Winter term 2012/13

Exercise Sheet 11, Theoretical Quantum and Atom Optics
 University of Hamburg, Prof. P. Schmelcher

To be returned on Tuesday, 22/01/2013, in the tutorials

Exercise 21. Collective excitations of Bose-Einstein condensates

Consider a repulsively interacting Bose-Einstein condensate ($U_{0}>0$) in an isotropic 3-dimensional harmonic trap: $V(\boldsymbol{r})=\frac{m \omega_{0}^{2}}{2} r^{2}$. Furthermore, let us assume that the number of atoms is so large that we can apply the Thomas-Fermi approximation leading to the ground state density profile:

$$
\begin{equation*}
n_{0}(\boldsymbol{r})=\frac{\mu-V(\boldsymbol{r})}{U_{0}} \quad \text { for } r \leq R=\left(\frac{2 \mu}{m \omega_{0}^{2}}\right)^{\frac{1}{2}} \tag{1}
\end{equation*}
$$

In the following, we aim at discussing collective excitations of the atom cloud, for which the hydrodynamic formulation of the Gross-Pitaevskii theory turns out to be a convenient approach (cf. sheet 8). With $\psi=\sqrt{n(\boldsymbol{r}, t)} e^{i \varphi(\boldsymbol{r}, t)}$, we have obtained:

$$
\begin{gather*}
\frac{\partial n}{\partial t}=-\nabla(n \mathbf{v}) \tag{2}\\
-\hbar \frac{\partial \varphi}{\partial t}=-\frac{\hbar^{2}}{2 m \sqrt{n}} \Delta \sqrt{n}+\frac{1}{2} m \mathbf{v}^{2}+V+n U_{0} \tag{3}
\end{gather*}
$$

where the velocity field is given as $\boldsymbol{v}=\frac{\hbar}{m} \nabla \varphi$.
(a) Why can we neglect the quantum pressure term $\propto(\Delta \sqrt{n}) / \sqrt{n}$ here?
(b) Show that $\psi_{0}=\sqrt{n_{0}(\boldsymbol{r})} \exp (-i \mu t / \hbar)$ solves the Eqs. 23 within this approximation.
(c) Consider a small perturbation of this stationary solution, $n(\boldsymbol{r}, t)=n_{0}(\boldsymbol{r})+\delta n(\boldsymbol{r}, t), \varphi(\boldsymbol{r}, t)=$ $-\mu t / \hbar+\delta \varphi(\boldsymbol{r}, t)$, and linearize Eqs. (23) around the stationary solution. Show that the density fluctuation obeys:

$$
\begin{equation*}
\partial_{t}^{2} \delta n=\frac{U_{0}}{m}\left(\left(\nabla n_{0}\right) \cdot(\nabla \delta n)+n_{0} \Delta \delta n\right) \tag{4}
\end{equation*}
$$

(d) Make a separation ansatz $\delta n=f(\boldsymbol{r}) e^{-i \omega t}$ and show that f satisfies:

$$
\begin{equation*}
\omega^{2} f=\frac{1}{m}((\nabla V) \cdot(\nabla f)-(\mu-V) \Delta f) \tag{5}
\end{equation*}
$$

Explicate this equation for the given harmonic trap.
(e) Introduce spherical coordinates $x=r \sin \theta \cos \phi, y=r \sin \theta \sin \phi, z=r \cos \theta$.

Check that Eq. (5) is solved by the ansatz

$$
\begin{equation*}
f=C r^{l} Y_{l m}(\theta, \phi), \quad C \in \mathbb{R}, l \in \mathbb{N}, m \in\{-l,-l+1, \ldots, l\} \tag{6}
\end{equation*}
$$

where $Y_{l m}$ denote the spherical harmonics, and find the corresponding eigenfrequency ω.
Look at this solution in more detail for parameters $l=1, m=0$. Show that for an infinitesimally small amplitude of the perturbation, the real part of the time-dependent total density can be written as $\Re[n(\boldsymbol{r}, t)]=n_{0}\left(\boldsymbol{r}-\epsilon \cos \left(\omega_{0} t\right) \boldsymbol{e}_{z}\right)$ with a (small) constant ϵ. What does this oscillation look like?
(f) Check that the ansatz $f=C\left(1-\frac{5}{3} \frac{r^{2}}{R^{2}}\right)$ also solves Eq. 55. What does the corresponding oscillation of the condensate density look like?

