

Real-space approaches for laser-molecule interactions

Alejandro de la Calle, Abigail Wardlow and Daniel Dundas

Atomistic Simulation Centre Queen's University Belfast

- Motivation
- Grid-based approaches
- Solution of the TDSE for H⁺₂
 - Quantum treatment of ionization and dissociation
 - Scaled cylindrical coordinates
- Non-adiabatic quantum molecular dynamics for complex molecules
 - Time-dependent density functional theory
 - Adaptive real-space mesh techniques
- Results
- Outlook

Motivation

- One electron (H_2^+) and two electron (H_2) molecules
- Solvable by theory
 - Study interplay between electron and dissociation dynamics
 - Correlated two-electron molecular dynamics
 - Understanding correlated electron-ion dynamics important in many areas
 Molecular electronics: Dundas et al, Nature Nanotech 4 99 (2009)
- Easier to analyse in experiment
 - Fewer fragments
 - Analyse fragments simultaneously: distinguish dissociation from ionization

- Application in condensed matter physics, chemistry and life sciences
- Elucidate the structure of biopolymers
 - Understand charge flow across the molecule
 Remacle & Levine, PNAS 103 6793 (2006)
 - Break specific bonds (molecular scissors)
 Laarmann et al, J Phys B 41 074005 (2008)
- Control current flow in molecular electronic devices
 - Laser-controlled switching
 Kohler & Hänggi, Nature Nanotech 2 675 (2007)
- Molecular identification
 - Enantiomer (chiral molecule) identification
 - Lux et al, Angew Chem Int Ed 51 1 (2012)

Grid-based Approaches

1. Multiphoton excitation and dissociation

 $n\omega_L + AB \rightarrow A + B$

- 2. Multiphoton ionization $n\omega_I + AB \rightarrow AB^+ + e^-$
- 3. Dissociative ionization

 $n\omega_L + AB \rightarrow A^{a+} + B^{b+} + (a+b) e^-$

4. Raman scattering and high-order harmonic generation $n\omega_L + AB \rightarrow AB^* + m'\omega' + m''\omega''$

- For the range of molecules we want to describe we need to be able to deal with
 - Large regions of space
 - Long interaction times
 - Large data sets
- We require parallel methods that scale to large numbers of processor cores
 - Sparse, iterative techniques
 - Retain high accuracy
- Main class of methods considered
 - Adapted finite-difference grids
 - High-order explicit time propagators

- Standard finite-difference technique:
 - Solve Schrödinger equation on mesh of equally-spaced points
 - Approximate derivatives (Laplacian, etc) by central finite differences, e.g.

$$\frac{d^2}{dx^2}f(x) = \frac{1}{h^2} \left[f(x-h) - 2f(x) + f(x+h) \right] - \frac{h^2}{12} f^{(4)}(\eta)$$

where *h* is the step-size and $x - h \le \eta \le x + h$

- Results in a highly sparse set of linear equations
- Effective parallelization: nearest-neighbour communications (1 halo point)
- Error $\propto h^2$
 - To reduce error: reduce *h*
 - In many cases error largest in small regions of space
 - Small step-size used in regions where not needed

- Can overcome these problems by using different coordinate scaling techniques
 - Global adaptation
 - Local adaptations
- Scaling techniques with increasing grid spacing only valid for bound states
 - Equidistant grid spacing along direction of ionization
- Need to be careful!
 - Resulting finite difference Hamiltonian is generally not Hermitian
 - Time propagation is not unitary
 - Effect is enhanced when very little ionization occurs
- Can obtain Hermitian finite difference Hamiltonian
 - Derive Schrödinger equation from appropriate Lagrangian

Time propagation

- In Krylov subspace methods
 - Calculate the vectors: Ψ , $H\Psi$, $H^{2}\Psi$, ..., $H^{N_{k}}\Psi$
 - Orthonormalise these to form the vectors: $q_0, q_1, q_2, \dots, q_{N_k}$
 - Let Q be the matrix whose columns are the q's
 - $-h = Q^{\dagger}HQ$ is the Krylov subspace Hamiltonian
- We propagate wavefunctions according to

 $\Psi(t + \Delta t) \approx e^{-iH\Delta t} \Psi(t)$ $\approx Qe^{-ih\Delta t} Q^{\dagger} \Psi(t)$

• Unitary to order of Krylov expansion

E S Smyth et al, Comp Phys Comm **114** 1 (1998)

D Dundas, J Chem Phys 136 194303 (2012)

