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Measuring the Chern number of Hofstadter bands
with ultracold bosonic atoms
M. Aidelsburger1,2*, M. Lohse1,2, C. Schweizer1,2, M. Atala1,2, J. T. Barreiro1,2†, S. Nascimbène3,
N. R. Cooper4, I. Bloch1,2 and N. Goldman3,5

Sixty years ago, Karplus and Luttinger pointed out that
quantum particles moving on a lattice could acquire an
anomalous transverse velocity in response to a force, providing
an explanation for the unusual Hall e�ect in ferromagnetic
metals1. A striking manifestation of this transverse transport
was then revealed in the quantum Hall e�ect2 where the
plateaux depicted by the Hall conductivity were attributed
to a topological invariant characterizing the Bloch bands: the
Chern number3. Until now, topological transport associated
with non-zero Chern numbers has only been observed in
electronic systems2,4,5. Here we use the transverse deflection
of an atomic cloud in response to an optical gradient to
measure the Chern number of artificially generated Hofstadter
bands6. These topological bands are very flat and thus
constitute good candidates for the realization of fractional
Chern insulators7. Combining these deflection measurements
with the determination of the band populations, we obtain
an experimental value for the Chern number of the lowest
band νexp = 0.99(5). This first Chern-number measurement
in a non-electronic system is facilitated by an all-optical
artificial gauge field scheme, generating uniform flux in
optical superlattices.

One of the most challenging goals in the context of artificial
gauge fields is to implement experimental probes revealing the
non-trivial topology of energy bands. This would open the path
towards the realization of novel topological states of matter in
a wide class of physical settings, ranging from cold atoms to
polariton gases8–11. Considering cold atoms in optical lattices,
it has been shown theoretically that transport measurements
could allow a determination of the Chern number characterizing
topological Bloch bands8,12,13. Although earlier experiments used
local cyclotron orbits to detect the artificial gauge field structure at
the single-plaquette level14,15, observing the entire cloud dynamics
or determining the Chern number of the underlying bands has
remained out of reach. Here we load ultracold bosonic atoms into
Hofstadter bands, and we report on the direct detection of the
cloud’s spatial motion as a response to an applied force. Using
a novel band-mapping technique, we track the populations of
the Hofstadter bands over time. We observe that the flatness of
the bands leads to homogeneous populations within individual
bands, through interactions and finite temperatures. For short
times, heating and non-adiabatic interaction effects are limited,
and the detected transverse Hall drift is in agreement with
exact diagonalization studies12,13. Combined with independent

band-population measurements, we extract the Chern number
of the lowest Hofstadter band from our experimental data. Our
work represents the first determination of a topological invariant
characterizing two-dimensional Bloch bands using ultracold atoms,
and complements other studies based on atom interferometric16,17
and collective-mode18 measurements.

Our optical-lattice set-up realizes the celebrated Harper–
Hofstadter Hamiltonian6, which describes the motion of particles
on a square lattice penetrated by a uniform magnetic flux Φ
per unit cell (see also the original works by Harper19 and
Azbel20). An atom that hops around a closed loop of the optical
lattice picks up a geometric phase, which mimics the Aharonov–
Bohm phase of a charged particle in a magnetic field. The
artificial flux is thus produced by engineering complex tunnelling
matrix elements with space-dependent (Peierls) phases6, through
the laser-assisted-tunnelling method introduced by Jaksch and
Zoller21 and subsequent works9,22–25. The present scheme controls
tunnelling along the x direction and uses two main ingredients:
a staggered potential with energy offset ∆ between neighbouring
sites, inhibiting bare tunnelling along x , together with a resonant
modulation of frequency ω =∆/~, restoring the hopping in a
controlled way. Using a simple time-dependent optical potential,
which simultaneously triggers the hopping on all the links, naturally
produces a staggered flux distribution14. To rectify the flux, we
implement a new all-optical driving scheme that uses two pairs of
laser beams to control the laser-induced tunnelling on successive
links independently, hence producing a uniform flux Φ=π/2 per
unit cell (Fig. 1a). The lowest band of the corresponding energy
spectrum has a Chern number ν1=+1 and is thus topologically
equivalent to the lowest Landau level. Moreover, this band exhibits
a large flatness ratio of Egap/Ebw ' 7, where Egap is the energy
gap to the second band and Ebw the bandwidth. In contrast to
previous experiments generating uniform flux in optical lattices15,26,
the present scheme does not rely on magnetic field gradients, and
therefore offers a higher degree of experimental control.

