SS 2012

Excercise Sheet 6, Lecture Theoretical Quantum and Atom Optics

University of Hamburg, Prof. P. Schmelcher
To be returned on $21 / 05 / 2012$, in the tutorials

Exercise 12. Rabi oscillations I

Consider the expressions for the time-evolution of the original amplitudes (for a two-level system interacting with a classical light field) as given in the lecture:

$$
\begin{aligned}
& b_{1}(t)=e^{-i\left(\omega_{1}-\Delta / 2\right) t}\left[\cos \left(\Omega_{g} t / 2\right)-i \frac{\triangle}{\Omega_{g}} \sin \left(\Omega_{g} t / 2\right)\right] \\
& b_{2}(t)=e^{-i\left(\omega_{2}+\Delta / 2\right) t}\left[i \frac{\Omega}{\Omega_{g}} \sin \left(\Omega_{g} t / 2\right)\right]
\end{aligned}
$$

(a) Explicitely calculate $\left|b_{1}(t)\right|^{2}$ and $\left|b_{2}(t)\right|^{2}$ for a non zero detuning \triangle.
(b) Both $\left|b_{1}(t)\right|^{2}$ and $\left|b_{2}(t)\right|^{2}$ perform a harmonic oscillation. Explicitely determine the frequency and the amplitude of this oscillation.

Exercise 13. Rabi oscillations II

For the rotated (with respect to the b_{i}) coefficients c_{i}, the following system of ordinary differential equations (ODE's) holds:

$$
\begin{aligned}
& \dot{c}_{1}(t)=i c_{2}(t) \frac{\Omega^{*}}{2} e^{i \Delta t} \\
& \dot{c}_{2}(t)=i c_{1}(t) \frac{\Omega}{2} e^{-i \Delta t}
\end{aligned}
$$

(a) Show that the following is a solution of the ODE system:

$$
\begin{aligned}
& c_{1}(t)=\left(a_{1} e^{i \Omega_{g} t / 2}+a_{2} e^{-i \Omega_{g} t / 2}\right) e^{i \Delta t / 2} \\
& c_{2}(t)=\left(a_{3} e^{i \Omega_{g} t / 2}+a_{4} e^{-i \Omega_{g} t / 2}\right) e^{-i \Delta t / 2}
\end{aligned}
$$

if suitable relations between the constants a_{i} are fulfilled.
(b) Determine how the constants a_{i} depend on the initial conditions $c_{1}(0)$ and $c_{2}(0)$.
(c) Show that for $c_{1}(0)=1, c_{2}(0)=0$ the solution reduces to the one given in the lecture:

$$
\begin{aligned}
& c_{1}(t)=e^{i \Delta t / 2}\left[\cos \left(\Omega_{g} t / 2\right)-i \frac{\triangle}{\Omega_{g}} \sin \left(\Omega_{g} t / 2\right)\right] \\
& c_{2}(t)=e^{-i \Delta t / 2}\left[i \frac{\Omega}{\Omega_{g}} \sin \left(\Omega_{g} t / 2\right)\right]
\end{aligned}
$$

4 Points
Exercise 14. Avoided crossing

Consider a two-level system governed by the Hamiltonian

$$
\hat{H}=-\frac{\hbar}{2}\left(\begin{array}{ll}
0 & \Omega^{*} \\
\Omega & 2 \Delta
\end{array}\right), \quad \Delta \in \mathbb{R}, \Omega \in \mathbb{C}
$$

(a) Calculate the eigenvalues $E_{ \pm}(\Omega, \Delta)$. It is useful to introduce $\Omega_{g}=\sqrt{\Delta^{2}+|\Omega|^{2}}$.
(b) Sketch $E_{ \pm}$as a function of Δ for $\Omega=0$ and $\Omega \neq 0$, respectively.
(c) Calculate the corresponding normalized eigenvectors $\psi_{ \pm}(\Omega, \Delta)$.
(d) Simplify the results for $E_{ \pm}$and $\psi_{ \pm}$in the parameter regimes $|\Delta| \rightarrow 0$ and $|\Delta| \gg|\Omega|$ by carefully performing the appropriate limits.

