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Full monitoring of ensemble trajectories with 10 dB-sub-
Heisenberg imprecision
Jascha Zander1 and Roman Schnabel 1✉

The change of a quantum state can generally only be fully monitored through simultaneous measurements of two non-commuting
observables X̂ and Ŷ spanning a phase space. A measurement device that is coupled to the thermal environment provides at a time a
pair of values that have a minimal uncertainty product set by the Heisenberg uncertainty relation, which limits the precision of the
monitoring. Here, we report on an optical ensemble measurement setup that is able to monitor the time-dependent change of the
quantum state’s displacement in phase space (hX̂ðtÞi; hŶðtÞi) with an imprecision 10 dB below the Heisenberg uncertainty limit. Our
setup provides pairs of values (X(ti); Y(ti)) from simultaneous measurements at subsequent times ti. The measurement references are
not coupled to the thermal environment but are established by an entangled quantum state. Our achievement of a tenfold reduced
quantum imprecision in monitoring arbitrary time-dependent displacements supports the potential of the quantum technology
required for entanglement-enhanced metrology and sensing as well as measurement-based quantum computing.
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INTRODUCTION
Quantum sensing and measurement-based quantum computing
utilise quantum correlated states1,2. The most mature technology
for these applications is based on quantum states of the electro-
magnetic field. Laser interferometers that are used as telescopes
for gravitational-wave astronomy achieve unprecedented sensi-
tivities based on states having a squeezed photon counting
statistic3–6. It was proposed to further improve them by bipartite
Gaussian entangled states7–10. Optical measurement-based
quantum computing based on multi-partite entangled cluster
states11,12 was pushed forward recently13.
Measurements in the regime of Gaussian quantum statistics

concern two non-commuting observables. In terms of dimension-
less operators that are normalised to the variance of the ground
state, they are often named X̂ and Ŷ . They need to be measured
both in order to determine the full energy of a quantised
harmonic oscillator, similar to position and momentum. The
Heisenberg uncertainty relation14–17 is a useful reference to
distinguish between semi-classical measurements18 and those
that exploit entanglement19. Experimentally achievable Gaussian
entanglement has been characterised by co-variances derived
from ensemble measurements in stationary settings8,20–22. So far,
Gaussian entanglement was not used to improve measurements
of phase space displacements that changed after a single
measurement window. In such a time-dependent setting,
averaging would not constitute a suitable approach for improving
the signal-to-noise ratio.
Here, we present the monitoring of a dynamical phase space

trajectory α(t) through the simultaneous measurements of two
non-commuting observables (X(ti); Y(ti)) at subsequent times ti
with an imprecision much lower than the reference limit as given
by the Heisenberg uncertainty relation. The non-classical improve-
ment provides the same benefit as ten times averaging, which,
however, is possible only in a stationary setting. The experimental
achievements presented here are entirely based on individually
sampled two-dimensional data points.

RESULTS
Uncertainty relations
Our experiment uses quantities that are also used in optical
communication and optical quantum computing13, namely
phase and amplitude modulation depths carried by quasi-
monochromatic laser light of optical frequency ν, see the figure
in Supplementary Information. The depth of the amplitude
modulation (amplitude modulation index) in the frequency band
f ± Δf, with ν≫ f > Δf, is quantified by the dimensionless
operator X̂ f ;Δf

23. This operator is also known as ‘amplitude
quadrature amplitude’. The corresponding depth of phase
modulations is (in the limit of weak phase modulations)
quantified by the operator Ŷ f ;Δf . This operator is also known as
‘phase quadrature amplitude’ 24. X̂ f ;Δf and Ŷ f ;Δf do not commute.
In the following, we skip the indices and normalise the
commutator to ½X̂; Ŷ$ ¼ 2i, which results in the Heisenberg
uncertainty relation

ΔX̂ΔŶ & 1; (1)

where Δ denotes the standard deviation of the measured
eigenvalues of the respective operator. X̂ and Ŷ span a phase
space, in which the uncertainty area is bounded from below
accordingly. The lower bound in Eq. (1) refers to ‘ideal’
measurements performed with semi-classical devices, which
do not use quantum correlations. ‘Ideal’ means that X̂ is
measured on a first copy and Ŷ is measured on a second copy of
the system. Ideal measurements are only possible in (quasi-)
stationary settings. If the quantities X̂ and Ŷ change on time
scales that are not much longer than 1/Δf, they need to be
measured simultaneously. In this case, splitting the system into
two independently measured subsystems is required (beam
splitter in Fig. 1, and BS3 in Fig. 2). Furthermore, averaging is not
possible unless the trajectory repeats after some time. The
splitting reduces the signal-to-noise ratio in comparison with
ideal measurements. The splitting can be described as opening
a new port through which vacuum uncertainty couples to the
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measurement (port B in Fig. 1, left), if not an entangled
reference system is superimposed via this port, as shown in in
Figs. 1b and 2. In the absence of quantum correlations,
simultaneous measurements at times ti need to cope with at
least doubled minimal quantum uncertainty, which increases

standard deviations by at least the factor
ffiffiffi
2

p
18, yielding

Δ X̂ðtiÞ
" #

Δ ŶðtiÞ
" #

& 2: (2)

