THÉORIE

Dt

MOUVEMENT DE LA LUNE,

Par Ch. delaunay, membe de linstitut mperbal de france.

TOME PREMIER.

PARIS,

MALLET-BACHELIER, IMPRIMEUR-LIBRAIRE
des comptes rendus hebdomadaires des seances de liacadémie des sciences,
1860.

CHAPITRE V.

detall des in orerations effectuées pour faire disparatbe les termes les ples importants de la fonction perturbatrice.

Nous avons expliqué, dans le chapitre III, la marche que nous avons suivie pour faire disparaitre successivement de la fonction perturbatrice les divers termes capables de fournir des inégalités d'un ordre inférieur au quatrième. Nous avons dit quil nous a fallu, pour cela, effectuer 57 opérations distinctes, dont chacune se traduit en définitive par un changement de variables. Nous nous proposons de donner ici le détail des calculs qui se rapportent à ces diverses opérations, pour chacune desquelles nous n'avons autre chose à fairc que d'appliquer une des quatre règles données aux $n^{\text {as }} 29,30$ et 31
On se rappelle que les équations différentielles qu'il s'agit d'intégrer sont les suivantes:

$$
\begin{array}{lll}
\frac{d \mathrm{~L}}{d t}=\frac{d \mathrm{R}}{d t}, & \frac{d \mathrm{G}}{d t}=\frac{d \mathrm{~A}}{d g}, & \frac{d \mathrm{ll}}{d t}=\frac{d \mathrm{R}}{d t}, \\
\frac{d t}{d t}=-\frac{d \mathrm{R}}{d \mathrm{~L}}, & \frac{d g}{d t}=-\frac{d \mathrm{R}}{d t} ; & \frac{d / 2}{d t}=-\frac{d \mathrm{R}}{d t} .
\end{array}
$$

La fonction perturbatrice \mathbf{R} qui entre dans ces équations, est donnée en fonction du temps t et des éléments variables de la Lune par le développement du $n^{\circ} 14$; mais on peut aussi la prendre dans le cbapitre IV, en ayant soin de ne conserver, dans les coefficients des divers termes, que les parties qui. ne sont pas accompagnées d'indications en petits chiffres placés au dessous.
Des six variables $\mathrm{L}, \mathrm{G}, \mathrm{H}, l, g, h$, auxquelles se rapportent les équations différentielles précédentes, il n'y a que les trois dernières qui entrent explicitement dans la valeur de R. Les trois aatres $\mathrm{L}, \mathrm{G}, \mathrm{H}, \mathrm{y}$ sont remplacées par les éléments a, e, γ, auxquels elles sont liées par les relations

$$
\mathrm{L}=\sqrt{a_{2}}, \quad \mathrm{G}=\mathrm{L} \sqrt{1-e^{3}}, \quad \mathrm{I}=\mathrm{G}\left(1-2 y^{3}\right) .
$$

chapitre v. - $1^{\text {te }}$ opération.

$\begin{gathered} \text { xuxcaos } \\ \text { dess } \\ \text { operations. } \end{gathered}$	que cen operrations sont destinees ì baire disparatitre de \mathbf{R}.	$\begin{aligned} & \text { ondons } \\ & \text { de ecs } \\ & \text { opérations. } \end{aligned}$
38	3	3^{3} ordre.
39	$2 h+2 g+5 t-2 h-2 g^{\prime}-2 l^{\prime}$	3^{5} ordre.
6_{0}	$2 h+2 g-1-2 h-2 g^{\prime}-2 l$	3 ordre.
41	$2 h+2 g-2 h^{\prime}-2 g^{\prime}-2 t$	" 0 ordre.
\{	$2 h+2 g-2 h^{\prime}-2 g^{\prime}-3{ }^{\prime}$	2^{*} ordre.
43	$\mathbf{2} h+2 g-2 h^{\prime}-2 g^{\prime}-l$	$2^{\text {a }}$ ordre.
44	$2 h+2 g-2 h^{\prime}-2 g^{\prime}-4!$.	3^{3} ordre.
45	$2 h+2 g-2 h^{\prime}-2 g^{\prime}$	3^{5} ordre.
4^{6}	$h+g-h^{\prime}-g^{\prime}-\boldsymbol{l}$	x^{*} ordre.
47	$h+g-h^{\prime}-g^{\prime}-\boldsymbol{a} l^{\prime}$	${ }^{3}$ ordre.
48	$h+g-h^{\prime}-g^{\prime}$	2^{*} ordre.
49	$2 g$	$\mathrm{a}^{\text {a }}$ ordre.
50	$\underline{x} h+\mathbf{x g}-\mathbf{x} h^{\prime}-\mathbf{x} g^{\prime}-x^{\prime}{ }^{\prime}$ (une seconde fois)	3^{*} ordre.
51	${ }^{2} \mathrm{~g}$ (une seconde fois)	3. ordre.
52	$2 h-2 h^{\prime}-2 g^{\prime}-2{ }^{\prime}$	$\mathrm{I}^{\text {"0 ordre. }}$
53	$3 h-2 h^{\prime}-2 g^{\prime}-3 t$	z^{*} ordre.
54	$3 h-2 h h^{\prime}-2 g^{\prime}-l$	' 2 ' ordre.
53	$2 h-2 h^{\prime}-2 g^{\prime}-4 t$	dre.
56	$\mathbf{3} h \mathbf{h}-2 h^{\prime}-\mathbf{2 g}{ }^{\prime}$	3^{3} ordre.
57	$f, 3 f, 3 \%, 4{ }^{\prime}$ (ane seconde fois)	3^{3} ordre.

