Winter term 2012/13

Exercise Sheet 5, Theoretical Quantum and Atom Optics

University of Hamburg, Prof. P. Schmelcher
To be returned on Tuesday, 27/11/2012, in the tutorials
Exercise 9. Atom-field interaction Hamiltonian
Consider the minimal-coupling Hamiltonian for an electron in an external electromagnetic field,

$$
H=\frac{1}{2 m}[\boldsymbol{p}-e \boldsymbol{A}(\boldsymbol{r}, t)]^{2}+e U(\boldsymbol{r}, t)+V(r),
$$

where the potentials U, \boldsymbol{A} produce the external field, while V binds the electron to a nucleus at \boldsymbol{r}_{0}. Show that, in the radiation gauge: $U(\boldsymbol{r}, t)=0, \nabla \cdot \boldsymbol{A}(\boldsymbol{r}, t)=0$, and in the dipole approximation: $\boldsymbol{k} \cdot \boldsymbol{r} \ll 1$, so that $\boldsymbol{A}\left(\boldsymbol{r}_{0}+\boldsymbol{r}, t\right) \approx \boldsymbol{A}(t) \exp \left(i \boldsymbol{k} \cdot \boldsymbol{r}_{0}\right) \Longrightarrow \boldsymbol{A}(\boldsymbol{r}, t) \equiv \boldsymbol{A}\left(\boldsymbol{r}_{0}, t\right), H$ can be written in the following forms, where $H_{0}=\frac{p^{2}}{2 m}+V(r)$ is the Hamiltonian in the absence of the external field:
(a) $H_{r}=H_{0}-e \boldsymbol{r} \cdot \boldsymbol{E}\left(\boldsymbol{r}_{0}, t\right)$

Hint: Gauge-transform the electronic wave function ψ into $\phi(\boldsymbol{r}, t)=\exp \left[-\frac{i e}{\hbar} \boldsymbol{A}\left(\boldsymbol{r}_{0}, t\right) \cdot \boldsymbol{r}\right] \psi(\boldsymbol{r}, t)$.
(b) $H_{p}=H_{0}-\frac{e}{m} \boldsymbol{p} \cdot \boldsymbol{A}\left(\boldsymbol{r}_{0}, t\right)$

Hint: Use the fact that the commutator $[\boldsymbol{p}, \boldsymbol{A}]$ vanishes in the radiation gauge, and neglect quadratic terms $\sim A^{2}$.

4 Points

Exercise 10. Rabi oscillations
Fill in the gaps in the calculation from the lecture on Rabi oscillations. To do so, first remember that for the coefficients c_{i} (which are rotated with respect to the original amplitudes b_{i}), the following system of ordinary differential equations (ODEs) was shown to hold:

$$
\dot{c}_{1}(t)=i c_{2}(t) \frac{\Omega^{*}}{2} e^{i \Delta t}, \quad \dot{c}_{2}(t)=i c_{1}(t) \frac{\Omega}{2} e^{-i \Delta t}
$$

(a) Check that the following is a solution of this ODE system:

$$
\begin{aligned}
& c_{1}(t)=\left(a_{1} e^{i \Omega_{g} t / 2}+a_{2} e^{-i \Omega_{g} t / 2}\right) e^{i \Delta t / 2} \\
& c_{2}(t)=\left(a_{3} e^{i \Omega_{g} t / 2}+a_{4} e^{-i \Omega_{g} t / 2}\right) e^{-i \Delta t / 2}
\end{aligned}
$$

if suitable relations between the constants a_{i} are fulfilled. Here, $\Omega_{g}=\sqrt{\Delta^{2}+|\Omega|^{2}}$.
(b) Determine how the constants a_{i} depend on the initial conditions $c_{1}(0)$ and $c_{2}(0)$.
(c) Show that for $c_{1}(0)=1, c_{2}(0)=0$ the solution reduces to the one given in the lecture:

$$
c_{1}(t)=e^{i \Delta t / 2}\left[\cos \left(\Omega_{g} t / 2\right)-i \frac{\Delta}{\Omega_{g}} \sin \left(\Omega_{g} t / 2\right)\right], \quad c_{2}(t)=e^{-i \Delta t / 2}\left[i \frac{\Omega}{\Omega_{g}} \sin \left(\Omega_{g} t / 2\right)\right] .
$$

(d) Thus, rotating back, you have found the following solution for the time-evolution of the original amplitudes for a two-level system interacting with a classical light field:

$$
\begin{aligned}
& b_{1}(t)=e^{-i\left(\omega_{1}-\Delta / 2\right) t}\left[\cos \left(\Omega_{g} t / 2\right)-i \frac{\Delta}{\Omega_{g}} \sin \left(\Omega_{g} t / 2\right)\right], \\
& b_{2}(t)=e^{-i\left(\omega_{2}+\Delta / 2\right) t}\left[i \frac{\Omega}{\Omega_{g}} \sin \left(\Omega_{g} t / 2\right)\right] .
\end{aligned}
$$

Check that both $\left|b_{1}(t)\right|^{2}$ and $\left|b_{2}(t)\right|^{2}$ perform harmonic oscillations. Explicitely determine the frequency and the amplitude of these oscillations.

Exercise 11. Avoided crossing

Consider a two-level system governed by the Hamiltonian

$$
\hat{H}=-\frac{\hbar}{2}\left(\begin{array}{cc}
0 & \Omega^{*} \\
\Omega & 2 \Delta
\end{array}\right), \quad \Delta \in \mathbb{R}, \Omega \in \mathbb{C}
$$

(a) Calculate the eigenvalues $E_{ \pm}(\Omega, \Delta)$. It is useful to introduce $\Omega_{g}=\sqrt{\Delta^{2}+|\Omega|^{2}}$.
(b) Sketch $E_{ \pm}$as a function of Δ for $\Omega=0$ and $\Omega \neq 0$, respectively.
(c) Calculate the corresponding normalized eigenvectors $\psi_{ \pm}(\Omega, \Delta)$.
(d) Simplify the results for $E_{ \pm}$and $\psi_{ \pm}$in the parameter regimes $|\Delta| \rightarrow 0$ and $|\Delta| \gg|\Omega|$ by carefully performing the appropriate limits.