General Approach for H⁺₂

Queen's University Grid treatment of H⁺₂

- Light linearly polarized parallel to molecular axis
- Full dimensional treatment of electron dynamics
- 1-D treatment of nuclear dynamics

Hamiltonian for H_2^+ can be written

 $H_{\text{tot}}(R, \mathbf{r}, t) = T_{\text{N}}(R) + H_{\text{elec}}(R, \mathbf{r}, t)$ $H_{\text{elec}}(R, \mathbf{r}, t) = T_{\text{e}}(\mathbf{r}) + V_{\text{ion}}(R, \mathbf{r}) + U(\mathbf{r}, t)$

- $T_N(R)$: nuclear kinetic energy
- $H_{\text{elec}}(R, \mathbf{r}, t)$: electronic Hamiltonian
- $T_{e}(\mathbf{r})$: electron kinetic energy
- $V_{ion}(R, r)$: Coulomb potential
- $U(\mathbf{r}, t)$: laser-electron interaction (length or velocity gauge)

Queen's University Time-Dependent Schrödinger Equation (TDSE) Belfast

We can derive the time-dependent Schrödinger equation from the Lagrangian

$$\mathcal{L} = \int d\mathbf{R} \int d\mathbf{r} \ \Psi^{\star}(\mathbf{R}, \mathbf{r}, t) \left(i \frac{\partial}{\partial t} - H_{\text{tot}}(\mathbf{R}, \mathbf{r}, t) \right) \Psi(\mathbf{R}, \mathbf{r}, t)$$

• Consider variation of Ψ^* that leave action, \mathcal{A} , stationary

$$\delta \mathcal{A} = \delta \int_{t_0}^{t_1} \mathcal{L} \mathrm{d}t = 0$$

• Euler-Lagrange equation of motion

$$\frac{\partial \mathcal{L}}{\partial \Psi^{\star}} = \frac{d}{dt} \left(\frac{\partial \mathcal{L}}{\partial \dot{\Psi}^{\star}} \right),$$

results in TDSE

• Take variation after grid adaptation applied

Queen's University Coordinate scaling

• Generalized cylindrical coordinates for electron dynamics

 $\mathbf{r} = g(\rho) \cos \phi \mathbf{i} + g(\rho) \sin \phi \mathbf{j} + h(z) \mathbf{k},$

- Laser linearly polarized along **k** direction, \Rightarrow no ϕ dependence
- Volume element, $d\mathbf{r} = gg'h' d\rho dz = |J| d\rho dz$
- Electron kinetic energy

$$T_{\rm e}(\mathbf{r}) = -\frac{1}{2\mu} \frac{1}{gg'h'} \left[\frac{\partial}{\partial\rho} \left(\frac{gh'}{g'} \right) \frac{\partial}{\partial\rho} + \frac{\partial}{\partial z} \left(\frac{gg'}{h'} \right) \frac{\partial}{\partial z} \right]$$

• Propagate the wavefunction

$$\Psi(\boldsymbol{R},\boldsymbol{g}(\boldsymbol{\rho}),\boldsymbol{h}(\boldsymbol{z}),\boldsymbol{t}) = |\boldsymbol{J}|^{-1/2} \psi(\boldsymbol{R},\boldsymbol{g},\boldsymbol{h},\boldsymbol{t})$$

• Lagrangian becomes

$$\mathcal{L} = \int \mathrm{d}\mathbf{R} \int |\mathbf{J}| \, \mathrm{d}\rho \, \mathrm{d}z \, |\mathbf{J}|^{-1/2} \, \psi^{\star} \left(i \frac{\partial}{\partial t} - H_{\text{tot}}(\mathbf{R}, \mathbf{r}, t) \right) |\mathbf{J}|^{-1/2} \, \psi$$

• Take variation with respect to ψ^{\star} gives TDSE

$$i\frac{\partial\psi}{\partial t} = \left[-\frac{1}{2M}\frac{\partial^2}{\partial R^2} - \frac{1}{2\mu}\tilde{T}_e - \frac{Z_1}{r_1} - \frac{Z_2}{r_2} + U(h,t)\right]\psi$$

- $r_1^2 = g^2 + (h R/2)^2$
- $r_2^2 = g^2 + (h + R/2)^2$
- *M* is reduced mass of the ions
- μ is reduced mass of electron

