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Motivation
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Motivation: Few Electron molecules

• One electron (H2
+) and two electron (H2) molecules

• Solvable by theory

– Study interplay between electron and dissociation dynamics

– Correlated two-electron molecular dynamics

– Understanding correlated electron-ion dynamics important in many areas

Molecular electronics: Dundas et al, Nature Nanotech 4 99 (2009)

• Easier to analyse in experiment

– Fewer fragments

– Analyse fragments simultaneously:

distinguish dissociation from ionization
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Motivation: Many-electron molecules

• Application in condensed matter physics, chemistry and life sciences

• Elucidate the structure of biopolymers

– Understand charge flow across the molecule

Remacle & Levine, PNAS 103 6793 (2006)

– Break specific bonds (molecular scissors)

Laarmann et al, J Phys B 41 074005 (2008)

• Control current flow in molecular electronic devices

– Laser-controlled switching

Kohler & Hänggi, Nature Nanotech 2 675 (2007)

• Molecular identification

– Enantiomer (chiral molecule) identification

Lux et al, Angew Chem Int Ed 51 1 (2012)
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Grid-based Approaches
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Laser interaction with molecules:

Physical processes involved

1. Multiphoton excitation and dissociation

nωL + AB → A + B

2. Multiphoton ionization

nωL + AB → AB+ +e−

3. Dissociative ionization

nωL + AB → Aa+ + Bb+ +(a+b) e−

4. Raman scattering and high-order harmonic generation

nωL + AB → AB∗ + m′ω′+ m′′ω′′
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General Approaches

• For the range of molecules we want to describe we need to be able to deal with

– Large regions of space

– Long interaction times

– Large data sets

• We require parallel methods that scale to large numbers of processor cores

– Sparse, iterative techniques

– Retain high accuracy

• Main class of methods considered

– Adapted finite-difference grids

– High-order explicit time propagators
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Finite difference techniques

• Standard finite-difference technique:

– Solve Schrödinger equation on mesh of equally-spaced points

– Approximate derivatives (Laplacian, etc) by central finite differences, e.g.

d2

dx2
f (x) =

1

h2

[

f (x − h) − 2f (x) + f (x + h)

]

− h2

12
f (4)(η)

where h is the step-size and x − h ≤ η ≤ x + h

• Results in a highly sparse set of linear equations

• Effective parallelization: nearest-neighbour communications (1 halo point)

• Error ∝ h2

– To reduce error: reduce h

– In many cases error largest in small regions of space

– Small step-size used in regions where not needed
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Adapted finite difference techniques

• Can overcome these problems by using different coordinate scaling techniques

– Global adaptation

– Local adaptations

• Scaling techniques with increasing grid spacing only valid for bound states

– Equidistant grid spacing along direction of ionization

• Need to be careful!

– Resulting finite difference Hamiltonian is generally not Hermitian

– Time propagation is not unitary

– Effect is enhanced when very little ionization occurs

• Can obtain Hermitian finite difference Hamiltonian

– Derive Schrödinger equation from appropriate Lagrangian
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Time propagation
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Time propagation techniques

• In Krylov subspace methods

– Calculate the vectors: Ψ, HΨ, H2
Ψ, ... , HNkΨ

– Orthonormalise these to form the vectors: q0, q1, q2, ... , qNk

– Let Q be the matrix whose columns are the q’s

– h = Q†HQ is the Krylov subspace Hamiltonian

• We propagate wavefunctions according to

Ψ(t + ∆t) ≈ e−iH∆t
Ψ(t)

≈ Qe−ih∆tQ†
Ψ(t)

• Unitary to order of Krylov expansion

E S Smyth et al, Comp Phys Comm 114 1 (1998)

D Dundas, J Chem Phys 136 194303 (2012)



Quantum Dynamics In Systems With Many Coupled Degrees Of Freedom, Hamburg, Germany, 24–26 March 2014

Application of these methods

COST/CCP2 Workshop, Dublin, 27–30 April 2010

Laser-molecule

interactions

Few-Electron

Molecules

Full-dimensional TDSE

(Electrons and Ions)