The above inequality represents the fundamental precision limit
when two conjugate observables are measured simultaneously
on a single system with respect to reference values of a semi-
classical measurement device. Note that inequality (2) relates to
a Gaussian state in the Husimi Q representation25, whereas
inequality (1) relates to the Wigner representation26.

Measurements with respect to quantum entangled references
Let ½X̂; Ŷ$ ¼ 2i describe a quantum system of interest and
½X̂0; Ŷ0$ ¼ 2i another quantum system. A short calculation leads
to the zero-commutator ½X̂ ± X̂0; Ŷ ∓ Ŷ0$ ¼ 0, which results in

ΔðX̂ ± X̂0Þ ΔðŶ ∓ Ŷ0Þ & 0: (3)

This inequality describes the fact that X and Y of a system can be
measured simultaneously with arbitrary precision with respect to
the corresponding quantities X0 and Y0 of a reference system.
Usually, a reference system has its own quantum uncertainty. If,
however, an ensemble of quantum systems is available that are all
entangled with a reference system at hand, the measurement of a
phase space trajectory ðhX̂i; hŶiÞðtÞ with a sub-Heisenberg
imprecision is possible.

Experimental setup
Figure 2 shows the schematics of our experiment. A commercial
erbium-doped fibre laser generated 1W of quasi-monochromatic
light at the wavelength of 1550 nm. About half of the light was
frequency doubled to provide the pump light for two squeezed-
light resonators. The latter used resonator-enhanced degenerate
type 0 optical-parametric amplification in periodically poled
potassium titanyl phosphate. The two output fields carried
modulation spectra around 5MHz in squeezed vacuum states and
were overlapped at balanced beam splitter BS1. The results were
two fields whose modulations were strongly EPR entangled, which
was characterised in a precursor experiment20. Here, we recombined
the entangled beams on a second balanced splitter (BS3). The
optical path length difference was controlled to convert them back
to two squeezed beams. Due to necessarily imperfect interference
contrasts at the two beam splitters, the final squeeze factors could
only be lower than the initial squeeze factors of the input modes
(subscripts 1 and 2). The BHDs used optical local oscillators (LOs) of
about 10mW from the joint fibre laser. The phase differences
between the LOs and the squeezed fields were stably controlled to
0° and 90°, respectively. BHD1 at 0° sampled values of a squeezed
amplitude quadrature amplitude and BHD2 at 90° sampled values of
a squeezed phase quadrature amplitude, both with a sampling
frequency of 200MHz. To avoid aliasing, we applied an analogue
lowpass filter with a corner frequency of 50MHz to each channel.
Post processing was done with a self-written Python script, which
was used to digitally demodulate the data at f= 5MHz and
subsequent finite impulse response-lowpass filtering with a cut-off
frequency of Δf/2= 10 kHz. Figure 3 represents the entanglement
quality of our setup in terms of variances.
The time-dependent displacement α(t) in our setup corresponded

to the time-dependent modulation at f= 5MHz of a coherent carrier
field that was transmitted through the high reflectivity mirror BS2
(R= 99.99%). The high reflectivity minimised decoherence, i.e. optical
loss to the entanglement. Changing the peak voltage to the electro-
optical modulator (EOM, as shown in Fig. 2), changed the absolute
value of the displacement ∣α∣. Changing the DC voltage to the piezo-
actuated phase-shifter (U1) changed the differential excitation in hX̂i
and hŶi. The time series produced at BHD1 and BHD2 represented
simultaneous measurements of the system’s conjugate displacement
components with respect to the corresponding values of the

Fig. 1 Monitoring of quantum state displacement α(t). The
phase space observables are the real and imaginary parts
αðtÞ ¼ hX̂ðtÞiþ ihŶðtÞi. a The simultaneous (semi-classical) monitor-
ing of the displacement is hampered by quantum uncertainty,
which can be illustrated by ground states entering the measure-
ment device at inputs A and B. b Exploiting an entangled state
0; Xdiff ; Ysum; rj iA;B reduces the quantum noise imprecision of a single
measurement pair (X(ti); Y(ti)) at time ti in principle to arbitrarily low
values. Here, ‘0' refers to the average displacements at inputs A and
B, Xdiff, Ysum to the kind of quantum correlations, and r to the joint
strength of the quantum correlations. In practice, decoherence on
the entangled state that reduces r is the major problem.