• Electron kinetic energy

$$\begin{split} \tilde{T}_e &= \frac{1}{\sqrt{gg'}} \frac{\partial}{\partial \rho} \left(\frac{g}{g'} \right) \frac{\partial}{\partial \rho} \frac{1}{\sqrt{gg'}} + \frac{1}{\sqrt{h'}} \frac{\partial}{\partial z} \left(\frac{1}{h'} \right) \frac{\partial}{\partial z} \frac{1}{\sqrt{h'}} \\ &= T_\rho + T_z \end{split}$$

- Symmetric expression when expressed in finite difference form
- Can equally be applied to complex coordinate scaling
- Simplify these to include second derivative terms
 - Reduces communications overhead in parallel simulations
 - D Dundas, J Chem Phys 136 194303 (2012)

Queen's University Coordinate scaling: Obtaining the TDSE Belfast

• ρ term

$$T_{\rho} = \frac{1}{2} \left(\frac{1}{(g')^2} \frac{\partial^2}{\partial \rho^2} + \frac{\partial^2}{\partial \rho^2} \frac{1}{(g')^2} \right) + \left(\frac{g'''}{2(g')^3} - \frac{7}{4} \frac{(g'')^2}{(g')^4} + \frac{1}{4g^2} \right)$$

• z term

$$T_{z} = \frac{1}{2} \left(\frac{1}{(h')^{2}} \frac{\partial^{2}}{\partial z^{2}} + \frac{\partial^{2}}{\partial z^{2}} \frac{1}{(h')^{2}} \right) + \left(\frac{h'''}{2(h')^{3}} - \frac{7}{4} \frac{(h'')^{2}}{(h')^{4}} \right)$$

• Originally set out by Kawata & Kono, J Chem Phys **111** 9498 (1999)

- Never used in this symmetric form

- $g(\rho) = \rho^{3/2}$, h(z) = z used by several groups
 - H Kono et al, J. Comp. Phys. 130 148 (1997)
 - D Dundas et al, J. Phys. B 33 3261 (2000)
- This gives

$$T_{\rho} = \frac{2}{9} \left(\frac{1}{\rho} \frac{\partial^2}{\partial \rho^2} + \frac{\partial^2}{\partial \rho^2} \frac{1}{\rho} \right) \qquad T_z = \frac{\partial^2}{\partial z^2}$$

• To evaluate the second term in the expression for $T_{
ho}$ we need to calculate

$$rac{\psi}{
ho} \propto \Psi$$

when $\rho = 0$. Obtain this by interpolation.

- Solution of TDSE implemented using a real-space mesh approach
- Finite difference mesh approach in 3D
 - ρ coordinate described with 3-point central differences
 - -R and z coordinates described with 5-point central differences
- Initial state calculated with Thick-Restart Lanczos: TRLan
 - Wu et al, J Comp Phys 154 156 (1999)
 - Calculates several lowest vibrational states
- Parallelized in 3D using MPI
- Arnoldi time propagation algorithm (generally 18th order)
- Wavefunction splitting technique to prevent reflections
- Implemented in code THeREMIN (vibraTing HydRogEn Molecular IoN)

Non-adiabatic

quantum molecular dynamics (NAQMD)

- Consider a system consisting of
 - Ne quantum-mechanical electrons
 - N_n classical ions
- lons described by
 - Trajectories $\boldsymbol{R} = \{\boldsymbol{R}_1(t), \dots, \boldsymbol{R}_{N_n}(t)\}$
 - Momenta $P = \{P_1(t), ..., P_{N_n}(t)\}$
 - For ion k, denote mass and charge by M_k and Z_k respectively
- Electrons described by many-body wavefunction $\Psi(\mathbf{r}_e, t)$

- $\mathbf{r}_e = {\mathbf{r}_1, ..., \mathbf{r}_{N_e}}$ denotes electron position vectors (ignoring spin)

- Derive equations of motion for ions and electrons using Lagrangian formalism
 - T N Todorov, J Phys: Cond Matt 13 10125 (2001)
 - T A Niehaus et al, Eur Phys J D 35 467 (2005)
- Start from the Lagrangian

$$\mathcal{L} = i \int d\mathbf{r}_{e} \Psi^{\star}(\mathbf{r}_{e}, t) \dot{\Psi}(\mathbf{r}_{e}, t)$$

$$- \int d\mathbf{r}_{e} \Psi^{\star}(\mathbf{r}_{e}, t) H(\mathbf{r}_{e}, \mathbf{R}, t) \Psi(\mathbf{r}_{e}, t)$$

$$+ \frac{1}{2} \sum_{k=1}^{N_{n}} M_{k} \dot{\mathbf{R}}_{k}^{2}(t) - V_{nn}(\mathbf{R}).$$