The experimental set-up consists of an ultracold gas of 87Rb
atoms that is loaded into a two-dimensional lattice created by
two orthogonal standing waves with wavelength λs= 767nm. The
atoms are confined in the perpendicular direction by a weak
harmonic potential using an optical dipole trap. A further standing
wave with twice the wavelength λL = 2λs is superimposed along
x to create the staggered potential (Fig. 1a), with an energy
offset ∆ much larger than the bare tunnelling Jx . The modulation
restoring resonant tunnelling is created by two further pairs of
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Figure 1 | Schematics of the all-optical experimental set-up used to
generate a uniform artificial magnetic field and the Chern-number
measurement. a, The set-up consists of a two-dimensional optical lattice
with lattice constant a=λs/2 and tunnel couplings Jx, Jy between
neighbouring sites. Bare tunnelling is inhibited along x by a staggered
potential, creating an o�set∆ between grey and white sites. Two further
pairs of laser beams (red and blue arrows), with wavevectors
|kij|'kL=π/(2a) (i={r,b} and j={1,2}) and resonant frequency di�erence
ωi=ωi2−ωi1=±∆/~, are used to restore tunnelling. Each pair consists of
two beams, one running-wave (along y) and one retro-reflected beam
(along x, arrows with lighter shading). Tunnelling on red and blue links is
controlled independently by the i= r and i=b beams, respectively, hence
generating a rectified fluxΦ=π/2 per plaquette (aligned along−êz). The
magnetic unit cell (grey shaded area) is four times larger than the usual
lattice unit cell. b, The Chern number is extracted from the transverse
displacement of the atomic cloud in response to an external force
generated by an optical gradient.

far-detuned laser beams, each pair generating a moving potential
of the form Vi(x , y , t)= κ cos(kLx + ϕi)cos(−kLy ±ωt), where κ
is the driving amplitude, kL = 2π/λL, and ω=∆/~. The relative
phasesϕi are adjusted so as to control successive links independently
(Fig. 1a). In the high-frequency limit ~ω� Jx , Jy , this system can
be described by an effective time-independent Hamiltonian27–31,
whose dominant contributions reproduce the Harper–Hofstadter
Hamiltonian (Methods)

Ĥ=−J
∑
m,n

(
einΦ â†

m+1,nâm,n+ â†
m,n+1âm,n+h.c.

)
,Φ=π/2 (1)

where the Landau gauge was chosen to describe the system6. Here
âm,n(â†

m,n) annihilates (creates) a particle on site (m, n), where the
position in the lattice is defined as R=maêx + naêy , with m, n
integers and êx ,y the unit vectors. In the limit ∆� κ , the effective
coupling strengths are given by J effx ' Jxκ/(

√
2∆) and J effy ' Jy ;

the experimental parameters were chosen such that J effx ≈ J effy ≡ J .
Higher-order corrections to the effective Hamiltonian lead to a local
renormalization of the hopping along y , which for our experimental
parameters κ/(~ω) can lead to modifications of the tunnelling up
to 0.3Jy (Methods and Supplementary Information). In the presence
of the effective flux Φ=π/2, the magnetic unit cell is four times
larger than the standard unit cell (Fig. 1a). Consequently the first
magnetic Brillouin zone (FBZ) is reduced, and the energy bands split
into four subbands3,6. Because the two middle bands touch at the
Dirac points (Fig. 2b), the energy spectrum is partitioned into three
isolated bands, labelled as Eµ, with Chern numbers νµ. We stress
that the central ‘super-band’ contains twice the number of states as
compared to the other two bands.

To load the atoms into the lowest Hofstadter band, we developed
an experimental sequence using an auxiliary superlattice potential
(Methods), which introduces a staggered detuning δ along both
directions: along x , the offset between neighbouring sites is

increased away from the resonance condition to ∆+ δ, whereas it
is simply given by δ along y (Fig. 2a). Importantly, the unit cell of
the square lattice with staggered potentials along both directions
is equivalent to the magnetic unit cell of the Harper–Hofstadter
model; thus, the number of energy bands is preserved during the
loading sequence. For δ>2J the topology of the bands is trivial, all
Chern numbers are zero, and the atoms populate the lowest band
(low-energy sites of the superlattice).When crossing the topological
phase transition at δ= 2J , the spectral gaps close at a single point
in the FBZ and the system enters the topologically non-trivial
regime, where the lowest band E1 has a Chern number ν1 =+1.
Finally, for δ=0 we realize the Harper–Hofstadter model with flux
Φ=π/2 (Fig. 2b).