$1^{\text {re }}$ opération

destinéc à faire disparaitre les termes (2), (3), (4), (5) et (6) de \mathbf{R}.
Prenons dans R les termes (2), (3), (4), (5) et (6) *, dans lesquels les arguments sont $l^{\prime}, 2 l^{\prime}, 3 l^{\prime}, 4 l^{\prime}, 5 l^{\prime}$, et supposons que R se réduise à ces termes seuls, de sorte que l'on ait
$\dot{R}-m^{\prime} a^{a^{2}}\left[\frac{3}{a^{5}} e^{\prime}-\frac{9}{2} \gamma^{3} e^{\prime}+\frac{9}{8} e^{3} e^{\prime}+\frac{27}{32} e^{5}+\frac{9}{2} \gamma^{\prime} e^{\prime}-\frac{27}{4} \gamma^{3} e^{3} e^{\prime}-\frac{81}{16} \gamma^{3} e^{\prime \prime}+\frac{81}{64} e^{3} e^{0}+\frac{264}{256} e^{\prime \prime}\right.$

$$
\left.+\frac{27}{4} \gamma^{\prime} e^{7} e^{\prime}+\left(\frac{45}{64} e^{\prime}-\frac{225}{16} \cdot \gamma^{2} e^{\prime}+\frac{225}{64} e^{3} e^{\prime}\right) \frac{n^{2}}{a^{1}}\right] \cos I
$$

CHAPITRE V. -10° OPÉRATIOX.

De ees valeurs de $\mathrm{L}, \mathbf{G}, \mathbf{H}$, on déduit

$$
\begin{aligned}
& \frac{d t}{d \mathrm{~L}}=\frac{1}{a n \prime}\left\{x+\left(\frac{359}{8}-\frac{375}{2} v^{2}+\frac{45373}{128} e^{2}+\frac{5385}{16} e^{2}\right) \frac{i^{n}}{n^{2}}+\left(140-396 \gamma^{2}+\frac{i 8401}{8} r^{2}+1890 r^{2}\right) \frac{n^{\prime \prime}}{n^{\prime}}\right. \\
& +\frac{61875}{6 i} \frac{n^{c}}{n^{\prime \prime}}+\frac{483281}{288} \frac{n^{2}}{n^{2}} ; \\
& \frac{d l}{d 6}=-\frac{1}{a \prime \prime}\left\{\left(\frac{387}{4}-\frac{1573}{4} 7^{2}-\frac{22933}{128} e^{2}+\frac{5805}{8} e^{2}\right) \frac{n^{2 \prime}}{n^{\prime}}+\left(420-1476 \gamma^{2}-\frac{5997}{8} t^{2}+5670 r^{2}\right) \frac{n^{\prime 3}}{n^{\prime}}\right. \\
& +\frac{126279}{64} \frac{n^{4}}{n^{6}}+\frac{1880475}{288} \frac{n^{n}}{n^{4}} ?, \\
& \frac{d h}{d \mathrm{H}}=-\frac{1}{a n}\left\{\left(\frac{33}{4}-\frac{69}{4} \gamma^{2}-\frac{771}{8} e^{2}+\frac{495}{8} e^{\prime 2}\right) \frac{n^{4}}{n^{2}}+\left(40-120 \gamma^{2}-399 e^{2}+540 e^{2}\right) \frac{n^{13}}{n^{2}}\right. \\
& \left.+\frac{6191}{32} \frac{n^{x}}{n^{4}}+\frac{9581}{144} \frac{n^{\prime \prime}}{n^{2}}\right\}, \\
& \frac{d e}{d \mathrm{~L}}=\frac{1}{n^{2} n e}\left\{1-e^{2}+\left(\frac{927}{32}-\frac{691}{8} \cdot r^{2}-\frac{36549}{128} e^{2}+\frac{13905}{64} e^{\prime 2}\right) \frac{n^{\prime \prime}}{n^{\prime}}+\frac{412}{3} \frac{n^{n}}{n^{\prime}}+\frac{496505}{768} \frac{n^{\prime \prime \prime}}{n^{2}}\right\}, \\
& \frac{d e}{d \bar{G}}=-\frac{1}{a^{2} n e}\left\{1-\frac{1}{2} e^{3}-\frac{1}{8} e^{\prime}-\frac{1}{16} e^{c}\right. \\
& \left.+\left(\frac{927}{32}-\frac{691}{8} y^{2}-\frac{57693}{128} e^{3}+\frac{13905}{64} e^{\prime 2}\right) \frac{n^{\prime \prime}}{n^{*}}+\frac{412}{3} \frac{n^{5}}{n^{3}}+\frac{996505}{768} \frac{n^{2}}{n}\right\}, \\
& \frac{d e}{d H}=\frac{1}{a^{2} n c} \cdot \frac{757}{32} e^{n} \frac{n^{n}}{n^{n}} . \\
& \frac{d y}{d \mathrm{~L}}=-\frac{1}{n^{\prime} n \eta} \cdot \frac{17}{4} 7^{2} \frac{n^{\prime \prime}}{n^{\prime}}, \\
& \frac{d \gamma}{d \mathrm{G}}=\frac{1}{4 n^{2} n \gamma}\left\{1-x \gamma^{2}+\frac{1}{2} e^{2}-\gamma^{2} e^{2}+\frac{3}{8} e^{y}-\frac{3}{4} \gamma^{2} e^{t}+\frac{5}{16} \epsilon^{s}\right. \\
& \left.+\left(\frac{43}{16}+\frac{879}{8} \gamma^{2}-\frac{14 x 7}{64} e^{z}+\frac{645}{32} e^{\prime 2}\right) \frac{n^{6}}{n^{4}}+\frac{61}{6} \frac{n^{12}}{n^{3}}+\frac{8021}{19^{2}} \frac{n^{2}}{n^{2}}\right\} \\
& \frac{d \eta}{d \mathrm{H}}=-\frac{1}{4 n^{2} \eta^{2} \eta}\left\{1+\frac{1}{2} e^{2}+\frac{3}{8} e^{4}+\frac{5}{16} e^{x}+\left(\frac{43}{16}-\frac{127}{4} \eta^{2}-\frac{1427}{64} e^{3}+\frac{645}{32} e^{2 z}\right) \frac{n^{2}}{n^{4}}+\frac{61}{6} \frac{n^{3}}{n^{2}}+\frac{8021}{192} \frac{n^{4}}{n^{2}} ;\right.
\end{aligned}
$$