- $V_{nn}(\mathbf{R})$ denotes Coulomb repulsion between ions
- $H(\mathbf{r}_e, \mathbf{R}, t)$ denotes the time-dependent Hamiltonian

$$H(\boldsymbol{r}_{e},\boldsymbol{R},t) = \sum_{i=1}^{N_{e}} \left[\frac{1}{2} \nabla_{\boldsymbol{r}_{i}}^{2} + V_{\text{ext}}(\boldsymbol{r}_{i},\boldsymbol{R},t) \right] + V_{ee}(\boldsymbol{r}_{e})$$

where

- $-V_{ee}(\mathbf{r}_e)$ denotes Coulomb repulsion between electrons
- $V_{\text{ext}}(\mathbf{r}_i, \mathbf{R}, t) = V_{\text{ions}}(\mathbf{r}_i, \mathbf{R}, t) + U_{\text{elec}}(\mathbf{r}_i, t)$ denotes external potential
- $U_{\text{elec}}(\mathbf{r}_i, t)$ denotes interaction between electron *i* and applied laser field
- $V_{\text{ions}}(\mathbf{r}_i, \mathbf{R}, t)$ denotes Coulomb interaction between electron *i* and all ions

 Consider variations of wavefunction and ion trajectories that leave action, A, stationary

$$\delta \mathcal{A} = \delta \int_{t_0}^{t_1} \mathcal{L} dt = 0$$

• Results in Euler-Lagrange equations of motion

$$\frac{\partial \mathcal{L}}{\partial \Psi^{\star}} = \frac{d}{dt} \left(\frac{\partial \mathcal{L}}{\partial \dot{\Psi}^{\star}} \right) \tag{1}$$

$$\frac{\partial \mathcal{L}}{\partial \Psi} = \frac{d}{dt} \left(\frac{\partial \mathcal{L}}{\partial \dot{\Psi}} \right) \tag{2}$$

$$\frac{\partial \mathcal{L}}{\partial \mathbf{R}_{k}} = \frac{d}{dt} \left(\frac{\partial \mathcal{L}}{\partial \dot{\mathbf{R}}_{k}} \right) \tag{3}$$

(1) leads to the time-dependent Schrödinger equation (TDSE)

$$\frac{\partial}{\partial t}\Psi(\boldsymbol{r}_{e},t)=H(\boldsymbol{r}_{e},\boldsymbol{R},t)\Psi(\boldsymbol{r}_{e},t)$$

- (2) leads to its complex conjugate
- (3) leads to equation of motion for ions

$$M_{k}\ddot{\boldsymbol{R}}_{k} = - \int d\boldsymbol{r}_{e} \Psi^{\star}(\boldsymbol{r}_{e}, t) \left(\tilde{\boldsymbol{\nabla}}_{k} H(\boldsymbol{r}_{e}, \boldsymbol{R}, t)\right) \Psi(\boldsymbol{r}_{e}, t)$$
$$- \tilde{\boldsymbol{\nabla}}_{k} V_{nn}(\boldsymbol{R})$$

- Incomplete, atom-centred basis sets introduce velocity-dependent forces –
 Pulay forces
- See T N Todorov, *J Phys: Cond Matt* **13** 10125 (2001)

• Electronic dynamics: solve TDSE

$$i\frac{\partial}{\partial t}\Psi(\mathbf{r}_e,t) = H(\mathbf{r}_e,\mathbf{R},t)\Psi(\mathbf{r}_e,t)$$

• Ionic dynamics: solve Newton's equations of motion

$$M_{k}\ddot{\boldsymbol{R}}_{k} = - \int d\boldsymbol{r}_{e}\Psi^{\star}(\boldsymbol{r}_{e},t) \left(\tilde{\boldsymbol{\nabla}}_{k}H(\boldsymbol{r}_{e},\boldsymbol{R},t)\right)\Psi(\boldsymbol{r}_{e},t)$$
$$- \tilde{\boldsymbol{\nabla}}_{k}V_{nn}(\boldsymbol{R})$$