Recently, severalmethodswere proposed to probe the topological
nature of energy bands with cold atoms, exploiting Bloch
oscillations and other transport measurements12,13,28. In the
presence of a constant force F= F êy , atoms on a lattice undergo
Bloch oscillations along the direction of the force; this longitudinal
motion is captured by the band velocity vband

µ
= ∂kEµ/~. Moreover,

when the energy bands have non-zero Berry curvature, the cloud
also experiences a net perpendicular (Hall) drift (Fig. 1b); this
transverse motion is described by a further contribution to the
velocity, denoted vx

µ
(ref. 32). For a particle in a state

∣∣uµ(k)〉 of the
µth band, this ‘anomalous’ contribution to the velocity reads

vx
µ
(k)=−

F
~
Ωµ(k),Ωµ= i

(〈
∂kxuµ|∂kyuµ

〉
−
〈
∂kyuµ|∂kxuµ

〉)
where Ωµ(k) is the Berry curvature of the band32. The effects
associated with the anomalous velocity vx

µ
can be isolated

by uniformly populating the bands, which averages out any
contribution from the band velocity,

∫
∂Eµ/∂kx ,yd2k=0. This could

be directly realized with fermionic atoms by setting the Fermi
energy within a spectral gap13, in analogy with the integer quantum
Hall effect. Here we consider an incoherent distribution of bosonic
atoms, where the population within each band is homogeneous in
k-space, an assumption which has been validated independently
(Supplementary Information). In the absence of inter-band
transitions, the contribution of the µth band to the centre-of-mass
(COM) motion perpendicular to the force can be written in terms
of the Chern number of the µth band νµ=

∫
FBZΩµd2k/(2π),

xµ(t)=−
4a2F
h

νµ t=−4aνµ
t
τB

where the factor 4a2 is the area of the magnetic unit cell (Fig. 1a)
and τB=h/(Fa) is the characteristic timescale for Bloch oscillations.
In our experiments, we applied an optical dipole force along y
(Methods) andmeasured the COM-evolution of the atomic cloud in
situ for opposite directions of the fluxΦ , whichwere then subtracted
to obtain the differential shift x(t , Φ) − x(t , −Φ) = 2x(t). For
short evolution times, an almost linear differential displacement
is observed (Fig. 3a), whereas for longer times it saturates owing
to band repopulation (Fig. 3b,c). We note that the deflection
is symmetric with respect to the direction of the applied force
(black and grey data points in Fig. 3b), as expected from theory.
Furthermore, we measured the COM-motion for Φ = 0 (light
blue data points in Fig. 3b) and for a staggered-flux distribution
(dark blue data points in Fig. 3b); neither measurement shows any
significant displacement, which is consistent with a Chern number
of zero (Methods).

The band-mapping sequence, which is basically the reversed
loading sequence as illustrated in Fig. 2b, allows us to measure
the band populations of the different Hofstadter bands during the
dynamics (Fig. 3c). For large detuning δ, tunnelling is inhibited
along both directions and the populations of the Hofstadter bands
map onto those of the two-dimensional superlattice, where standard
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Figure 2 | Energy spectra and topology of the Bloch bands as a function of a staggered detuning. a, Schematic drawing of the Hofstadter-like optical
lattice with an additional staggered detuning δ along x and y. b, Energy spectrum as a function of the staggered detuning. For a detuning larger than 2J the
bands are topologically trivial, with Chern numbers νµ=0. At the transition point, the bandgaps close and the system enters a topologically non-trivial
phase, where the Chern number of the lowest band ν1=+1. For vanishing detuning δ=0, the system realizes the Harper–Hofstadter model with flux
Φ=π/2. Note that the vertical energy axis is rescaled for each spectrum.
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Figure 3 | Di�erential COM displacements and band populations ηµ(t) versus Bloch oscillation (BO) time. The di�erential shifts were measured after
loading the atoms in the Hofstadter bands (Φ=π/2, J/h=75(3)Hz) and applying an external force F=±Fêy (Fa/h=38.4(8) Hz). The value of the
di�erential shift was evaluated after averaging ten images per sign of the flux±Φ and subsequently subtracting the COM-positions of the atomic cloud.
Henceforth we define this as one data set. Each data point is an average of five data sets and the error bars depict the error of the mean. a, The black solid
line is a linear fit to the data for t≤35ms. Taking into account the measured initial band populations η0