Polyatomic

molecules

Quantum electrons

Classical ions

Numerical grid

techniques
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General Approach for H+
2
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Grid treatment of H+
2

• Light linearly polarized parallel to molecular axis

• Full dimensional treatment of electron dynamics

• 1-D treatment of nuclear dynamics

O
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e−
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R
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Hamiltonian

Hamiltonian for H+
2 can be written

Htot(R, r, t) = TN(R) + Helec(R, r, t)

Helec(R, r, t) = Te(r) + Vion(R, r) + U(r, t)

• TN(R): nuclear kinetic energy

• Helec(R, r, t): electronic Hamiltonian

• Te(r): electron kinetic energy

• Vion(R, r): Coulomb potential

• U(r, t): laser-electron interaction (length or velocity gauge)
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Time-Dependent Schrödinger Equation (TDSE)

We can derive the time-dependent Schrödinger equation from the Lagrangian

L =

∫

dR

∫

dr Ψ⋆(R, r, t)

(

i
∂

∂t
− Htot(R, r, t)

)

Ψ(R, r, t)

• Consider variation ofΨ⋆ that leave action, A, stationary

δA = δ

∫ t1

t0

Ldt = 0

• Euler-Lagrange equation of motion

∂L
∂Ψ⋆

=
d

dt

(

∂L
∂Ψ̇⋆

)

,

results in TDSE

• Take variation after grid adaptation applied
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Coordinate scaling

• Generalized cylindrical coordinates for electron dynamics

r = g(ρ) cosφi + g(ρ) sinφj + h(z)k ,

• Laser linearly polarized along k direction, ⇒ no φ dependence

• Volume element, dr = gg′h′ dρ dz = |J| dρ dz

• Electron kinetic energy

Te(r) = − 1

2µ

1

gg′h′

[

∂

∂ρ

(

gh′

g′

)

∂

∂ρ
+
∂

∂z

(

gg′

h′

)

∂

∂z

]

• Propagate the wavefunction

Ψ
(

R, g(ρ), h(z), t
)

= |J|−1/2 ψ(R, g, h, t)
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Coordinate scaling: Obtaining the TDSE

• Lagrangian becomes

L =

∫

dR

∫

|J| dρ dz |J|−1/2 ψ⋆

(

i
∂

∂t
− Htot(R, r, t)

)

|J|−1/2 ψ

• Take variation with respect to ψ⋆ gives TDSE

i
∂ψ

∂t
=

[

− 1

2M

∂2

∂R2
− 1

2µ
T̃e − Z1

r1

− Z2

r2

+ U(h, t)

]

ψ

• r2
1 = g2 + (h − R/2)2

• r2
2 = g2 + (h + R/2)2

• M is reduced mass of the ions

• µ is reduced mass of electron
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Coordinate scaling: Obtaining the TDSE

• Electron kinetic energy

T̃e =
1√
gg′

∂

∂ρ

(

g

g′

)

∂

∂ρ

1√
gg′

+
1√
h′

∂

∂z

(

1

h′

)

∂

∂z

1√
h′

= Tρ + Tz

• Symmetric expression when expressed in finite difference form

• Can equally be applied to complex coordinate scaling

• Simplify these to include second derivative terms

– Reduces communications overhead in parallel simulations

– D Dundas, J Chem Phys 136 194303 (2012)
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Coordinate scaling: Obtaining the TDSE

• ρ term

Tρ =
1

2

(

1

(g′)2

∂2

∂ρ2
+
∂2

∂ρ2

1

(g′)2

)

+

(

g′′′

2(g′)3
− 7

4

(g′′)2

(g′)4
+

1

4g2

)

• z term

Tz =
1

2

(

1

(h′)2

∂2

∂z2
+
∂2

∂z2

1

(h′)2

)

+

(

h′′′

2(h′)3
− 7

4

(h′′)2

(h′)4

)

• Originally set out by Kawata & Kono, J Chem Phys 111 9498 (1999)

– Never used in this symmetric form
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Coordinate scaling: Example

• g(ρ) = ρ3/2, h(z) = z used by several groups

– H Kono et al, J. Comp. Phys. 130 148 (1997)