chapitre v. - 57° opération.
875
Quant aux valeurs de $l, h+g+l$ et h, elles seront fournies par les équations différentielles

$$
\frac{d l}{d t}=-\frac{d \mathrm{R}}{d \mathrm{~L}}, \quad \frac{d(h+g+1)}{d t}=-\frac{d \mathrm{R}}{d \mathrm{~L}}-\frac{d \mathrm{R}}{d \mathrm{G}}-\frac{d \mathrm{~B}}{d \mathrm{I}}, \quad \frac{d h}{d t}=-\frac{d \mathrm{~B}}{d \mathrm{H}},
$$

qui, en vertu des valeurs de $\frac{d a}{d \mathrm{~L}}, \frac{d a}{d \dot{G}}, \frac{d a}{d \mathrm{H}}, \frac{d e}{d \mathrm{~L}}, \ldots$, deviennent

$$
\begin{aligned}
& \frac{d l}{d t}=-\frac{n^{\prime 2}}{11}\left[-\frac{225}{2} \gamma^{\prime} e^{\prime}+\frac{225}{4} \gamma^{\prime} r^{2} e^{\prime}+\left(\frac{675}{16} e^{\prime}-\frac{243}{2} \eta^{2} c^{\prime}+\frac{2025}{32} e^{2} e^{\prime}+\frac{8475}{128} e^{\prime^{4}}\right) \frac{n^{\prime}}{11}\right. \\
& \left.+\left(\frac{9361}{64} e^{\prime}-\frac{19 t 97}{32} \gamma^{2} e^{\prime}+\frac{63801}{128} c^{2} e^{\prime}\right) \frac{n^{\prime *}}{n^{2}}+\frac{448647}{512} c^{*} \frac{n^{24}}{n^{\prime}}+\frac{9481465}{2048} e^{\prime} \frac{n^{\prime \prime}}{n^{\prime}}\right] \cos l \\
& -\frac{n^{\prime 3}}{\mu^{\prime}}\left[\frac{825}{8} r^{\prime 2}-297 \gamma^{2} e^{\prime 2}+\frac{2475}{16} \epsilon^{2} c^{\prime 2}+\frac{38932}{128} e^{\prime 2} \frac{n^{\prime}}{n}+\frac{2611785}{1024} c^{\prime 2} \frac{n^{\prime 2}}{n^{2}}\right] \cos 2 l^{\prime} \\
& -\frac{n^{\prime 2}}{n^{2}} \cdot \frac{16525}{128} e^{2} \cos 3 t \\
& \frac{d(h+g+1)}{d t}=-\frac{n^{\prime 2}}{n^{2}}\left[\frac{81}{4} \gamma^{\prime} x^{\prime}+\frac{2025}{16} e^{2} e^{\prime}-\frac{105}{8} \gamma^{\prime} c^{\prime}-\frac{729}{2} \gamma^{\prime} e^{3} c^{\prime}-\frac{6075}{128} c^{\prime} c^{\prime}\right. \\
& -\left(\frac{735}{16} c^{\prime}-\frac{4779}{32} \cdot v^{2} r^{\prime}-\frac{112509}{128} e^{2} e^{\prime}+\frac{28665}{128} e^{\prime}\right) \frac{n^{\prime}}{\prime \prime} \\
& -\left(\frac{3-83}{16} e^{\prime}-\frac{87525}{128} \gamma^{2} e^{\prime}-\frac{2962593}{512} e^{2} e^{\prime}\right) \frac{n^{\prime 2}}{n^{2}} \\
& \left.-\frac{4571}{4} c^{\prime} \frac{n^{2}}{n^{2}}-\frac{184357}{48} e^{\prime \prime} \frac{n^{4}}{n^{2}}+\frac{2475}{64} e^{\prime \prime} \frac{n^{4}}{n^{4}}\right] \cos t \\
& -\frac{n^{3}}{n^{7}}\left[\frac{99}{2} \gamma^{2} e^{\prime 2}+\frac{2475}{8} e^{2} e^{\prime 3}-\left(\frac{6615}{64} e^{2}-\frac{22977}{64} \gamma^{2} c^{\prime 2}-\frac{669503}{256} c^{2} e^{\prime 2}\right) \frac{n^{\prime}}{n}\right. \\
& \left.-\frac{60203}{128} c^{\prime 2} \frac{n^{\prime 2}}{n^{2}}-\frac{273133}{96} r^{27} \frac{n^{\prime 2}}{n^{2}}\right] \cos 2 r \\
& +\frac{n^{\prime \prime}}{n^{2}} \cdot \frac{26215}{128} e^{\prime 2} \cos 3 R . \\
& \frac{d h}{d t}=\frac{n^{2}}{n}\left[-\frac{225}{4} \gamma^{2} e^{2} e^{\prime}+\frac{225}{32} e^{\prime} e^{\prime}+\left(\frac{27}{16} e^{\prime}-\frac{81}{8} v^{2} e^{\prime}-\frac{567}{16} e^{2} e^{\prime}+\frac{339}{128} e^{\prime^{3}}\right) \frac{n^{\prime}}{n}\right. \\
& \left.+\left(\frac{531}{64} e^{\prime}-\frac{63}{4} \cdot v^{2} e^{\prime}-\frac{2997}{16} e^{2} e^{\prime}\right) \frac{n^{\prime 3}}{n^{2}}+\frac{14 ; 09}{512} e^{n^{3}} \frac{n^{2}}{n^{2}}+\frac{323351}{2048} e^{\prime} \frac{n^{4}}{n^{\prime}}\right] \cos \ell
\end{aligned}
$$