µ={0.55(6), 0.31(3), 0.13(3)} and using equation (2)
yields the value νexp=0.9(2). The dashed line depicts the ideal evolution for ν1= 1 and the same initial band populations. The green shaded area illustrates
the corresponding numerical simulations. These numerics are based on the Hamiltonian in equation (1) supplemented by small higher-order corrections
(Supplementary Information). b, The black (faded grey) data points show the evolution for longer times and opposite directions of the applied force
F=±Fêy . The small images on the right show typical experimental data obtained after subtracting the averaged images of one data set for±Φ .
a.u., arbitrary units. The blue data points were taken in lattice configurations with trivial topology,Φ=0 (light blue) andΦ=(− 1)mπ/2 (dark blue); the
blue solid lines are guides to the eye. The solid black and grey lines show a fit to our data using equation (3) combined with the filling factor γ (t), which was
evaluated using the measured band populations ηµ(t) shown in c and fitted with an exponential. This provides an experimental Chern number
νexp= 1.05(12) (black) and νexp=0.98(12) (grey). c, Evolution of the band populations ηµ(t)=N(µ)/Ntot, defined as the fraction of particles in band µ. Each
data point is an average of two individual measurements and the error bars denote the standard deviation of the data points. The colour code illustrates the
connection to the Hofstadter bands shown in Fig. 2b.

detection techniques can be used to evaluate the band populations
ηµ (Methods and Supplementary Information)33. The contribution
of all atoms in different bands to the mean COM-displacement can
be written as

x(t)=−4aγ0 ν1
t
τB
, with γ0=η01−η

0
2+η

0
3 (2)

where the filling factor γ0 is given by the initial band populations
η0
µ
(Fig. 3c). This result is obtained by invoking the particle–

hole symmetry inherent to the Harper–Hofstadter model (that is,
ν1=ν3), together with the fact that the sum of Chern numbers

necessarily vanishes,
∑

µ
νµ=0; we have also taken into account that

the middle band contains twice the number of states as compared to
the other two bands; its contribution to x(t) is thus proportional
to ν2(η2/2)=−ν1η2 (Supplementary Information). As a result, the
COM-displacement in equation (2) is determined only by the initial
band populations η0

µ
and the Chern number of the lowest band ν1,

under the assumption that the band populations are constant over
time, which is reasonable for short times. Comparing the short-time
trajectories of the atomic cloud x(t) in Fig. 3a with the equation of
motion equation (2), together with themeasured initial filling factor
γ0, provides a first reasonable experimental value for the Chern
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Figure 4 | Measured Chern number νexp as a function of gradient strength
Fa and staggered detuning δ. a, For each value of the gradient, we
measured the full time evolution of the di�erential shift and filling factor
γ (t) (similar to the evolution shown in Fig. 3b,c) to extract the value of the
Chern number. The solid line is a guide to the eye to highlight the saturation
to νexp≈ 1 for small gradients. The green data point depicts the
experimentally determined Chern number νexp=0.99(5) for
±Fa/h=38.4(8) Hz, for which a larger number of measurements were
taken, as shown in the inset. b, The di�erential shift versus detuning was
measured after four di�erent times t=(20,50, 100,150)ms for
Fa/h=38.4(8) Hz to fit the Chern number based on the measured filling
factor γ (t). The topological phase transition, which is expected at δ=2J for
the model (Fig. 2b), is smoothened owing to experimental uncertainties
(green solid curve). The blue shaded area illustrates the range of transition
points δ= 1.77(14)J given by the second-order correction, for our
experimental parameters κ/(~ω)=0.58(2) (Methods and
Supplementary Information). The green and blue curves are calculated
taking into account the experimental uncertainty in the detuning (0.4J,
horizontal error bars), which is determined experimentally by typical drifts
and fluctuations of the resonance frequency. All data points include an
average of five data sets for each time step for the di�erential shift and two
measurements for γ (t). As in (a) the green data point depicts the
experimentally determined Chern number νexp=0.99(5) for δ=0. All
vertical error bars show the uncertainty resulting from the fit error of γ (t).

number of the lowest band as νexp=0.9(2). In particular, for short
times, we find good agreement between the theoretical predictions
based on the effective Hamiltonian and the experimental data.