Fig. 2 Schematics of the experiment. Shown are optical paths of
laser beams at wavelength 1550 nm. The phase space pictures
show the quantum uncertainty of the laser beams' modulations
at f= 5MHz at several instances in the Wigner representation. From
bottom left to top right: balanced beam splitter BS1 converted two
squeezed vacuum states into a bipartite EPR entangled state. One
part served as a quantum entangled reference (subscript 0). The
other part was displaced by ðhX̂i; hŶiÞðtÞ (illustrated by the arrow) by
overlapping modulated light transmitted through BS2. The two
projections of the arrow were simultaneous monitored with respect
to the entangled reference system by superposition at BS3 and by
detecting the outputs with balanced homodyne detectors. BHD1

provided eigenvalues of ðX̂ ( X̂0ÞðtiÞ=
ffiffiffi
2

p
, while BHD2 provided

eigenvalues of ðŶ þ Ŷ0ÞðtiÞ=
ffiffiffi
2

p
, with hX̂0i ¼ hŶ0i ¼ 0. EOM

electro-optical modulator, AFG arbitrary function generator, DAQ
data acquisition, LO local oscillator.
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(entangled) reference. Since hX̂0i ¼ hŶ0i ¼ 0, the data serve for
monitoring the trajectory ðhX̂i; hŶiÞðtÞ.

Experimental results
Figure 4 shows two phase space trajectories ðhX̂i; hŶiÞðtÞ (solid
lines) measured with precision suspending inequalities (1) and (2).
Added are individual data points from simultaneous measurements
of (X− X0)(ti) and (Y+ Y0)(ti), when the interrogated system was
entangled with the reference system. Also shown are individual
data points from simultaneous measurements of (X− X0)(ti) and
(Y+ Y0)(ti), when the entanglement source was switched off and
the modulations hX̂i and hŶi set to 0. These data points
accumulated around the phase space origin and were used to
derive the factor by which the inequalities (1) and (2) were
surpassed. The standard deviations in (X− X0)(ti) and (Y+ Y0)(ti)
around the actual phase space trajectories ðhX̂i; hŶiÞðtÞ (solid line)
were reduced by more than

ffiffiffiffiffi
10

p
. This factor is highlighted by the

different radii of the small circles. The phase space trajectories
were thus tracked with an uncertainty product that violated
inequality (2) by slightly more than a factor of 10. As expected, the
factor by which Heisenberg’s uncertainty limit was surpassed
directly corresponded to the strength of the entanglement.
Increasing the entanglement strength requires further reduction
of optical loss, including further increase of photo-electric detection
efficiency27.
Figure 4a represents a constant modulation depth, while the

kind of modulation was continuously changed. The system had a
pure amplitude modulation when hŶiðtÞ ¼ 0 and a pure phase
quadrature modulation when hX̂iðtÞ ¼ 0. The amplitude of the AC
voltage at the EOM (U2) was constant and just the DC voltage at
the piezo actuator (U1) continuously changed. The trajectory
started at about ðhX̂i; hŶiÞ ¼ ð(3:7

ffiffiffi
2

p
; 5:8

ffiffiffi
2

p
Þ, completed almost

a full cycle, returned and stopped at about ð(5:3
ffiffiffi
2

p
;(4:3

ffiffiffi
2

p
Þ.

The bottom panel shows another example trajectory whose
modulation depth also changed, resulting in a phase and
amplitude dependent trajectory.

DISCUSSION
Our experiment demonstrates that any individual measurement of
two non-commuting observables at the same time improved when
entanglement is exploited. The observables considered are the
real and imaginary parts of phase space displacement, which
describe the depths of the amplitude modulation and the phase
quadrature around a selected radio frequency of a continuous-wave
quasi-monochromatic laser beam. The temporal change of
the modulations depths corresponds to a trajectory in phase space.
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Fig. 3 Variances of our X(ti) data and Y(ti) data. Shown is the
example of stationary zero displacement, i.e. h ^XðtÞi ¼ h ^YðtÞi ¼ 0.
Solid lines correspond to the variance of 2600 measuring points
each, without entanglement (top lines) and with entanglement
(bottom lines). The latter represents 10 dB two-mode squeezing.
Dots represent variances calculated over 260 consecutive measuring
points. The variances characterise the quality of our data sampling
with respect to the entangled reference. The two types of
modulations (X: left panel; Y: right panel) can be measured
simultaneously with an uncertainty product of ΔðX̂ðtiÞÞΔðŶðtiÞÞ )
0:2 violating Inequality (2) by a factor of ~10. Here, f= 5MHz and
Δf= 20 kHz.

