Wiederholung am 15.1.2015

Spezifische Wärme: C = 1/n dQ/dT sowie $C_{p/v} = c_{p/v} M_{mol}$

Für Festkörper: $dW = 0 \rightarrow dQ = dU$ und $U = \frac{1}{2} f n R T$: $C = \frac{1}{2} f R$

Für einatomige Kristalle (f = 6) oberhalb der Debye-Temperatur:

C = 3R (Dulong-Petit)

Für Gase: Unterscheidung $C_{p/V} = 1/n dQ/dT$ für p/V = const

V = const: dW = 0 \rightarrow $C_V = \frac{1}{2} f R$ und $U = n C_V T$

p = const: $\rightarrow C_p = C_V + R = (f/2 + 1) R$

Isentropen/Adiabatenkoeffizient κ : $\kappa = C_p / C_V$

Zustandsänderungen → siehe folgende Zusammenfassung