We now present a more precise Chern-number measurement
based on a long-time analysis, which takes into account the
repopulation of atoms between the three Hofstadter bands (Fig. 3c).
One possible reason for this repopulation is the presence of Landau–
Zener transitions, which are neglected in equation (2) but captured
well by the numerical simulations (green shaded area in Fig. 3a).
However, we observe similar repopulation timescales in the absence
of the force, most probably due to heating of the atoms caused by
the periodic driving. To capture the band-repopulation effects, we
benefit from the measured filling factor γ (t)=η1(t)−η2(t)+η3(t)
and model the dynamics according to the modified equations
of motion

x(t)=−4aν1
∫ t

0
γ (t ′)dt ′/τB (3)

By fitting this equation to the experimental data x(t), with theChern
number being the only fit parameter, we obtain an experimental
value for the Chern number of the lowest band

νexp=0.99(5)

Here we averaged over four independent Chern-number
measurements, two for each direction of the gradient to avoid
systematic errors (see inset of Fig. 4a). The stated uncertainty is
the standard deviation obtained from these measurements. This
shows that including our time-resolved band-mapping data into
our modelling of the transverse Hall drift leads to a very good
understanding of the full time dynamics, and allows us to extract

the value of the Chern number with high accuracy. The applied
force was chosen to be strong enough to accurately detect the
displacement, but weak enough to limit nonlinear effects and
Landau–Zener-induced inter-band transitions.

The dependence of our Chern-number measurement with
respect to the force was studied in more detail, as shown in Fig. 4a.
For gradient strengths smaller than the bandgap, Fa<Egap≈ 1.5J ,
the experimental value for the Chern number saturates to νexp≈1,
indicating that it can be determined reliably for small forces. For
very strong forces, Fa > Egap, our model breaks down and the
experimental value νexp decreases to zero.

Finally, we characterized the topological phase transition,
which is expected for a staggered detuning of δ = 2J (Fig. 2).
For this analysis, we set the gradient amplitude to the value
Fa=38.4(8)Hz×h=0.51(1)J , which is well below the bandgap for
δ=0. In agreement with theory, we observe that the experimental
value for the Chern number decreases to zero across the phase
transition (Fig. 4b). We note that Landau–Zener transitions to
higher bands become more important when approaching the
transition (gap-closing point); however, this should not affect the
measurement because the band repopulation is taken into account,
according to equation (3). The smoothened transition is most
probably due to the experimental uncertainties in the resonance
condition (green solid line in Fig. 4b). Furthermore, second-order
corrections to the effective Hamiltonian shift the transition point
to a mean value of δ ≈ 1.8J for our experimental parameters
κ/(~ω)=0.58(2) (solid blue line and shaded region in Fig. 4b, see
Methods and Supplementary Information).

In conclusion, we have successfully implemented a method
to measure the Chern number in a cold-atom set-up, which
can be generalized to a wide range of non-electronic systems,
including ion traps9, photonic crystals10 and polaritons11. Although
our measurement accommodates dynamical transitions to higher
bands, which we attribute to the lattice modulation used to
engineer the topological band structure, our results highlight the
necessity to further deepen the understanding of heating processes
in periodically driven quantum systems. Minimizing heating effects
and clarifying the role of interactions in these modulated systems
will be crucial in view of reaching topological strongly correlated
states in Chern bands, such as fractional Chern insulators7.

Recently we have become aware of related measurements
showing signatures of the Berry curvature in periodicallymodulated
honeycomb optical lattices34.