– D Dundas et al, J. Phys. B 33 3261 (2000)

• This gives

Tρ =
2

9

(

1

ρ

∂2

∂ρ2
+
∂2

∂ρ2

1

ρ

)

Tz =
∂2

∂z2

• To evaluate the second term in the expression for

Tρ we need to calculate

ψ

ρ
∝ Ψ

when ρ = 0. Obtain this by interpolation.
0 5 10

ρ
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Implementation of approach for H+
2

• Solution of TDSE implemented using a real-space mesh approach

• Finite difference mesh approach in 3D

– ρ coordinate described with 3-point central differences

– R and z coordinates described with 5-point central differences

• Initial state calculated with Thick-Restart Lanczos: TRLan

– Wu et al, J Comp Phys 154 156 (1999)

– Calculates several lowest vibrational states

• Parallelized in 3D using MPI

• Arnoldi time propagation algorithm (generally 18th order)

• Wavefunction splitting technique to prevent reflections

• Implemented in code THeREMIN (vibraTing HydRogEn Molecular IoN)
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Non-adiabatic

quantum molecular dynamics (NAQMD)
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Quantum-classical system

• Consider a system consisting of

– Ne quantum-mechanical electrons

– Nn classical ions

• Ions described by

– Trajectories R = {R1(t), ... , RNn (t)}
– Momenta P = {P1(t), ... , PNn (t)}
– For ion k , denote mass and charge by Mk and Zk respectively

• Electrons described by many-body wavefunctionΨ(re , t)

– re = {r1, ... , rNe} denotes electron position vectors (ignoring spin)



Quantum Dynamics In Systems With Many Coupled Degrees Of Freedom, Hamburg, Germany, 24–26 March 2014

Lagrangian formalism

• Derive equations of motion for ions and electrons using Lagrangian formalism

– T N Todorov, J Phys: Cond Matt 13 10125 (2001)

– T A Niehaus et al, Eur Phys J D 35 467 (2005)

• Start from the Lagrangian

L = i

∫

dreΨ
⋆(re , t)Ψ̇(re , t)

−
∫

dreΨ
⋆(re, t)H(re , R, t)Ψ(re, t)

+
1

2

Nn
∑

k=1

Mk Ṙ
2
k (t) − Vnn(R).
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Quantities entering Lagrangian

• Vnn(R) denotes Coulomb repulsion between ions

• H(re, R, t) denotes the time-dependent Hamiltonian

H(re, R, t) =

Ne
∑

i=1

[

1

2
∇2

r i
+ Vext(r i , R, t)

]

+ Vee(re)

where

– Vee(re) denotes Coulomb repulsion between electrons

– Vext(r i , R, t) = Vions(r i , R, t) + Uelec(r i , t) denotes external potential

– Uelec(r i , t) denotes interaction between electron i and applied laser field

– Vions(r i , R, t) denotes Coulomb interaction between electron i and all ions
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Euler-Lagrange equations of motion

• Consider variations of wavefunction and ion trajectories that leave action, A,

stationary

δA = δ

∫ t1

t0

Ldt = 0

• Results in Euler-Lagrange equations of motion

∂L
∂Ψ⋆

=
d

dt

(

∂L
∂Ψ̇⋆

)

(1)

∂L
∂Ψ

=
d

dt

(

∂L
∂Ψ̇

)

(2)

∂L
∂Rk

=
d

dt

(

∂L
∂Ṙk

)

(3)
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Euler-Lagrange equations of motion

(1) leads to the time-dependent Schrödinger equation (TDSE)

i
∂

∂t
Ψ(re, t) = H(re, R, t)Ψ(re, t)

(2) leads to its complex conjugate

(3) leads to equation of motion for ions

Mk R̈k = −
∫

dreΨ
⋆(re, t)

(

∇̃k H(re, R, t)
)

Ψ(re, t)

− ∇̃k Vnn(R)

– Incomplete, atom-centred basis sets introduce velocity-dependent forces –

Pulay forces

– See T N Todorov, J Phys: Cond Matt 13 10125 (2001)
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Non-adiabatic quantum molecular dynamics:

Ehrenfest dynamics

• Electronic dynamics: solve TDSE

i
∂

∂t
Ψ(re, t) = H(re, R, t)Ψ(re, t)

• Ionic dynamics: solve Newton’s equations of motion

Mk R̈k = −
∫

dreΨ
⋆(re, t)

(

∇̃k H(re, R, t)
)

Ψ(re, t)

− ∇̃k Vnn(R)

• Require a many-body method to describe the electronic dynamics
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Time-Dependent Density Functional Treatment

of the Electronic Dynamics
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Time-dependent density functional theory (TDDFT)

• TDDFT describes a system of interacting particles in terms of its density

• Density of interacting system obtained from density of an auxiliary system of

non-interacting particles moving in an effective local single particle potential

• Density calculated via solution of Kohn-Sham equations
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Kohn-Sham Equations

n(r, t) = 2

N
∑

i=1

|ψi(r, t)|2

i
∂

∂t
ψi(r, t) =

[

− 1

2
∇2 + Vext(r, R, t) + VH(r, t)

+ Vxc(r, t)

]

ψi(r, t)

• Vext(r, R, t) is the external potential

• VH(r, t) is the Hartree potential

• Vxc(r, t) is the exchange-correlation potential
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Exchange-correlation functionals

• Adiabatic approximations

vadiabatic
xc (r, t) = ṽxc [n(r)](r)|n(r)=n(r,t)

where ṽxc [n(r)](r) is an approximation to the ground-state xc density

functional, e.g. xLDA

• Time-dependent optimized effective potential

• Functionals with ‘memory’ effects

– Non-local in time

See Marques M A L and Gross E K U, Annu Rev Phys Chem 55:427 (2004)
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Local Density Approximation

• The exchange-only adiabatic local density approximation (xLDA) is simplest

approximation

• Exchange energy given by

ELDA
x [n] = −3

4

(

3

π

)1/3 ∫

dr n4/3(r, t)

• Exchange-correlation potential given by

VLDA
x (r, t) = −

(

3

π

)1/3

n1/3(r, t)

• Suffers from self-interaction errors

– Ionization potentials not well defined
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Treatment of self-interaction

• LB94 functional provides a simple self-interaction correction

– van Leeuwen & Baerends, Phys Rev A 49 2421 (1994)

• Potential given by

VLB94
x (r, t) = VLDA

x (r, t) − βn1/3(r, t)
x2

1 + 3βx ln
(

x +
√

x2 + 1
)

where β = 0.05 and

x(r, t) =
|∇n(r, t)|
n4/3(r, t)

• Widely used for laser-molecule interactions

– Penka Fowe & Bandrauk, Phys Rev A 81 023411 (2010)

– Petretti et al, Phys Rev Lett 104 223001 (2010)
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Treatment of self-interaction

• LB94 potential not derivable from exchange-correlation energy functional

– Forces acting on atoms not defined ⇒ only fixed nuclei calculations

• Need method derivable from an exchange-correlation energy functional

• One such approach is to use LDA-KLI-SIC approach

– Tong & Chu, Phys Rev A 55 3406 (1997)

– Grabo et al, in Strong Coulomb Correlations in Electronic Structure

Calculations: Beyond the Local Density Approximation, V.I. Anisimov, ed(s),

(Gordon and Breach, 2000)

– Telnov et al, Chem Phys 391 88 (2011)

• We implement this approach using xLDA (called xKLI later)
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Newton’s equations of motion for ions

• For ion k , the classical equation of motion is

Mk R̈k = −
∫

dr n(r, t)
(

∇̃k H(r, R, t)
)

− ∇̃k Vnn(R)

• Time propagation using a velocity-Verlet algorithm
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Implementation of NAQMD approach
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Implementation of NAQMD approach

using a real-space mesh approach

• Adaptive (local and global) finite difference mesh approach in 3D

– Similar to ACRES DFT approach: Modine et al Phys Rev B 55 10289 (1997)