THÉORIE

DU

MOUVEVENT DE LA LUNE,

Par. Gh, delaunay,
membre de linstrfut imperial de fbance.

TOME SECOND. PARIS,
GAUTHIER-VILLARS, IMPRIMEUR-LIBRAIRE des comptes rendus hebdomadares des séances de lemademe des scafiees, SUCCESSEUR DE MALLET-BACHELIER, Qual des gando-acgestins, 35.

1867

Another 448 canonical transformations on 700 pages

Main results:

- Moon's longitude: 53 pages
- Moon's latitude: 52 pages

Remaining errors $\mathrm{O}\left(10^{-4}\right)$

Analytical Lunar Ephemeris: Delaunay's Theory

André Deprit, Jacques Henrard, and Arnold Rom Boeing Scientific Research Laboratories, Seallle, Washington (Received 1 December 1970)
Delaunay's constants have been substituted into our analytical solution of the main problem of lunar theory. The results are compared with Delaunay's reduced formulas. Corrections are proposed to four for the latitude, and 49 in that for the longitude.

DELAUNAY'S THEORY
TABLE III. Corrections to Delaunay's solar terms in the longitude V.

No.	D	F	l	l^{\prime}	m	α	e	γ	e^{\prime}	Delaunay's numerator	ALE numerator	Delaunay's denominator	ALE enominator
8			1	-1	1		1	4	1	-351	-99		
12					1		1	4	1	351	99		
${ }_{58}^{13}$			1	2	${ }_{2}$		1	4	2	-1557809	-1702505		
58 58		${ }_{2}^{2}$	-1 -1		${ }_{2}^{2}$		${ }_{3}^{1}$	${ }_{2}^{4}$		-6447	${ }_{56743}$		
58			-1		4		1	2		149363	74947		
68		2	-3		2		3	2		1231	8792		
89	2				3		2		2	-149497	-132025		
89	2				5				2	-61969	-91129		
${ }_{95}^{95}$	2			$\frac{2}{2}$	$\frac{3}{5}$		2		2	-1782049 -28021	$\begin{array}{r}1821475 \\ \hline 7565\end{array}$		
95 102	${ }_{2}^{2}$		1	${ }_{1}^{2}$	5	2	1		${ }_{1}^{2}$	${ }_{-}^{-28021}$	-975		
111	2		3	-1	2		3		1	5705	5453		
111	2		3	-1	3		3		1	173819	170687		
118	2		-1		3		1		2	365281	363337		
118	2		-1		4		1		2	19912163	19901957		
${ }^{124}$	2		-1	${ }_{2}$	${ }_{3}^{2}$		1	2	2	183	$\begin{array}{r}777 \\ \hline-6399\end{array}$	16	64
124 124	2		-1 -1	${ }_{2}^{2}$	3 4		${ }_{1}^{1}$		${ }_{2}^{2}$	-46561 -4797439	- ${ }_{-73237483}$		
151	2	2		1	2			2		${ }_{3785}$	3813		
151	2	2		1	3			2	1	613	617		
167	2	2	-2	-1	2		2	2	1	5255	5043		
169	2	2	-2	1	2		2	2	1	-6355	-6215		
184 191	2	-2 -2		-1				${ }_{2}^{2}$	1	-13733 -81	-12837 -71		
191 196	2	-2 -2	${ }_{2}^{1}$	${ }_{-1}{ }^{1}$	3 2		${ }_{2}^{1}$	${ }_{2}^{2}$	1 1	-81 -6197	-711 -7177	8	16
198	2	-2	2	1	2		2	2	1	1881	2021		
205	2	-2	-1	-1	3		1	2	1	-40795	-39339		
${ }_{227}^{221}$	2	-4		1	2			4	1				
${ }_{233}^{227}$	$\stackrel{2}{4}$	-4	-1	-1	${ }_{6}$		1	4	1	${ }_{54129983}^{-45}$	159 5283679		
236	4			1	4		2		1	${ }_{-60359}$	-145415		
237	4			2					2	161	201		
237	4			2	5				2	2429	14237	2560	7680
${ }^{239}$	4		1		4		3			307749	320549		
240 255	4		-1	- ${ }^{1}$			1		${ }_{2}^{1}$	140105 2056689	136325 205609		
255 275	4	2	-1	-2	4		1	2	2	2056689 -467	2056609 -563		
314	6			1	6				1	2853	-3715		
369	1		-2		3	1	2			-680863	-797863		
372	1		-2	1	2	1	2			79689	216189		
399 399	1	-2 -2		1		${ }_{1}^{1}$	2	${ }_{2}^{2}$	${ }_{1}^{1}$			48	144
399 405	1	-2 -2	2	1	2	1	2	${ }_{2}^{2}$	${ }_{1}^{1}$	${ }_{-115}^{25699}$	${ }^{26795}$		
418	3		1			1	1			1712803	367957	30720	
419	3		1	-1	3	1	1		1	6095	25595	768	3072
421	3			1	3	1	1		1	-1847	-15181	128	1024
${ }_{462}$	$\frac{3}{5}$		-2		5	1	2			$\begin{array}{r} -2937983 \\ 3911 \end{array}$			

H. Poincaré, Bulletin Astronomique (1908)

MÉNOIRES ET OBSERVATIONS.