Methods
Loading sequence. The experimental sequence started by loading a
Bose–Einstein condensate of 87Rb atoms within 150ms into a two-dimensional
optical superlattice. Along each of the axes two standing waves were
superimposed with λs=767nm and λL=2λs. The relative phase between them
was chosen such that a lattice potential with staggered energy offsets ∆+δx along
x and δy along y , with δx≈δy≡δ and δ<∆, was created. The lattice depths were
Vy=10(1)Ers, VyL=1.75(5)ErL, Vx=6.0(2)Ers and VxL=5.25(16)ErL, with
Erα=~2k2

α
/(2m), α={s,L}. At this point of the sequence all atoms were loaded

into the low-energy sites. The two pairs of beams used for the modulation were
then switched on in 30ms, with a frequency difference ωr=−ωb=±∆/~; at this
stage, no resonant tunnelling between neighbouring sites was induced, owing to
the offset detuning δ. After that, we ramped down the long lattices within 30ms
to VyL=0ErL and VxL=3.25(10)ErL, which corresponds to δ=0. For these values,
resonant laser-assisted tunnelling along x and bare tunnelling along y occurred,
simultaneously creating a homogeneous flux Φ=±π/2 (aligned along −êz )
depending on the sign of the modulation frequency. We checked that all lattice
sites were equally populated after the loading sequence.

Loading sequence for lattice set-up with trivial topology. The loading sequence
described above is also used to load the atoms into the staggered flux lattice. The
only difference is that the modulation is switched on with a frequency difference
ωr=ωb=±∆/~, which results in a flux Φ=±(−1)mπ/2.

The sequence for the lattice without flux was performed in a similar manner.
It started by loading the atoms into a two-dimensional superlattice with lattice
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depths Vx=Vy=10(1)Ers, VxL=VyL=1.75(5)ErL within 150ms. Subsequently,
the long lattices were decreased to zero within 30ms. In this way a simple square
lattice configuration without flux and a tunnel coupling of J/h=75(3)Hz along
both directions was realized.

Optical gradient. The optical gradient used to induce Bloch oscillations along y
was realized using a further laser beam with wavelength λz=844nm. It was
focused at the atom position to a waist of about 125µm and aligned such that the
atomic cloud is located at the maximum slope of the Gaussian beam profile along
y . Along x the beam was centred on the atom position. The strength of the
gradient was determined through independent measurements of Bloch
oscillations in a one-dimensional lattice with Vy=10(1)Ers.

Band-mapping sequence. To measure the populations in different Hofstadter
bands, we reversed our loading sequence described above and ramped up the
long lattices to VyL=1.75(5)ErL and VxL=5.25(16)ErL, respectively, within 30ms.
At this point of the sequence, tunnelling is off-resonant along both directions,
and the Hofstadter bands map onto the bands of the usual 2D superlattice. We
then suddenly switched off the modulation and used standard detection
techniques to infer the momentum distribution and band populations
(Supplementary Information).

The effective Hamiltonian. The set-up is described by a time-dependent
Hamiltonian Ĥ(t)=Ĥ0+ V̂ (t), where the static part Ĥ0 includes the
nearest-neighbour hopping terms, the staggered lattice potential (with energy
offset ∆+δ along x , and δ along y) and the external confinement. The main
offset ∆� Jx is chosen so as to inhibit the tunnelling along the x direction. The
time-periodic modulation V̂ (t) with frequency ω is created by two pairs of laser
beams, and it is resonant with the offset ω=∆/~; it simultaneously restores the
tunnelling along x and generates space-dependent Peierls phases, effectively
creating a uniform flux Φ=2π(1/4) per plaquette. The modulation also modifies
the tunnelling matrix elements along the y direction. In the high-frequency limit,
~ω� Jx , Jy , the system is described well by the effective Harper–Hofstadter
Hamiltonian in equation (1). Adding weak higher-order corrections to the latter,
and considering a non-zero staggered detuning δ�∆, leads to a Hamiltonian,
whose momentum representation is given by the 4×4 matrix

Ĥeff=−2J


(−δ/2J ) coskx cosky+h1 0
coskx 0 0 −sinky+h∗2

cosky+h∗1 0 0 −i sinkx
0 −sinky+ h2 i sinkx (δ/2J )


h1=−

1
2

( κ

~ω

)2 [
cosky− icos(2φ0) sinky

]
h2=

1
2

( κ

~ω

)2 [
sinky+ icos(2φ0)cosky

]
where κ is the modulation strength, J/h≈75Hz is the effective tunnelling
amplitude, φ0 is the phase of the modulation relative to the underlying lattice
(Supplementary Information), and the lattice spacing is a=1. In the experiment,
κ/(~ω)≈0.58, so that the inhomogeneous corrections to the hopping along the y
direction (that is, h1 and h2) are not negligible.