– High-order finite difference rules: 5-point to 13-point central differences

• Several iterative eigensolvers implemented

– Thick-restart Lanczos: TRLan

– Chebyshev-filtered subspace iteration: CheFSI

• Parallelized using MPI

• Arnoldi time propagation algorithm

• Utilizes full Coulomb potential or Troullier-Martins pseudopotentials

• Wavefunction splitting technique to prevent reflections

• Implemented in code EDAMAME (Ehrenfest DynAMics on Adaptive MEshes)
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Local adaptive mesh techniques
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Adaptive mesh generation

• Require grid point density large near atomic positions

– Achieve this with coordinate transformation

• Define a Cartesian coordinate system, x i : (x1, x2, x3) = (x, y, z)

– Metric in Cartesian coordinates gij = δij

• Define a curvilinear coordinate system, ζα

– Cartesian coordinates depend on curvilinear coordinates: x i(ζα)

– Jacobian of transformation J i
α =

∂x i

∂ζα

– Metric in curvilinear coordinates gαβ = (J−1)αi δ
ij(J−1)

β
j
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Adaptive mesh generation

• Rewrite Kohn-Sham equations in terms of curvilinear coordinates

– Define a regular (equally-spaced) grid in curvilinear coordinates

• Laplacian in curvilinear coordinates (Laplace-Beltrami operator)

∇2 =
1

|J|
∂

∂ζα
|J| gαβ ∂

∂ζβ

• Transform the Kohn Sham orbitals

ψiσ(r, t) =
1

√

|J|
ϕiσ(r, t)

• Results in symmetric Laplacian operator

∇2 =
1

√

|J|
∂

∂ζα
|J| gαβ ∂

∂ζβ
1

√

|J|
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Coordinate transformation

r = ζ −
∑

ν

αν

↔

Qν · (ζ −Rν ) f

( |ζ −Rν |
τν

)

= x(ζ1, ζ2, ζ3) i + y(ζ1, ζ2, ζ3) j + z(ζ1, ζ2, ζ3) k

where

• f (X ) = exp(−X2/2) defines the adaption function

• Rν adjusted to obtain r(Rν) = Rν

• rank-2 tensors
↔

Qν adjusted to obtain J i
α(Rν ) = |J|1/3

ν δi
α

• τν defines an adaption radius

• αν defines the strength of adaptation around atomic site ν

• Grid points depend on atomic positions: Pulay-type forces introduced
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Example: Real space adaptive mesh for benzene:

Example: No adaptation
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Example: Real space adaptive mesh for benzene:

Example: No adaptation
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Example: Real space adaptive mesh for benzene:

Example: With adaptation
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Global adaptive mesh techniques
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Global and local adaptive mesh techniques

• The mesh technique described previously is locally adaptive

– Mesh adapted around ion positions

– Mesh spacing away from ionic centres is constant

• Would also like a globally adaptive mesh

– Increase mesh spacing away from axis of laser polarization
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Global coordinate transformation

• Consider the transformation

r = x
(

u(ζ1), v(ζ2), w(ζ3)
)

i

+ y
(

u(ζ1), v(ζ2), w(ζ3)
)

j

+ z
(

u(ζ1), v(ζ2), w(ζ3)
)

k

• See Dundas, J Chem Phys 136 194303 (2012)
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Global coordinate transformation

• For example, to transform ζ to the scaled coordinate u

– Polynomial scaling: equidistant spacing leading to increasing spacing

u(ζ) =















ζ |ζ| ≤ ζf

ζ + dmax

(

ζ − ζf

ζf − ζmax

)5

|ζ| > ζf

where dmax = ζmax − umax, ζmax is the maximum value of the unscaled

coordinate, ζf is the point where the flat region ends, umax is the maximum

value of the scaled coordinate required.

