Exercise Sheet 2, Theoretical Quantum and Atom Optics

University of Hamburg, Prof. P. Schmelcher
To be returned on Tuesday, $06 / 11 / 2012$, in the tutorials

Exercise 3. Black-body radiation
We study the radiation in a closed cavity at temperature T. Each individual mode can be considered as a harmonic oscillator of angular frequency ω with energy

$$
E_{n}=\left(n+\frac{1}{2}\right) \hbar \omega, \quad n \geq 0
$$

In the following we focus on a single radiation mode. The probability that there will be n photons in the mode is given by Boltzmann's law

$$
P_{\omega}(n)=\frac{\exp \left(-E_{n} / k_{B} T\right)}{\sum_{n=0}^{\infty} \exp \left(-E_{n} / k_{B} T\right)} .
$$

Show that $P_{\omega}(n)$ can be written as

$$
P_{\omega}(n)=\frac{1}{\bar{n}+1}\left(\frac{\bar{n}}{\bar{n}+1}\right)^{n}
$$

where \bar{n} is the average photon number.
Hints:
(i) Limit of the geometric series:

$$
\sum_{n=0}^{\infty} x^{n}=\frac{1}{1-x}, \quad \text { for }|x|<1
$$

(ii) Average photon number is given by:

$$
\bar{n}=\sum_{n=0}^{\infty} n P_{\omega}(n)
$$

Exercise 4. Coherent states

In the lectures it was stated that a coherent state of the quantum harmonic oscillator can be obtained by shifting the ground state in space by an arbitrary distance q_{0}.

- Using the definition of the ladder operators $\hat{a}, \hat{a}^{\dagger}$ in terms of position and momentum operators, show that for $\alpha \in \mathbb{R}$ the displacement operator $\hat{D}(\alpha)$ can be identified with the spatial translation operator $\hat{T}\left(q_{0}\right)$.
To this end, remember that the momentum operator generates translations in quantum mechanics:

$$
\hat{T}\left(q_{0}\right)=e^{-\frac{i}{\hbar} q_{0} \hat{p}}
$$

What is the relation between α and q_{0} if $\hat{D}(\alpha)=\hat{T}\left(q_{0}\right)$?

- Now you know that shifting the "vacuum" (i.e., the oscillator ground state) in position space produces a coherent state. In the lectures you have seen that evolving such a shifted ground state in time leads to a Gaussian wave packet oscillating in the trap and retaining its shape. You are now asked to fill in the missing steps in the corresponding calculation.
Assume that at time $t=0$ you start with the oscillator ground state, displaced by q_{0} :

$$
\psi(q, 0)=\left(\frac{\omega}{\pi \hbar}\right)^{1 / 4} \exp \left(-\frac{\omega}{2 \hbar}\left(q-q_{0}\right)^{2}\right)
$$

As in the lectures, the mass m has been set to 1 .

To study this state's time evolution, expand it in terms of harmonic oscillator eigenfunctions: $\psi(q, 0)=\sum_{k=0}^{\infty} c_{k} \phi_{k}(q)$. Show that

$$
c_{k}=\left(2^{k} k!\right)^{-1 / 2} x_{0}^{k} \exp \left(-\frac{x_{0}^{2}}{4}\right)
$$

where $x_{0}=\sqrt{\frac{\omega}{\hbar}} q_{0}$.
Now determine $\psi(q, t)$ and the time-dependent probability density $|\psi(q, t)|^{2}$. You should recover the result presented in the lectures.

Hints: It is useful to introduce the scaled variable $x=\sqrt{\frac{\omega}{\hbar}} q$. The harmonic oscillator eigenfunctions are given by

$$
\phi_{n}(x)=\left(2^{n} n!\right)^{-1 / 2}\left(\frac{\omega}{\pi \hbar}\right)^{1 / 4} \exp \left(-\frac{x^{2}}{2}\right) H_{n}(x)
$$

where $H_{n}(x)$ denotes the n-th Hermite polynomial.
You may use the following identities involving the H_{k} :

$$
\begin{aligned}
\int_{-\infty}^{\infty} e^{-(x-y)^{2}} H_{k}(x) \mathrm{d} x & =\sqrt{\pi} 2^{k} y^{k},
\end{aligned} \quad \text { for } y \in \mathbb{R}, ~ f r e e^{-s^{2}+2 s x}, \quad \text { for } s \in \mathbb{C} .
$$