Received 24 July 2014; accepted 30 October 2014;
published online 8 December 2014

References
1. Karplus, R. & Luttinger, J. M. Hall effect in ferromagnetics. Phys. Rev. 95,

1154–1160 (1954).
2. Von Klitzing, K. The quantized Hall effect. Rev. Mod. Phys. 58, 519–531 (1986).
3. Thouless, D. J., Kohmoto, M., Nightingale, M. P. & den Nijs, M. Quantized Hall

conductance in a two-dimensional periodic potential. Phys. Rev. Lett. 49,
405–408 (1982).

4. Dean, C. R. et al.Hofstadter’s butterfly and the fractal quantum Hall effect in
moiré superlattices. Nature 497, 598–602 (2013).

5. Ponomarenko, L. A. et al. Cloning of Dirac fermions in graphene superlattices.
Nature 497, 594–597 (2013).

6. Hofstadter, D. R. Energy levels and wave functions of Bloch electrons in
rational and irrational magnetic fields. Phys. Rev. B 14, 2239–2249 (1976).

7. Parameswaran, S. A., Roy, R. & Sondhi, S. L. Fractional quantum Hall physics
in topological flat bands. C. R. Phys. 14, 816–839 (2013).

8. Goldman, N., Juzeliunas, G., Ohberg, P. & Spielman, I. B. Light-induced gauge
fields for ultracold atoms. Preprint at http://arXiv.org/abs/1308.6533 (2013).

9. Bermudez, A., Schaetz, T. & Porras, D. Synthetic gauge fields for vibrational
excitations of trapped ions. Phys. Rev. Lett. 107, 150501 (2011).

10. Rechtsman, M. C. et al. Photonic Floquet topological insulators. Nature 496,
196–200 (2013).

11. Carusotto, I. & Ciuti, C. Quantum fluids of light. Rev. Mod. Phys. 85,
299–366 (2013).

12. Price, H. M. & Cooper, N. R. Mapping the Berry curvature from semiclassical
dynamics in optical lattices. Phys. Rev. A 85, 033620 (2012).

13. Dauphin, A. & Goldman, N. Extracting the Chern number from the dynamics
of a Fermi gas: Implementing a quantum Hall bar for cold atoms. Phys. Rev.
Lett. 111, 135302 (2013).

14. Aidelsburger, M. et al. Experimental realization of strong effective magnetic
fields in an optical lattice. Phys. Rev. Lett. 107, 255301 (2011).

15. Aidelsburger, M. et al. Realization of the Hofstadter Hamiltonian with
ultracold atoms in optical lattices. Phys. Rev. Lett. 111, 185301 (2013).

16. Atala, M. et al. Direct measurement of the Zak phase in topological Bloch
bands. Nature Phys. 9, 795–800 (2013).

17. Abanin, D. A., Kitagawa, T., Bloch, I. & Demler, E. Interferometric approach
to measuring band topology in 2D optical lattices. Phys. Rev. Lett. 110,
165304 (2013).

18. LeBlanc, L. J. et al. Observation of a superfluid Hall effect. Proc. Natl Acad. Sci.
USA 109, 10811–10814 (2012).

19. Harper, P. G. Single band motion of conduction electrons in a uniform
magnetic field. Proc. Phys. Soc. A 68, 879–892 (1955).

20. Azbel, M. Y. Energy spectrum of a conduction electron in a magnetic field.
Zh. Eksp. Teor. Fiz. 46, 929–946 (1964) [Sov. Phys. JETP 19, 634–645 (1964)].

21. Jaksch, D. & Zoller, P. Creation of effective magnetic fields in optical lattices:
The Hofstadter butterfly for cold neutral atoms. New J. Phys. 5, 56 (2003).

22. Gerbier, F. & Dalibard, J. Gauge fields for ultracold atoms in optical
superlattices. New J. Phys. 12, 033007 (2010).

23. Mueller, E. J. Artificial electromagnetism for neutral atoms: Escher staircase
and Laughlin liquids. Phys. Rev. A 70, 041603 (2004).