• Require a many-body method to describe the electronic dynamics

Time-Dependent Density Functional Treatment of the Electronic Dynamics

- TDDFT describes a system of interacting particles in terms of its density
- Density of interacting system obtained from density of an auxiliary system of non-interacting particles moving in an effective local single particle potential
- Density calculated via solution of Kohn-Sham equations

$$n(\mathbf{r},t) = 2\sum_{i=1}^{N} |\psi_i(\mathbf{r},t)|^2$$

$$\begin{split} i\frac{\partial}{\partial t}\psi_i(\boldsymbol{r},t) &= \left[-\frac{1}{2}\nabla^2 + V_{\text{ext}}(\boldsymbol{r},\boldsymbol{R},t) + V_H(\boldsymbol{r},t) \right. \\ &+ \left. V_{xc}(\boldsymbol{r},t) \right]\psi_i(\boldsymbol{r},t) \end{split}$$

- $V_{\text{ext}}(\mathbf{r}, \mathbf{R}, t)$ is the external potential
- $V_H(\mathbf{r}, t)$ is the Hartree potential
- $V_{xc}(\mathbf{r}, t)$ is the exchange-correlation potential

Queen's University Exchange-correlation functionals Belfast

• Adiabatic approximations

$$V_{xc}^{\text{adiabatic}}(\mathbf{r}, t) = \tilde{V}_{xc}[n(\mathbf{r})](\mathbf{r})|_{n(\mathbf{r})=n(\mathbf{r},t)}$$

where $\tilde{v}_{xc}[n(\mathbf{r})](\mathbf{r})$ is an approximation to the ground-state xc density functional, e.g. xLDA

- Time-dependent optimized effective potential
- Functionals with 'memory' effects
 - Non-local in time

See Marques M A L and Gross E K U, Annu Rev Phys Chem 55:427 (2004)

- The exchange-only adiabatic local density approximation (xLDA) is simplest approximation
- Exchange energy given by

$$E_{x}^{\text{LDA}}[n] = -\frac{3}{4} \left(\frac{3}{\pi}\right)^{1/3} \int d\mathbf{r} \ n^{4/3}(\mathbf{r}, t)$$

• Exchange-correlation potential given by

$$V_{X}^{\text{LDA}}(\mathbf{r},t) = -\left(\frac{3}{\pi}\right)^{1/3} n^{1/3}(\mathbf{r},t)$$

- Suffers from self-interaction errors
 - Ionization potentials not well defined

- LB94 functional provides a simple self-interaction correction
 - van Leeuwen & Baerends, Phys Rev A 49 2421 (1994)
- Potential given by

$$V_{x}^{\text{LB94}}(\mathbf{r},t) = V_{x}^{\text{LDA}}(\mathbf{r},t) - \beta n^{1/3}(\mathbf{r},t) \frac{x^{2}}{1 + 3\beta x \ln\left(x + \sqrt{x^{2} + 1}\right)}$$

where $\beta = 0.05$ and

$$x(\mathbf{r},t) = \frac{|\boldsymbol{\nabla} n(\mathbf{r},t)|}{n^{4/3}(\mathbf{r},t)}$$

- Widely used for laser-molecule interactions
 - Penka Fowe & Bandrauk, Phys Rev A 81 023411 (2010)
 - Petretti et al, Phys Rev Lett **104** 223001 (2010)

- LB94 potential not derivable from exchange-correlation energy functional
 - Forces acting on atoms not defined \Rightarrow only fixed nuclei calculations
- Need method derivable from an exchange-correlation energy functional
- One such approach is to use LDA-KLI-SIC approach
 - Tong & Chu, Phys Rev A **55** 3406 (1997)
 - Grabo et al, in Strong Coulomb Correlations in Electronic Structure Calculations: Beyond the Local Density Approximation, V.I. Anisimov, ed(s), (Gordon and Breach, 2000)
 - Telnov et al, Chem Phys **391** 88 (2011)
- We implement this approach using xLDA (called xKLI later)

• For ion k, the classical equation of motion is

$$M_k \ddot{\boldsymbol{R}}_k = -\int d\boldsymbol{r} \, n(\boldsymbol{r},t) \left(\tilde{\boldsymbol{\nabla}}_k H(\boldsymbol{r},\boldsymbol{R},t) \right) - \tilde{\boldsymbol{\nabla}}_k V_{nn}(\boldsymbol{R})$$

• Time propagation using a velocity-Verlet algorithm

Implementation of NAQMD approach

Queen's University Implementation of NAQMD approach Belfast using a real-space mesh approach