SUR LES PETITS DIVISEURS DANS LA THÉORIE DE LA LUNE;

Par h. POINGARE.

1. Dans le développement de la théorie de la Lune, on voit s'introduire de petits divisears de la forme suivante :

$$
p_{1} n_{1}+p_{2} n_{2}+p_{3} n_{3}+p_{\ddagger} n_{4}
$$

les p sont des entiers, positifs ou négatifs; n_{1} et n_{2} sont les moyens mouvements de la Lune et du Soleil, n_{3} et n_{4} sont ceux du périgée et du nœud. Si l'on pose

$$
\frac{n_{2}}{n_{1}}=m
$$

Mais l'exposant de m est évidemment. le mếme que celui de β.
Il peut done devenir négatif. Si donc on poussait assez loin les développements de Delaunay, on arriverait à des termes où m figurerait à une puissance négative. Mais on n'y arriverait que quand on rencontrerait de très petits diviseurs analytiques, ce qui, nous l'avons dit, ne peut se produire que pour des termes d'ordre très élevé. C'est pour cette raison que cette circonstance a échappé à Delaunay.

Two lessons:

- Canonical transformation are very useful for "Classical dynamics in systems with many coupled degrees of freedom"
- Do not worry too much about convergence

GEORG-AUGUST-UNIVERSITÄT GÖTTINGEN

Real Time Evolution of
 Quantum Many-Body Systems

Flow Equations and Unitary Perturbation Theory

Stefan Kehrein
Institut für Theoretische Physik, Universität Göttingen

1. Real time evolution in classical mechanics:

Canonical perturbation theory
2. Real time evolution in quantum mechanics:

Unitary perturbation theory
3. Unitary perturbation theory in practice:

Flow equation method
4. Applications (impurity models, local quenches):

- Spin-boson model
- Time-dependent ferromagnetic Kondo model

5. Applications (bulk models, global quenches):

- Quantum quench in a Fermi liquid
- Quantum quench for 1d fermions with dimerization

6. Outlook

Main collaborators: A. Mielke (Univ. Heidelberg)
A. Hackl (SAP)
M. Möckel (Cambridge Univ.)
N. Robinson (Oxford Univ.)

2. Real time evolution in classical mechanics: Canonical perturbation theory

"Real time evolution" with small anharmonic terms

$$
H=\frac{1}{2} p^{2}+\frac{1}{2} q^{2}+\frac{g}{4} q^{4}
$$

Ansatz: $\quad q(t)=q^{(0)}(t)+g q^{(1)}(t)+O\left(g^{2}\right) \quad$ (initial condition: $\left.q(t=0)=0\right)$

$$
\begin{array}{ll}
\Rightarrow & q^{(0)}(t)=c \sin t \\
\Rightarrow & \ddot{q}^{(1)}(t)=-q^{(1)}(t)-c^{3} \sin ^{3} t
\end{array}
$$

$$
\Rightarrow \quad q^{(1)}(t)=\frac{c^{3}}{8}\left(-\frac{5}{4} \sin ^{3} t-\frac{3}{4} \cos ^{2} t \sin t+3 t \cos t\right)
$$

"Secular term"

Secular terms invalidate naive perturbation theory for large times!

Much better ... Canonical perturbation theory
Find canonical transformation $(\mathrm{q}, \mathrm{p}) \rightarrow(\mathrm{Q}, \mathrm{P})$ that brings H to normal form:

$$
\begin{aligned}
& H(q, p)=\frac{1}{2} p^{2}+\frac{1}{2} q^{2}+\frac{g}{4} q^{4} \\
& \tilde{H}(Q, P)=H_{0}+\frac{3}{8} g H_{0}^{2}+O\left(g^{2}\right) \quad \text { with } \quad H_{0}=\frac{1}{2} P^{2}+\frac{1}{2} Q^{2}
\end{aligned}
$$

$$
\text { vanishing Poisson bracket } \rightarrow \text { exact solution of dynamics for } Q(t), P(t)
$$

$$
\left(\mathrm{H}_{0}=\mathrm{E}_{0} \text { conserved }\right)
$$ possible (no secular terms):

$$
Q(t)=Q_{0} \sin \left(\omega t+\gamma_{0}\right) \quad \text { with } \quad \omega=1+\frac{3}{4} g E_{0}
$$

Generating function: $\quad F_{2}(q, P)=q P+g\left(\frac{5}{32} P q^{3}+\frac{3}{32} P^{3} q\right)$

$$
Q=\frac{\partial F_{2}}{\partial P}=q+g\left(\frac{5}{32} q^{3}+\frac{9}{32} P^{2} q\right) \quad, \quad p=\frac{\partial F_{2}}{\partial q}=\ldots
$$

