SS 2012

Excercise Sheet 11, Lecture Theoretical Quantum and Atom Optics

University of Hamburg, Prof. P. Schmelcher
To be returned on $02 / 07 / 2012$, in the tutorials

Exercise 22. Bogoliubov Equations

Start from the time-dependent Gross-Pitaevskii equation

$$
\begin{equation*}
-\frac{\hbar^{2}}{2 m} \nabla^{2} \psi(r, t)+V(r) \psi(r, t)+U_{0}|\psi(r, t)|^{2} \psi(r, t)=i \hbar \frac{\partial \psi(r, t)}{\partial t} \tag{1}
\end{equation*}
$$

and assume that it has an unperturbed solution $\psi_{0}(\mathbf{r}, t)=\phi_{0}(\mathbf{r}) e^{-i \mu t / \hbar}$.
(i) Derive the linearized equation for a perturbation $\delta \psi(\mathbf{r}, t)$ around this solution. To do so, assume that the wavefunction of the condensate only slightly deviates from the unperturbed state, $\psi(\mathbf{r}, t)=\psi_{0}(\mathbf{r}, t)+\delta \psi(\mathbf{r}, t)$, and linearize the GP equation in terms of this small deviation.
(ii) Search the solutions $\delta \psi(\mathbf{r}, t)$ of the linearized equation with the Bogoliubov Ansatz

$$
\delta \psi(\mathbf{r}, t)=e^{-i \mu t / \hbar}\left[u(\mathbf{r}) e^{-i \omega t}-v^{*}(\mathbf{r}) e^{i \omega^{*} t}\right]
$$

Derive the Bogoliubov equations for $u(\mathbf{r}), v(\mathbf{r})$.
(iii) Assuming a uniform Bose gas, $V(\mathbf{r})=0$, and its unperturbed homogeneous solution $\psi(\mathbf{r}, t)=$ $\sqrt{n(\mathbf{r})} e^{-i \mu t / \hbar}$, where the chemical potential is given by $\mu=n U_{0}$.
Solutions of the Bogoliubov equations can now be sought in the form of plane waves $u(\mathbf{r})=$ $u_{q} \frac{e^{i \mathbf{q} \mathbf{r}}}{\sqrt{\mathcal{V}}}, \quad v(\mathbf{r})=v_{q} \frac{e^{i \mathbf{q} \mathbf{r}}}{\sqrt{\mathcal{V}}}$, where \mathcal{V} is the volume of the system and u_{q}, v_{q} are constant coefficients. Show that the Bogoliubov equations can then be written in the form

$$
\begin{align*}
& \left(\frac{\hbar^{2} q^{2}}{2 m}+n U_{0}-\hbar \omega\right) u_{q}-n U_{0} v_{q}=0 \tag{2}\\
& \left(\frac{\hbar^{2} q^{2}}{2 m}+n U_{0}+\hbar \omega\right) v_{q}-n U_{0} u_{q}=0 \tag{3}
\end{align*}
$$

Find the dispersion relation $\omega(q)$ by studying the solvability condition for this homogeneous linear system. Show that $\omega(q)$ is asymptotically linear for small q and quadratic for large q. Convince yourself that for attractive interactions, $U_{0}<0$, the Bogoliubov spectrum contains imaginary modes, signalling instability towards collapse.

5 Points

Exercise 23. Dark solitons

The repulsive $\left(U_{0}>0\right)$, uniform $(V(\mathbf{r})=0)$, one-dimensional Gross-Pitaevskii equation posseses the solitonic solution

$$
\begin{equation*}
\psi(x, t)=\sqrt{n_{0}}\left[i \frac{u}{s}+\sqrt{1-u^{2} / s^{2}} \tanh \left(\frac{x-u t}{\sqrt{2} \xi_{u}}\right)\right] e^{-i \mu t / \hbar} \tag{4}
\end{equation*}
$$

where $\xi=\hbar / \sqrt{2 m n_{0} U_{0}}$ is the so-called coherence length, $\xi_{u}=\xi / \sqrt{1-u^{2} / s^{2}}$, and $s=\sqrt{\frac{n_{0} U_{0}}{m}}$ is the sound velocity in the uniform gas with density n_{0}.
The parameter $u<s$ denotes the soliton velocity.
(i) Find the minimum density $n_{\text {min }}$ of this object.
(ii) Show that the soliton velocity is equal to the bulk sound velocity evaluated at the density $n_{\text {min }}$, i.e., to the sound velocity of a uniform gas with density $n_{\text {min }}$.
(iii) Show that the total phase change $\varphi(x \rightarrow+\infty)-\varphi(x \rightarrow-\infty)$ (where φ denotes the argument of ψ) across the soliton at fixed time is monotonically related to its velocity and is equal to $-2 \arccos (u / s)$.