- Adaptive (local and global) finite difference mesh approach in 3D
 - Similar to ACRES DFT approach: Modine et al Phys Rev B 55 10289 (1997)
 - High-order finite difference rules: 5-point to 13-point central differences
- Several iterative eigensolvers implemented
 - Thick-restart Lanczos: TRLan
 - Chebyshev-filtered subspace iteration: CheFSI
- Parallelized using MPI
- Arnoldi time propagation algorithm
- Utilizes full Coulomb potential or Troullier-Martins pseudopotentials
- Wavefunction splitting technique to prevent reflections
- Implemented in code EDAMAME (Ehrenfest DynAMics on Adaptive MEshes)

Local adaptive mesh techniques

- Require grid point density large near atomic positions
 - Achieve this with coordinate transformation
- Define a Cartesian coordinate system, x^i : $(x^1, x^2, x^3) = (x, y, z)$
 - Metric in Cartesian coordinates $g^{ij} = \delta^{ij}$
- Define a curvilinear coordinate system, ζ^{lpha}
 - Cartesian coordinates depend on curvilinear coordinates: $x^i(\zeta^{\alpha})$
 - Jacobian of transformation $J_{\alpha}^{i} = \frac{\partial x'}{\partial \zeta^{\alpha}}$

– Metric in curvilinear coordinates
$$g^{\alpha\beta} = (J^{-1})^{\alpha}_{i} \delta^{ij} (J^{-1})^{\beta}_{i}$$

- Rewrite Kohn-Sham equations in terms of curvilinear coordinates
 - Define a regular (equally-spaced) grid in curvilinear coordinates
- Laplacian in curvilinear coordinates (Laplace-Beltrami operator)

$$\nabla^{2} = \frac{1}{|J|} \frac{\partial}{\partial \zeta^{\alpha}} |J| g^{\alpha\beta} \frac{\partial}{\partial \zeta^{\beta}}$$

• Transform the Kohn Sham orbitals

$$\psi_{i\sigma}(\mathbf{r},t) = \frac{1}{\sqrt{|J|}} \varphi_{i\sigma}(\mathbf{r},t)$$

• Results in symmetric Laplacian operator

$$\nabla^{2} = \frac{1}{\sqrt{|J|}} \frac{\partial}{\partial \zeta^{\alpha}} |J| g^{\alpha\beta} \frac{\partial}{\partial \zeta^{\beta}} \frac{1}{\sqrt{|J|}}$$

Queen's University Coordinate transformation

$$\boldsymbol{r} = \boldsymbol{\zeta} - \sum_{\nu} \alpha_{\nu} \stackrel{\leftrightarrow}{\boldsymbol{Q}}_{\nu} \cdot (\boldsymbol{\zeta} - \boldsymbol{\mathcal{R}}_{\nu}) f\left(\frac{|\boldsymbol{\zeta} - \boldsymbol{\mathcal{R}}_{\nu}|}{\tau_{\nu}}\right)$$
$$= \boldsymbol{x}(\zeta^{1}, \zeta^{2}, \zeta^{3}) \, \boldsymbol{i} + \boldsymbol{y}(\zeta^{1}, \zeta^{2}, \zeta^{3}) \, \boldsymbol{j} + \boldsymbol{z}(\zeta^{1}, \zeta^{2}, \zeta^{3}) \, \boldsymbol{k}$$

where

- $f(X) = \exp(-X^2/2)$ defines the adaption function
- \mathcal{R}_{ν} adjusted to obtain $\mathbf{r}(\mathcal{R}_{\nu}) = \mathbf{R}_{\nu}$
- rank-2 tensors $\stackrel{\leftrightarrow}{\boldsymbol{Q}}_{\nu}$ adjusted to obtain $J^{i}_{\alpha}(\boldsymbol{\mathcal{R}}_{\nu}) = |J|^{1/3}_{\nu} \delta^{i}_{\alpha}$
- τ_{ν} defines an adaption radius
- $lpha_{
 u}$ defines the strength of adaptation around atomic site u
- Grid points depend on atomic positions: Pulay-type forces introduced

Queen's University Example: Real space adaptive mesh for benzene: No adaptation

Queen's University Example: Real space adaptive mesh for benzene: No adaptation

Queen's University Example: Real space adaptive mesh for benzene: With adaptation

Global adaptive mesh techniques

- The mesh technique described previously is locally adaptive
 - Mesh adapted around ion positions
 - Mesh spacing away from ionic centres is constant
- Would also like a globally adaptive mesh
 - Increase mesh spacing away from axis of laser polarization

Queen's University Global coordinate transformation

• Consider the transformation

$$\mathbf{r} = x \left(u(\zeta^{1}), v(\zeta^{2}), w(\zeta^{3}) \right) \mathbf{i}$$