Insert solution $Q(t), P(t)$ and reexpress in terms of $q(t), p(t)$:
$q(t)=Q_{0} \sin \left(\omega t+\gamma_{0}\right)-g\left(\frac{5}{32} Q_{0}^{3} \sin ^{3}\left(\omega t+\gamma_{0}\right)+\frac{3}{32} Q_{0}^{3} \cos ^{2}\left(\omega t+\gamma_{0}\right) \sin \left(\omega t+\gamma_{0}\right)\right)+O\left(g^{2}\right)$ also calculation in first order in g

red line: exact green line: naive pert. theory
black line: canonical pert. theory

Problem of naive perturbation theory: naive expansion in coupling constant produces secular terms

$$
\begin{aligned}
\sin (\omega t) & =\sin \left(\left(1+\frac{3}{4} g E_{0}\right) t\right) \\
& =\sin t+\frac{3}{4} g E_{0} t \cos t+O\left(g^{2}\right)
\end{aligned}
$$

canoncial perturbation theory
naive perturbation theory in coupling
\Rightarrow Same recipe for dynamics of quantum systems:
Perturbation theory based on unitary transformations instead of "naive" perturbation expansion
2. Real time evolution in quantum mechanics: Unitary perturbation theory

U: unitary transformation that diagonalizes the Hamiltonian (approximately)

$$
\begin{aligned}
& H, O,\left|\Psi_{i}\right\rangle \xrightarrow{\mathrm{U}} \tilde{H}, \tilde{O},\left|\tilde{\Psi}_{i}\right\rangle \\
& \text { I Non-perturbative solution } \\
& \text { of Heisenberg equations of } \\
& \text { motion for operator } \mathrm{O}(\mathrm{t}) \\
& O(t),\left|\Psi_{i}\right\rangle \stackrel{\mathrm{U}^{\dagger}}{\sim} \tilde{O}(t)=e^{i \tilde{H} t} \tilde{O} e^{-i \tilde{H} t},\left|\tilde{\Psi}_{i}\right\rangle \\
& \text { No secular terms! }
\end{aligned}
$$

"Forward-backward transformation"

3. Unitary perturbation in practice: Flow equations

Problem: How to construct U for non-integrable models with a continuum of energy scales?

Wanted: Perturbative method for finding U

Stable expansion for systems with very different energy scales
\rightarrow Energy-scale separation
\rightarrow Scaling theory / Renormalization theory (K.G. Wilson)

$\mathrm{H}_{\text {initial }}$

Problem:
Information on full Hilbert space required to construct unitary transformation for forward-backward transformation

Flow Equation Method

F. Wegner (1994)
S. K., The Flow Equation Approach to Many-Body Problems (Springer 2006)

Implementation of flow: Sequence of infinitesimal unitary transformations
One-parameter family of unitarily equivalent Hamiltonians generated by solving the differential equation ("flow equations")

$$
\frac{d H}{d B}=[\eta(B), H(B)]
$$

with $H(B=0)$ the initial Hamiltonian and an anti-hermitean generator $\eta(B)$.

Canonical choice of generator (Wegner 1994):

$$
\left.\left.\mathrm{H}(\mathrm{~B})=\mathrm{H}_{0}(\mathrm{~B}) \text { [diagonal part }\right]+\mathrm{H}_{\mathrm{int}}(\mathrm{~B}) \text { [interaction part }\right]
$$

\rightarrow define anti-hermitean generator $\eta(B)=\left[H_{0}(B), H_{i n t}(B)\right]$

$$
\Rightarrow \quad \lim _{D} \eta(B)=0
$$

\rightarrow generates band-diagonal Hamiltonians $\mathrm{H}(\mathrm{B})$ with $\mathrm{B}^{-1 / 2}=\Lambda_{\mathrm{feq}}$
Challenge: Generation of higher and higher order interaction terms
\rightarrow need suitable expansion parameter (typically running coupling)
Advantages:

- RG-like analytical method
- Controlled solution in certain strong-coupling problems (e.g., Kondo model)
- Keeps all states in Hilbert space
\rightarrow correlation functions on all energy scales
\rightarrow important in non-equilibrium (real time evolution, steady states)
- Avoids secular terms in real time evolution!

4. Applications (impurity models): Spin-boson model

Paradigmatic 2-state system for dissipative quantum mechanics:

$$
H=-\frac{\Delta}{2} \sigma_{x}+\underbrace{\sigma_{z} \sum_{k} \lambda_{k}\left(b_{k}+b_{k}^{\dagger}\right)}_{H_{\mathrm{int}}}+\sum_{k} \omega_{k} b_{k}^{\dagger} b_{k}
$$

Flow equation diagonalization:

$$
\begin{array}{rll}
\frac{d \lambda_{k}(B)}{d B}=-\left(\omega_{k}-\Delta\right)^{2} \lambda_{k} & \longleftrightarrow & \begin{array}{l}
\text { Energy scale } \\
\text { separation } \\
\text { sen }
\end{array} \\
\frac{d \Delta(B)}{d B} & =-\Delta \sum_{k} \lambda_{k}^{2} \frac{\omega_{k}-\Delta}{\omega_{k}+\Delta} \operatorname{coth}\left(\beta \omega_{k} / 2\right) & \longrightarrow \begin{array}{l}
\text { Non-perturbative energy } \\
\text { scale (frequency) }
\end{array} \\
\Rightarrow \quad H(B=\infty) & =-\frac{\Delta_{r}}{2} \sigma_{x}+\sum_{k} \omega_{k} b_{k}^{\dagger} b_{k}+O\left(\lambda_{k}^{2}\right) & \Delta_{r} \propto\left(\frac{\Delta}{\omega_{c}}\right)^{\alpha / 1-\alpha}
\end{array}
$$

Time evolution with respect to $\mathrm{H}(\mathrm{B}=\infty)$ is trivial
\rightarrow Where is dissipation/decoherence?
\rightarrow Transformation of observables!

