Winter term 2012/13
Exercise Sheet 6, Theoretical Quantum and Atom Optics
University of Hamburg, Prof. P. Schmelcher
To be returned on Tuesday, 04/12/2012, in the tutorials

Exercise 12. Landau-Zener formula
(a) Consider a two-level system described by the time-dependent Hamiltonian

$$
H(t)=\left(\begin{array}{cc}
-\epsilon & -f \tag{1}\\
-f & \epsilon
\end{array}\right)
$$

with a linearly time dependent sweep $\epsilon=-\alpha t$, where $f, \alpha>0$ are real constants.
Show that the Schrödinger equation (setting $\hbar \equiv 1$)

$$
\begin{equation*}
i \frac{\partial}{\partial t}\binom{c_{1}(t)}{c_{2}(t)}=H(t)\binom{c_{1}(t)}{c_{2}(t)} \tag{2}
\end{equation*}
$$

leads to the ordinary differential equation

$$
\begin{equation*}
\frac{d^{2}}{d t^{2}} c_{2}(t)+\left[f^{2}-i \alpha+(\alpha t)^{2}\right] c_{2}(t)=0 \tag{3}
\end{equation*}
$$

for the amplitude $c_{2}(t)$.
(b) Show that the variable substitution $t \rightarrow z(t)=e^{-i \frac{\pi}{4}}(2 \alpha)^{\frac{1}{2}} t$ transforms Eq. (3) to the so called Weber equation,

$$
\begin{equation*}
\frac{d^{2}}{d z^{2}} \tilde{c}_{2}(z)+\left[\nu+\frac{1}{2}-\frac{1}{4} z^{2}\right] \tilde{c}_{2}(z)=0 \tag{4}
\end{equation*}
$$

with $\nu=\frac{i f^{2}}{2 \alpha}$, where $\tilde{c}_{2}(z)=c_{2}(z(t))$.
(c) Eq. (4) is solved by the four parabolic cylinder (Weber) functions $D_{\nu}(z), D_{\nu}(-z), D_{-\nu-1}(i z)$ and $D_{-\nu-1}(-i z)$, the former two of which are linearly independent for $\nu \notin \mathbb{Z}$.
Verify that $D_{\mu}(\zeta)$ is a solution of the Weber equation (4) with $\nu=\mu$ if it obeys the following recursive relations for arbitrary ζ and μ :

$$
\begin{align*}
D_{\mu+1}(\zeta)-\zeta D_{\mu}(\zeta)+\mu D_{\mu-1}(\zeta) & =0 \tag{5}\\
\frac{d}{d \zeta} D_{\mu}(\zeta)+\frac{1}{2} \zeta D_{\mu}(\zeta)-\mu D_{\mu-1}(\zeta) & =0 \tag{6}
\end{align*}
$$

(d) Assume that, initially, the system is in the state $|1\rangle$, so that the following initial conditions hold:

$$
\begin{align*}
\left|c_{1}(t \rightarrow-\infty)\right|^{2} & =1 \tag{7}\\
\left|c_{2}(t \rightarrow-\infty)\right|^{2} & =0 \tag{8}
\end{align*}
$$

During the linear sweep over the avoided crossing, the coupling f causes population transfer from $|1\rangle$ to $|2\rangle$, and the aim is to find the final distribution

$$
\begin{equation*}
P_{L Z} \equiv\left|c_{1}(t \rightarrow \infty)\right|^{2}=1-\left|c_{2}(t \rightarrow \infty)\right|^{2} \tag{9}
\end{equation*}
$$

Among the four solutions of Eq. (4) only the Weber function $D_{-\nu-1}(-i z(t))$ vanishes for $t \rightarrow-\infty$. The amplitude $c_{2}(t)$ thereby fulfills the initial condition (8) if it is written as

$$
\begin{equation*}
c_{2}(t)=\tilde{c}_{2}(z(t))=A D_{-\nu-1}(-i z(t)) \tag{10}
\end{equation*}
$$

where A is a normalization constant. Defining $R \equiv \sqrt{2 \alpha} t$, the asymptotic expressions for $D_{-\nu-1}(-i z(t))$ in the two limits $t \rightarrow \mp \infty$ are given by

$$
\begin{align*}
D_{-\nu-1}(-i z(t \rightarrow-\infty)) & =e^{-\frac{1}{4} \pi(\nu+1) i} e^{-i \frac{R^{2}}{4}} R^{-\nu-1} \tag{11}\\
D_{-\nu-1}(-i z(t \rightarrow+\infty)) & =\frac{\sqrt{2 \pi}}{\Gamma(\nu+1)} e^{\frac{1}{4} \pi \nu i} e^{i \frac{R^{2}}{4}} R^{\nu} \tag{12}
\end{align*}
$$

(i) Find the asymptotic expression $c_{1}(t \rightarrow-\infty)$, by substituting $c_{2}(t \rightarrow-\infty)$ into the Schrödinger equation (2).
Hint: Use the chain rule $\frac{d c_{2}}{d t}=\frac{d c_{2}}{d R} \frac{d R}{d t}$.
(ii) Show that $A=\sqrt{\gamma} e^{-\frac{\pi \gamma}{4}}$ fulfills the normalization condition $\sqrt{7}$, where $\gamma=-i \nu=\frac{f^{2}}{2 \alpha}$.
(iii) Derive the Landau-Zener formula:

$$
\begin{equation*}
P_{L Z}=e^{-2 \pi \gamma} \tag{13}
\end{equation*}
$$

Hint: Calculate $\left|c_{2}(t \rightarrow \infty)\right|^{2}$ using the properties of the Gamma function:

$$
\begin{align*}
\Gamma(\pm i \gamma+1) & = \pm i \gamma \Gamma(\pm i \gamma) \tag{14}\\
|\Gamma(\pm i \gamma)| & =\sqrt{\frac{\pi}{\gamma \sinh \pi \gamma}} \tag{15}
\end{align*}
$$