+ $y \left(u(\zeta^{1}), v(\zeta^{2}), w(\zeta^{3}) \right) \mathbf{j}$
+ $z \left(u(\zeta^{1}), v(\zeta^{2}), w(\zeta^{3}) \right) \mathbf{k}$

• See Dundas, J Chem Phys 136 194303 (2012)

- For example, to transform ζ to the scaled coordinate u
 - Polynomial scaling: equidistant spacing leading to increasing spacing

$$u(\zeta) = \begin{cases} \zeta & |\zeta| \le \zeta_f \\ \zeta + d_{\max} \left(\frac{\zeta - \zeta_f}{\zeta_f - \zeta_{\max}}\right)^5 & |\zeta| > \zeta_f \end{cases}$$

where $d_{max} = \zeta_{max} - u_{max}$, ζ_{max} is the maximum value of the unscaled coordinate, ζ_f is the point where the flat region ends, u_{max} is the maximum value of the scaled coordinate required.

- Hyperbolic scaling: Exponentially increasing spacing over whole region

$$u(\zeta) = \sinh\left(\frac{\zeta}{\alpha}\right)$$

where α controls maximum extent of grid.

Results

Results for H⁺₂

State	Present (1)	Present (2)	Previous (1)	Previous (2)
$\nu = 0$	-0.59655	-0.59750	-0.59740	-0.59714
$\nu = 1$	-0.58657	-0.58749	-0.58744	-0.58716
$\nu = 2$	-0.57734	-0.57806	-0.57808	-0.57775
$\nu = 3$	-0.56946	-0.56919	-0.56930	-0.56891
$\nu = 4$	-0.56082	-0.56087	-0.56106	-0.56061
$\nu = 5$	-0.55340	-0.55308	-0.55337	-0.55284
$\nu = 6$	-0.54708	-0.54581	-0.54619	-0.54559
$\nu = 7$	-0.54118	-0.53906	-0.53951	-0.53886
$\nu = 8$	-0.53599	-0.53281	-0.53334	-0.53263
$\nu = 9$	-0.53077	-0.52707	-0.52766	-0.52691

Present (1): $\Delta \rho = 0.28$, $\Delta z = 0.20$, $\Delta R = 0.20$ Present (2): $\Delta \rho = 0.20$, $\Delta z = 0.05$, $\Delta R = 0.05$ Previous (1): Niederhausen et al, JPB **45** 105602 (2012) Previous (2): Hilico et al, EJPD **12** 449 (2000)

Largest difference in Present (1) results < 1% compared to Previous (2)

Dissociation dynamics of H₂⁺ with low-intensity IR pulses

- Starting from the $\nu = 0$ vibrational ground state
- Consider response to a low intensity, IR pulse
 - Intensity: 2 \times 10¹⁴ Wcm⁻²
 - Wavelength: 780 nm
 - Duration: 20 cycle pulse
- Grid parameters
 - $-\Delta \rho = 0.28, \Delta z = 0.20, \Delta R = 0.20$
 - $-114 \leq z \leq 114, 0 \leq
 ho \leq$ 80, $0 \leq R \leq$ 30
 - Hamiltonian size: $11.3M \times 11.3M$

Queen's University Dissociation dynamics with low-intensity IR pulses $I = 2 \times 10^{14} \text{ Wcm}^{-2}, \lambda = 780 \text{ nm}$

Queen's University Dissociation dynamics with low-intensity IR pulses $I = 2 \times 10^{14} \text{ Wcm}^{-2}, \lambda = 780 \text{ nm}$

Queen's University Dissociation dynamics with low-intensity IR pulses Belfast $I = 2 \times 10^{14}$ Wcm⁻², $\lambda = 780$ nm

Dissociation dynamics of H⁺₂ with VUV pump pulse

Queen's University VUV pump pulse dynamics of H⁺₂

- Starting from the ν = 2 vibrational state
- Tune wavelength to energy gap between $\nu = 2 \sigma_g$ and σ_u dissociating state
- Consider response to a low intensity, VUV pulse
 - Intensity: 8.4 \times 10 12 Wcm $^{-2}$
 - Wavelength: 110.3 nm
 - Duration: 3 cycle pulse
- Grid parameters
 - $-\Delta \rho = 0.28, \Delta z = 0.20, \Delta R = 0.05$
 - $-55 \leq z \leq$ 55, 0 $\leq
 ho \leq$ 76, 0 $\leq R \leq$ 40
 - Hamiltonian size: $28.2M \times 28.2M$
- Previously studied in 1D simulations (from $\nu = 0$ state)
 - Picon et al, Phys Rev A 83 013414 (2011)