Transformation of Observables

Transformation of observable O to diagonal basis ("Forward" transformation):

$$
\frac{d O(B)}{d B}=[\eta(B), O(B)] \quad, \quad O(B=0)=O
$$

Ansatz for σ_{z} :

$$
\begin{aligned}
& \sigma_{z}(B)=h(B) \sigma_{z}+\sigma_{x} \sum_{k} \chi_{k}(B)\left(b_{k}^{\dagger}+b_{k}\right)+\text { higher order terms } \\
& \quad \underbrace{\mathrm{B} \rightarrow \infty} \\
& 0 \longrightarrow \begin{array}{l}
\text { Observable becomes completely entangled } \\
\text { with environment degrees of freedom }
\end{array}
\end{aligned}
$$

Decoherence in "conventional" framework:

System degrees of freedom become entangled with environment

Decoherence in flow equation framework:

Hamiltonian diagonal, therefore system observables become entangled with environment

Equilibrium Dynamics ($\mathrm{T}=0$)

$$
\begin{array}{cc}
\mathrm{B}=0 \\
H, O,\left|\Psi_{i}\right\rangle & \mathrm{U}
\end{array} \begin{gathered}
\mathrm{B}=\infty \\
\tilde{H}, \tilde{O},\left|\tilde{\Psi}_{i}\right\rangle
\end{gathered}
$$

Non-perturbative solution of Heisenberg equations of motion for operator $\mathrm{O}(\mathrm{t})$

Equilibrium: $\mid \tilde{\psi}_{i}>$ is trivially given as ground state $\mid G S>$ of \tilde{H}

Spin operator in diagonal basis:

$$
\sigma_{z}(B=\infty)=\sigma_{x} \sum_{k} \chi_{k}(B=\infty)\left(b_{k}^{\dagger}+b_{k}\right)
$$

\rightarrow Incoherent spin dynamics:

$$
C_{z z}(t)=\frac{1}{2}\langle G S|\left\{\sigma_{z}(B=\infty), e^{i H(B=\infty) t} \sigma_{z}(B=\infty) e^{-i H(B=\infty) t}\right\}|G S\rangle
$$

Practical evaluation: Numerical evaluation of $\mathrm{O}\left(10^{3}\right)$ ordinary differential equations (qualitative behavior: analytical calculation!)

Ohmic bath

Structured bath (coupling to bath via harmonic oscillator Ω)
[S. Kleff, S. K., J. von Delft, Phys. Rev. B 702004]

Real time evolution

A. Hackl and S. K., Phys. Rev. B 78 (2008), J. Phys. C 21 (2009)

Forward-backward transformation (numerical implementation):

$$
\begin{aligned}
\sigma_{z}(t)= & z(t) \sigma_{z}+y(t) \sigma_{y} \\
& +i \sigma_{x} \sum \alpha_{k}(t)\left(b_{k}-b_{k}^{\dagger}\right)+\sigma_{x} \sum \beta_{k}(t)\left(b_{k}+b_{k}^{\dagger}\right) \\
& + \text { higher order terms }
\end{aligned}
$$

Evaluate for arbitrary initial state, e.g. here:
Initial state: $\quad\left|\Psi_{i}\right\rangle=\mid \uparrow$, relaxed bath \rangle
Expectation values: $\quad E_{z}(t)=\left\langle\Psi_{i}\right| \sigma_{z}(t)\left|\Psi_{i}\right\rangle=z(t)$
Shows exponential decay (possibly with oscillations) already in this order of flow equation calculation

Stable long time asymptotics (no secular terms):

Comparison with NRG data from Costi et al., PRA 68 (2003)

Applications (impurity models): Ferromagnetic Kondo model

A. HackI, D. Roosen, S. K., W. Hofstetter, Phys. Rev. Lett. 102, 196601 (2009)
A. Hackl, M. Vojta and S. K., Phys. Rev. B 80, 195117 (2009)

$$
H_{i}=\sum_{k, \sigma} \varepsilon_{k} c_{k \alpha}^{\dagger} c_{k \alpha}-{\underset{\text { infinitesimal magnetic field }}{+}}_{0_{z}}^{S_{z}}
$$

\Rightarrow Product initial state: $\left|\Psi_{i}\right\rangle=|\uparrow\rangle \otimes|F S\rangle$

$H_{f}=\sum_{k, \sigma} \varepsilon_{k} c_{k \alpha}^{\dagger} c_{k \alpha}-0^{+} S_{z}+J \vec{S} \cdot \sum c_{k^{\prime} \alpha} \vec{\sigma}_{\alpha \beta} c_{k \beta}$
ferromagnetic coupling $(\mathrm{J}<0)$: Coupling constant flows to zero
\Rightarrow Expansion becomes better (asymptotically exact) for long times

Nonequilibrium spin expectation value (large times):

$$
\left\langle S_{z}(t)\right\rangle=\frac{1}{2}\left(\frac{1}{\ln (t)-\frac{1}{\rho J}}+1+\rho J+O\left(J^{2}\right)\right) .
$$

Equilibrium: $\quad\left\langle S_{z}\right\rangle_{e q}=\frac{1}{2}\left(1+\frac{\rho J}{2}+O\left(J^{2}\right)\right)$

Comparison with TD-NRG:
[Hackl et al., PRL 102 (2009)]

Crossover from adiabatic to instantaneous quenching: (C. Tomaras, S. K., Eur. Phys. Lett. 93, 47011 (2011))