– Hyperbolic scaling: Exponentially increasing spacing over whole region

u(ζ) = sinh

(

ζ

α

)

where α controls maximum extent of grid.
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Results
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Results for H+
2
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Vibrational energy states

State Present (1) Present (2) Previous (1) Previous (2)

ν = 0 −0.59655 −0.59750 −0.59740 −0.59714

ν = 1 −0.58657 −0.58749 −0.58744 −0.58716

ν = 2 −0.57734 −0.57806 −0.57808 −0.57775

ν = 3 −0.56946 −0.56919 −0.56930 −0.56891

ν = 4 −0.56082 −0.56087 −0.56106 −0.56061

ν = 5 −0.55340 −0.55308 −0.55337 −0.55284

ν = 6 −0.54708 −0.54581 −0.54619 −0.54559

ν = 7 −0.54118 −0.53906 −0.53951 −0.53886

ν = 8 −0.53599 −0.53281 −0.53334 −0.53263

ν = 9 −0.53077 −0.52707 −0.52766 −0.52691

Present (1): ∆ρ = 0.28, ∆z = 0.20, ∆R = 0.20

Present (2): ∆ρ = 0.20, ∆z = 0.05, ∆R = 0.05

Previous (1): Niederhausen et al, JPB 45 105602 (2012)

Previous (2): Hilico et al, EJPD 12 449 (2000)

Largest difference in Present (1) results < 1% compared to Previous (2)
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Dissociation dynamics of H+
2

with low-intensity IR pulses
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Dissociation dynamics with low-intensity IR pulses

• Starting from the ν = 0 vibrational ground state

• Consider response to a low intensity, IR pulse

– Intensity: 2 × 1014 Wcm-2

– Wavelength: 780 nm

– Duration: 20 cycle pulse

• Grid parameters

– ∆ρ = 0.28, ∆z = 0.20, ∆R = 0.20

– −114 ≤ z ≤ 114, 0 ≤ ρ ≤ 80, 0 ≤ R ≤ 30

– Hamiltonian size: 11.3M × 11.3M



Quantum Dynamics In Systems With Many Coupled Degrees Of Freedom, Hamburg, Germany, 24–26 March 2014

Dissociation dynamics with low-intensity IR pulses

I = 2 × 1014 Wcm-2, λ = 780 nm
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Dissociation dynamics with low-intensity IR pulses

I = 2 × 1014 Wcm-2, λ = 780 nm
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Dissociation dynamics with low-intensity IR pulses

I = 2 × 1014 Wcm-2, λ = 780 nm
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Dissociation dynamics of H+
2 with VUV pump pulse
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VUV pump pulse dynamics of H+
2

• Starting from the ν = 2 vibrational state

• Tune wavelength to energy gap between ν = 2 σg and σu dissociating state

• Consider response to a low intensity, VUV pulse

– Intensity: 8.4 × 1012 Wcm-2

– Wavelength: 110.3 nm

– Duration: 3 cycle pulse

• Grid parameters

– ∆ρ = 0.28, ∆z = 0.20, ∆R = 0.05

– −55 ≤ z ≤ 55, 0 ≤ ρ ≤ 76, 0 ≤ R ≤ 40

– Hamiltonian size: 28.2M × 28.2M

• Previously studied in 1D simulations (from ν = 0 state)

– Picon et al, Phys Rev A 83 013414 (2011)
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VUV pump pulse dynamics of H+
2

Start from ν = 2 state
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VUV pump pulse dynamics of H+
2

Start from ν = 2 state
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TDDFT Results

HHG in N2: Orientation effects



Quantum Dynamics In Systems With Many Coupled Degrees Of Freedom, Hamburg, Germany, 24–26 March 2014

Laser parameters

• Intensity: 2 × 1014 Wcm-2

• Wavelength: 780 nm

• Duration: 10 cycle pulse

• Polarization direction either parallel or perpendicular to molecular axis
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Grid parameters:

Laser pulse parallel to molecular axis

• Polarization direction along z direction

• Normal finite difference along z; global adaptive grid along x and y

– Polynomial scaling

• Finite-difference grid extent

x ∈ [−120, 120]a0 y ∈ [−120, 120]a0 z ∈ [−200, 200]a0

• Grid spacing hζ1 = hζ2 = hζ3 = 0.4a0

• Hamiltonian size: 20.6M × 20.6M

• Troullier-Martins norm-conserving pseudopotentials

• Time propagation: 18th-order Arnoldi, δt = 0.05a0
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Grid parameters:

Laser pulse perpendicular to molecular axis

• Polarization direction along x direction

• Normal finite difference along x ; global adaptive grid along y and z

– Polynomial scaling

• Finite-difference grid extent

x ∈ [−200, 200]a0 y ∈ [−120, 120]a0 z ∈ [−120, 120]a0

• Grid spacing hζ1 = hζ2 = hζ3 = 0.4a0

• Hamiltonian size: 20.6M × 20.6M

• Troullier-Martins norm-conserving pseudopotentials

• Time propagation: 18th-order Arnoldi, δt = 0.05a0
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Exchange-correlation potential

• Study HHG using xLDA and xKLI exchange-correlation potentials

• xLDA potential has wrong asymptotic behaviour

• Can calculate ionization potential from eigenenergy of HOMO orbital

– Koopman’s theorem

Experimental1 Present calculations

xLDA results xKLI results

15.586 eV 9.112 eV 13.947eV

• xLDA Ionization Potential: |E(N2) − E(N+
2)| = 14.062 eV

1 From Grabo et al, in Strong Coulomb Correlations in Electronic Structure Calculations:

Beyond the Local Density Approximation (Gordon and Breach, 2000) p. 203
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Valence orbitals of N2

Groundstate configuration: 1σ2
g1σ2

u2σ2
g2σ2

u1π4
u3σ2

g

2σg 2σu 1πu

1πu 3σg
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HHG spectra: xLDA calculations

Plateau cut-off at harmonic 29

• Low harmonics enhanced for parallel orientation

• Cut-off harmonics enhanced for perpendicular orientation

– McFarland et al, Science, 322 1232 (2008)
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Orbital response: xLDA calculations

Laser polarization parallel to molecular axis

• More tightly bound 2σu orbital respond more than 1πu orbitals

• 1πu orbitals respond identically
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Orbital response: xLDA calculations

Laser polarization perpendicular to molecular axis

• More tightly bound 1πu orbitals respond more than 3σg HOMO

• 1πu orbitals respond differently
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HHG spectra: xKLI calculations

Plateau cut-off at harmonic 29

• Low harmonics enhanced for parallel orientation

• Cut-off harmonics enhanced for perpendicular orientation

– McFarland et al, Science, 322 1232 (2008)
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Orbital response: xKLI calculations

Laser polarization parallel to molecular axis

• More tightly bound 2σu orbital respond more than 1πu orbitals

• 1πu orbitals respond identically
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Orbital response: xKLI calculations

Laser polarization perpendicular to molecular axis

• More tightly bound 1πu orbitals respond more than 3σg HOMO

• 1πu orbitals respond differently
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HHG spectra: xLDA v xKLI calculations

Laser polarization parallel to molecular axis

• Cut-off harmonics enhanced for xKLI calculation
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HHG spectra: xLDA v xKLI calculations

Laser polarization perpendicular to molecular axis

• Cut-off harmonics enhanced for xKLI calculation

0 10 20 30 40 50
Harmonic Order

10
-12

10
-8

10
-4

10
0

S
pe

ct
ra

l D
en

si
ty

xLDA: Laser polarization perpendicular to molecular axis
xKLI: Laser polarization perpendicular to molecular axis



Quantum Dynamics In Systems With Many Coupled Degrees Of Freedom, Hamburg, Germany, 24–26 March 2014

Conclusions and Outlook
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Conclusions and future work: H+
2

• Conclusions

– A finite difference code to study quantum electron-ion dynamics

– Generalised cylindrical coordinates result in highly-scalable code

• Future work

– Calculation of photoelectron spectra

– Addition of azimuthal coordinate

– Orientation effects

– Extension to two-electrons

– H2
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Conclusions and future work: TDDFT

• Conclusions

– A general TDDFT code developed to study electron-ion dynamics

– Adaptive finite-difference grids result in highly-scalable code

– Efficient iterative eigensolvers for generating initial state

• Future work

– Ion dynamics

– Calculation of photoelectron spectra

– Transport boundary conditions

– Identification of chiral molecules