24. Kolovsky, A. R. Creating artificial magnetic fields for cold atoms by
photon-assisted tunneling. Europhys. Lett. 93, 20003 (2011).

25. Baur, S. K., Schleier-Smith, M. H. & Cooper, N. R. Dynamic optical
superlattices with topological bands. Phys. Rev. A 89, 051605 (2014).

26. Miyake, H., Siviloglou, G. A., Kennedy, C. J., Burton, W. C. & Ketterle, W.
Realizing the Harper Hamiltonian with laser-assisted tunneling in optical
lattices. Phys. Rev. Lett. 111, 185302 (2013).

27. Sørensen, A. S., Demler, E. & Lukin, M. D. Fractional quantum Hall states of
atoms in optical lattices. Phys. Rev. Lett. 94, 086803 (2005).

28. Goldman, N. & Dalibard, J. Periodically-driven quantum systems: Effective
Hamiltonians and engineered gauge fields. Phys. Rev. X 4, 031027 (2014).

29. Bukov, M., D’Alessio, L. & Polkovnikov, A. Universal high-frequency behavior
of periodically driven systems: From dynamical stabilization to Floquet
engineering. Preprint at http://arXiv.org/abs/1407.4803 (2014).

30. Lignier, H. et al. Dynamical control of matter-wave tunneling in periodic
potentials. Phys. Rev. Lett. 99, 220403 (2007).

31. Struck, J. et al. Quantum simulation of frustrated classical magnetism in
triangular optical lattices. Science 333, 996–999 (2011).

32. Xiao, D., Chang, M-C. & Niu, Q. Berry phase effects on electronic properties.
Rev. Mod. Phys. 82, 1959–2007 (2010).

33. Nascimbène, S. et al. Experimental realization of plaquette resonating
valence-bond states with ultracold atoms in optical superlattices.
Phys. Rev. Lett. 108, 205301 (2012).

34. Jotzu, G. et al. Experimental realisation of the topological Haldane model.
Preprint at http://arXiv.org/abs/1406.7874 (2014).

Acknowledgements
We acknowledge fruitful discussions with J. Dalibard and also with A. Dauphin,
P. Gaspard, F. Gerbier, F. Grusdt, I. Carusotto, T. Ozawa and H. Price. This work was
supported by NIM, the EU (UQUAM, SIQS) and EPSRC Grant No. EP/K030094/1.
M.Aidelsburger was further supported by the Deutsche Telekom Stiftung, M.L. by ExQM
and N.G. by the Université Libre de Bruxelles and the FRS-FNRS (Belgium).

Author contributions
M.Aidelsburger, M.L. and C.S. performed the experiment. All authors contributed to the
design of the experiment, the theoretical and data analysis, and to the writing of the
paper. I.B. and N.G. supervised the project.

Additional information
Supplementary information is available in the online version of the paper. Reprints and
permissions information is available online at www.nature.com/reprints.
Correspondence and requests for materials should be addressed to M.Aidelsburger

Competing financial interests
The authors declare no competing financial interests.

166 NATURE PHYSICS | VOL 11 | FEBRUARY 2015 | www.nature.com/naturephysics

© 2015 Macmillan Publishers Limited. All rights reserved

http://www.nature.com/doifinder/10.1038/nphys3171
http://arXiv.org/abs/1308.6533
http://arXiv.org/abs/1407.4803
http://arXiv.org/abs/1406.7874
http://www.nature.com/doifinder/10.1038/nphys3171
http://www.nature.com/reprints
www.nature.com/naturephysics

	Measuring the Chern number of Hofstadter bands with ultracold bosonic atoms
	Methods
	Loading sequence.
	Loading sequence for lattice set-up with trivial topology.
	Optical gradient.
	Band-mapping sequence.
	The effective Hamiltonian.

	Figure 1 Schematics of the all-optical experimental set-up used to generate a uniform artificial magnetic field and the Chern-number measurement.
	Figure 2 Energy spectra and topology of the Bloch bands as a function of a staggered detuning.
	Figure 3 Differential COM displacements and band populations  (t) versus Bloch oscillation (BO) time.
	Figure 4 Measured Chern number exp as a function of gradient strength Fa and staggered detuning .
	References
	Acknowledgements
	Author contributions
	Additional information
	Competing financial interests