Coupling J switched on on timescale τ
Measure of non-adiabacity:

$$
\mu \stackrel{\text { def }}{=} \frac{\lim _{t \rightarrow \infty}\langle O(t)\rangle_{\text {neq }}-\langle O\rangle_{0}}{\langle O\rangle_{e q}-\langle O\rangle_{0}}
$$

\Longrightarrow Crossover timescale nonperturbative (exponentially large) due to RG flow

5. Applications (bulk models): Quantum quench in a Fermi liquid

Landau Fermi liquid theory:
Adiabatic switching on of interaction
$\rightarrow 1$ to 1 correspondence between physical electrons and quasiparticles

What happens for sudden switching (global quantum quench)?
Translation-invariant closed system + nonzero excitation energy density
\Rightarrow Thermalization?
M. Moeckel and S. K., Phys. Rev. Lett. 100 (2008), Ann. Phys. 324 (2009)

Hubbard model in $\mathrm{d}>1$ dimensions

$$
H=\sum_{k, \alpha} \varepsilon_{k} c_{k \alpha}^{\dagger} c_{k \alpha}+U \Theta(t) \sum_{i}\left(n_{i \uparrow}-\frac{1}{2}\right)\left(n_{i \downarrow}-\frac{1}{2}\right)
$$

Forward transformation:
$c_{k \uparrow}^{\dagger}(B=\infty)=h_{k} c_{k \uparrow}^{\dagger}+\sum_{k_{1}^{\prime}, k_{2}^{\prime}, k_{1}} M_{k_{1}^{\prime} k_{2}^{\prime} k_{1}}^{k}: c_{k_{1}^{\prime} \uparrow}^{\dagger} c_{k_{2}^{\prime} \downarrow}^{\dagger} c_{k_{1} \downarrow}:+$ higher order terms

- h_{k} only nonzero at Fermi surface for zero temperature
- Quasiparticle residue (equilibrium)

$$
Z=h_{k_{F}}^{2}
$$

Real time evolution

Analytical evaluation (with numerical integration) up to order U^{2}

Sudden switching looks like T=0 Fermi liquid with "wrong" quasiparticle residue on time scale $t \propto D^{-1}$
\rightarrow Novel metastable prethermalized state
\rightarrow Thermalization via QBE on time scale $\mathrm{t} \propto \mathrm{U}^{-4}$

Numerical confirmation:
Non-equilibrium DMFT with real time QMC M. Eckstein et al., Phys. Rev. Lett. 103 (2009)

5. Applications (bulk models): 1d fermions with dimerization

F. Essler, S. K., S. Manmana and N. Robinson, arXiv:1311.4557, to appear in PRB
$H(\delta, U)=-J \sum_{l}\left(1+(-1)^{l} \delta\right)\left(c_{l}^{\dagger} c_{l+1}+\right.$ h.c. $)+U \sum_{l} c_{l}^{\dagger} c_{l} c_{l+1}^{\dagger} c_{l+1}$
$\mathrm{H}(\delta, \mathrm{U}=0)$: Peierls insulator, exactly solvable via Bogoliubov transformation, exactly solved by flow equations
$\mathrm{H}(\delta \neq 0, \mathrm{U} \neq 0)$: Non-integrable model
Goal: Thermalization for global quenches $\mathrm{H}\left(\mathrm{\delta}_{\mathrm{i}}, \mathrm{U}_{\mathrm{i}}=0\right) \rightarrow \mathrm{H}\left(\delta_{\mathrm{f}}, \mathrm{U}_{\mathrm{f}} \neq 0\right)$? (Here: tuneable integrability breaking $U_{f} \neq 0$ for fixed quench amplitude $\delta_{i} \rightarrow \delta_{f}$)

Flow equation calculation: - Up to terms $\mathrm{O}\left(\mathrm{U}^{2}\right)$

- Analytical calculation (with numerical integration)
- 2- and 4-point functions
- comparison with t-DMRG

FIG. 10. Comparison of the CUT and t-DMRG results for $\mathcal{G}(L / 2, L / 2+1)=\left\langle c_{L / 2} c_{L / 2+1}^{\dagger}\right\rangle$ for the quench $\delta_{i}=0.75 \rightarrow$ $\delta=0.5$ and $U_{i}=0 \rightarrow U=0.15$ on a $L=50$ chain. The

FIG. 13. Rescaled difference between the t-DMRG and CUT data for $\mathcal{G}(25,26)$ and different values of U.

FIG. 12. Comparison of the CUT and t-DMRG results for $\mathcal{G}(L / 2, L / 2+1)=\left\langle c_{L / 2} c_{L / 2+1}^{\dagger}\right\rangle$ for the quench $\delta_{i}=0.75 \rightarrow$ $\delta=0.5$ and $U_{i}=0 \rightarrow U=0.5$ on a $L=50$ chain.

FIG. 18. Nearest neighbour density-density correlation function $\left\langle n\left(\frac{L}{2}\right) n\left(\frac{L}{2}+1\right)\right\rangle$ for a quench from $\delta_{i}=0.8 \rightarrow \delta_{f}=0.4$ and $U \stackrel{=}{=} 0 \xrightarrow{\rightarrow} 0.4$ computed by t-DMRG for system size

6. Outlook

Unitary perturbation theory based on flow equations:

- Perturbative method in the sense of weak coupling RG
- No secular terms in time evolution
- Gives exponential/power-law/etc. decays in lowest order calculations
- How to incorporate Boltzmann equation dynamics?
- Convergence properties of observable transformation?

