Winter term 2012/13 Exercise Sheet 9, Theoretical Quantum and Atom Optics University of Hamburg, Prof. P. Schmelcher

To be returned on Tuesday, 08/01/2013, in the tutorials

Exercise 18. Bogoliubov Equations

Start from the time-dependent Gross-Pitaevskii equation

$$-\frac{\hbar^2}{2m}\nabla^2\psi(\mathbf{r},t) + V(\mathbf{r})\psi(\mathbf{r},t) + U_0|\psi(\mathbf{r},t)|^2\psi(\mathbf{r},t) = i\hbar\frac{\partial\psi(\mathbf{r},t)}{\partial t},\tag{1}$$

and assume that it has an unperturbed stationary solution $\psi_0(\mathbf{r}, t) = \phi_0(\mathbf{r})e^{-i\mu t/\hbar}$. (i) Derive the linearized equation for a perturbation $\delta\psi(\mathbf{r}, t)$ around this solution. To do so, assume that the wavefunction of the condensate only slightly deviates from the unperturbed state, $\psi(\mathbf{r}, t) = \psi_0(\mathbf{r}, t) + \delta\psi(\mathbf{r}, t)$, and linearize the GP equation in terms of this small deviation.

(ii) Search for the solutions $\delta \psi(\mathbf{r}, t)$ of the linearized equation with the Bogoliubov Ansatz

$$\delta\psi(\mathbf{r},t) = e^{-i\mu t/\hbar} [u(\mathbf{r})e^{-i\omega t} - v^*(\mathbf{r})e^{i\omega^* t}].$$

Derive the Bogoliubov equations for $u(\mathbf{r}), v(\mathbf{r})$.

(iii) Assume a uniform Bose gas, $V(\mathbf{r}) = 0$, and its unperturbed homogeneous solution $\psi(\mathbf{r}, t) = \sqrt{n(\mathbf{r})}e^{-i\mu t/\hbar}$, where the chemical potential is given by $\mu = nU_0$.

Solutions of the Bogoliubov equations can now be sought in the form of plane waves $u(\mathbf{r}) = u_q \frac{e^{i\mathbf{q}\mathbf{r}}}{\sqrt{\mathcal{V}}}, \quad v(\mathbf{r}) = v_q \frac{e^{i\mathbf{q}\mathbf{r}}}{\sqrt{\mathcal{V}}},$ where \mathcal{V} is the volume of the system and u_q, v_q are constant coefficients. Show that the Bogoliubov equations can then be written in the form

$$\left(\frac{\hbar^2 q^2}{2m} + nU_0 - \hbar\omega\right) u_q - nU_0 v_q = 0 \tag{2}$$

$$\left(\frac{\hbar^2 q^2}{2m} + nU_0 + \hbar\omega\right) v_q - nU_0 u_q = 0 \tag{3}$$

Find the dispersion relation $\omega(q)$ by studying the solvability condition for this homogeneous linear system. Show that $\omega(q)$ is asymptotically linear for small q and quadratic for large q. Convince yourself that for attractive interactions, $U_0 < 0$, the Bogoliubov spectrum contains imaginary modes, signalling instability towards collapse.

5 Points

Exercise 19. Dark solitons

The repulsive $(U_0 > 0)$, uniform (V(x) = 0), one-dimensional Gross-Pitaevskii equation posseses the solitonic solution

$$\psi(x,t) = \sqrt{n_0} \left[i \frac{u}{s} + \sqrt{1 - u^2/s^2} \tanh\left(\frac{x - ut}{\sqrt{2}\xi_u}\right) \right] e^{-i\mu t/\hbar},\tag{4}$$

where $\xi = \hbar/\sqrt{2mn_0U_0}$ is the so-called coherence length, $\xi_u = \xi/\sqrt{1 - u^2/s^2}$, and $s = \sqrt{\frac{n_0U_0}{m}}$ is the sound velocity in the uniform gas with density n_0 . The parameter u < s denotes the soliton velocity.

(i) Find the minimum density n_{min} of this object.

(ii) Show that the soliton velocity is equal to the bulk sound velocity evaluated at the density n_{min} , i.e., to the sound velocity of a uniform gas with density n_{min} .

(iii) For simplicity, focus on the case u > 0 now. Show that the total phase change $\varphi(x \to +\infty) - \varphi(x \to -\infty)$ (where $\varphi \in (-\pi, \pi]$ denotes the argument of ψ) across the soliton at fixed time is monotonically related to its velocity and is equal to $-2 \arccos(u/s)$.