Queen's University VUV pump pulse dynamics of H_2^+ Belfast Start from $\nu = 2$ state

Queen's University VUV pump pulse dynamics of H_2^+ Belfast Start from $\nu = 2$ state

TDDFT Results HHG in N₂: Orientation effects

Queen's University Laser parameters Belfast

- Intensity: $2 \times 10^{14} \text{ Wcm}^{-2}$
- Wavelength: 780 nm
- Duration: 10 cycle pulse
- Polarization direction either parallel or perpendicular to molecular axis

- Polarization direction along *z* direction
- Normal finite difference along *z*; global adaptive grid along *x* and *y*
 - Polynomial scaling
- Finite-difference grid extent

 $x \in [-120, 120]a_0$ $y \in [-120, 120]a_0$ $z \in [-200, 200]a_0$

- Grid spacing $h_{\zeta^1} = h_{\zeta^2} = h_{\zeta^3} = 0.4a_0$
- Hamiltonian size: $20.6M \times 20.6M$
- Troullier-Martins norm-conserving pseudopotentials
- Time propagation: 18th-order Arnoldi, $\delta t = 0.05a_0$

- Polarization direction along *X* direction
- Normal finite difference along *X*; global adaptive grid along *y* and *z*
 - Polynomial scaling
- Finite-difference grid extent

 $x \in [-200, 200]a_0$ $y \in [-120, 120]a_0$ $z \in [-120, 120]a_0$

- Grid spacing $h_{\zeta^1} = h_{\zeta^2} = h_{\zeta^3} = 0.4a_0$
- Hamiltonian size: $20.6M \times 20.6M$
- Troullier-Martins norm-conserving pseudopotentials
- Time propagation: 18th-order Arnoldi, $\delta t = 0.05a_0$

- Study HHG using xLDA and xKLI exchange-correlation potentials
- xLDA potential has wrong asymptotic behaviour
- Can calculate ionization potential from eigenenergy of HOMO orbital
 - Koopman's theorem

Experimental ¹	Present calculations		
	xLDA results	xKLI results	
15.586 eV	9.112 eV	13.947eV	

• xLDA Ionization Potential: $|E(N_2) - E(N_2^+)| = 14.062 \text{ eV}$

¹ From Grabo et al, in Strong Coulomb Correlations in Electronic Structure Calculations: Beyond the Local Density Approximation (Gordon and Breach, 2000) p. 203

Queen's University Valence orbitals of N₂ Belfast

Groundstate configuration: $1\sigma_g^2 1\sigma_u^2 2\sigma_g^2 2\sigma_u^2 1\pi_u^4 3\sigma_g^2$

- Low harmonics enhanced for parallel orientation
- Cut-off harmonics enhanced for perpendicular orientation
 - McFarland et al, Science, **322** 1232 (2008)

- More tightly bound $2\sigma_u$ orbital respond more than $1\pi_u$ orbitals
- $1\pi_u$ orbitals respond identically

- More tightly bound $1\pi_u$ orbitals respond more than $3\sigma_g$ HOMO
- $1\pi_u$ orbitals respond differently

- Low harmonics enhanced for parallel orientation
- Cut-off harmonics enhanced for perpendicular orientation
 - McFarland et al, Science, **322** 1232 (2008)

- More tightly bound $2\sigma_u$ orbital respond more than $1\pi_u$ orbitals
- $1\pi_u$ orbitals respond identically

- More tightly bound $1\pi_u$ orbitals respond more than $3\sigma_g$ HOMO
- $1\pi_u$ orbitals respond differently

• Cut-off harmonics enhanced for xKLI calculation

• Cut-off harmonics enhanced for xKLI calculation

Conclusions and Outlook

• Conclusions

- A finite difference code to study quantum electron-ion dynamics
- Generalised cylindrical coordinates result in highly-scalable code
- Future work
 - Calculation of photoelectron spectra
 - Addition of azimuthal coordinate
 - Orientation effects
 - Extension to two-electrons
 - $-H_2$

• Conclusions

- A general TDDFT code developed to study electron-ion dynamics
- Adaptive finite-difference grids result in highly-scalable code
- Efficient iterative eigensolvers for generating initial state
- Future work
 - Ion dynamics
 - Calculation of photoelectron spectra
 - Transport boundary conditions
 - Identification of chiral molecules