferromagnetic coupling (J<0): 

Nonequilibrium spin  
expectation value 
(large times): 

Equilibrium: 



Comparison with TD-NRG: 
[ Hackl et al., PRL 102 (2009) ] 

Crossover from adiabatic to instantaneous quenching: 
(C. Tomaras, S. K., Eur. Phys. Lett. 93, 47011 (2011) ) 
 
Coupling J switched on on timescale τ 
 
Measure of non-adiabacity: 
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⇒  Crossover timescale nonperturbative 
       (exponentially large) due to RG flow 
 



5. Applications (bulk models): Quantum quench in a Fermi liquid 

Landau Fermi liquid theory: 
 

Adiabatic switching on of  
interaction 
 

→  1 to 1 correspondence  
   between physical electrons  
   and quasiparticles 

εF ε 

n(t→-∞) 

εF ε 

n(t→∞) 

Za 

Adiabatic 

What happens for sudden switching (global quantum quench)? 

Translation-invariant closed system + nonzero excitation energy density 
�
⇒ Thermalization? 



M. Moeckel and S. K., Phys. Rev. Lett. 100 (2008), Ann. Phys. 324 (2009)   
�
Hubbard model in d>1 dimensions 

Forward transformation: 

•  hk only nonzero at Fermi surface for zero temperature  
•  Quasiparticle residue (equilibrium) 



Real time evolution 

Analytical evaluation (with numerical integration) up to order U2 



εF ε 

n(t→-∞) 

εF ε 

n(t→∞) 

Za 

εF ε 

n(t≈1/D) 

Zi 

Adiabatic 

Instantaneous  

Sudden switching looks like T=0  
Fermi liquid with “wrong” quasi- 
particle residue on time scale t ∝ D-1 
à Novel metastable  
    prethermalized state 
 

à Thermalization via QBE 
     on time scale t ∝ U-4 

Numerical confirmation:   
 
  Non-equilibrium DMFT with real time QMC 
  M. Eckstein et al., Phys. Rev. Lett. 103 (2009) 



5. Applications (bulk models): 1d fermions with dimerization 

F. Essler, S. K., S. Manmana and N. Robinson, arXiv:1311.4557, to appear in PRB  
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H(δ,U=0):  Peierls insulator, exactly solvable via Bogoliubov transformation, 
                  exactly solved by flow equations 
 
H(δ≠0,U≠0):  Non-integrable model 
 
Goal: Thermalization for global quenches H(δi, Ui=0) à H(δf, Uf ≠0) ? 
          (Here: tuneable integrability breaking Uf ≠0 for fixed quench amplitude δi à δf ) 

Flow equation calculation:  - Up to terms O(U2) 
   - Analytical calculation (with numerical integration) 
   - 2- and 4-point functions 
   - comparison with t-DMRG 

�





6. Outlook 

•  Perturbative method in the sense of weak coupling RG 
 

•  No secular terms in time evolution 
 

•  Gives exponential/power-law/etc. decays in lowest  
order calculations 
 

•  How to incorporate Boltzmann equation dynamics? 
 

•  Convergence properties of observable transformation? 

Unitary perturbation theory based on flow equations: 