Fig. 4 Example phase space trajectories. Examples (a) and (b) have
a duration of about 5ms length and are measured with sub-
Heisenberg imprecision (solid line surrounded by green dots) in
comparison to measurements on ground states (centred, blue dots).
The dots represent single measurements ((X− X0)(ti); (Y+ Y0)(ti))
performed at subsequent times ti, with ti+1− ti= 10 μs. (To increase
the number of points, we superposed 15 and 8 identical
measurements, respectively.) The spreads of the data points in the
two phase space directions represent the relevant standard
deviations of quantum noise in estimating the trajectories. The
sub-Heisenberg uncertainty area is revealed by comparing the small
circles to larger ones in the centres, which represent the lower
bound in inequality (2). The latter is surpassed by a factor of about
10. The upper trajectory represents a changing type of modulation
at constant modulation depth. The bottom one additionally shows a
continuously decreasing modulation depth.
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Our experiment shows that the trajectory can be monitored by a
large number of individual measurement pairs with a tenfold
reduced imprecision in each of the observables compared with the
variances of measurements on the ground state (without entangle-
ment). The reduction factors correspond to the squeeze factor in
both observables (10 dB) realised by the entanglement resource. We
conclude that the time-varying displacement can in principle be
monitored with arbitrary precision without averaging, i.e. even for
random walks. We thus further conclude that the often-quoted
interpretation of Heisenberg’s uncertainty relation ‘two non-
commuting observables of a quantum system cannot be measured
simultaneously with arbitrary precision’ is incorrect. In light of our
experiment, the statement becomes correct, if completed by ‘...with
respect to a reference system that was or has been coupled to a
thermal environment’, since in this case the reference system cannot
be quantum correlated.
The phase space displacement in our experiment is overlapped

with the entangled fields via a high reflectivity beam splitter. In
principle, the displacement can also be produced directly in the
beam path of one of the entangled states by a combination of an
amplitude and a phase modulator, because the entangled states are
carried by accompanying monochromatic fields. An important issue
is to keep the entanglement decoupled from the environment
before the measurement. The reduction factor in the quantum
imprecision achieved is of practical significance and supports the
emergent field of quantum sensing. In gravitational-wave observa-
tories, entangled light provides additional sensitivity improvements
compared to squeezed light3–6 by mitigating disturbances from
back-scattered light8 and from quantum radiation pressure7,9,10. The
setup realised constitutes state of the art quantum optics technology
suitable for the generation and detection of Gaussian cluster states
for measurement-based quantum computing11–13.

DATA AVAILABILITY
The datasets generated during the current study are available from the correspond-
ing author on reasonable request.
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Supplementary Notes

The operators X̂f,�f and Ŷf,�f are the quantum

mechanical descriptions of the depths of amplitude

modulation and phase quadrature modulation of the

electro-magnetic field, respectively, integrated over the

frequency band f ±�f . In the field of quantum optics,

their traditional names are ‘amplitude quadrature

amplitude’ and ‘phase quadrature amplitude’. The

information about the frequency band is usually not

included in the quantities’ names. Nevertheless, it is of

practical relevance. The modulations in our experiment

are carried by a continuous-wave quasi-monochromatic

light at a wavelength of 1550 nm (f = 5MHz and

�f = 20 kHz).

X̂f,�f and Ŷf,�f are dimensionless and normalised to

the standard deviation of the quantum uncertainty of

the ground state of the modulation mode. A modula-

tion mode is Fourier limited, i.e. its half time-spread

corresponds to �T = 1/(4⇡�f). For a perfectly

monochromatic light field, all modulation modes are in

their ground states. According to Heisenberg’s uncer-

tainty relation, Xf,�f and Yf,�f cannot be precisely

measured at the same time with respect to reference

values of a semi-classical measurement device that was or

has been coupled to a thermal environment. The figure

illustrates the definition of the amplitude quadrature

amplitude X̂f,�f and the phase quadrature amplitude

Ŷf,�f .
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Supplementary Figure 1. Amplitude and phase

quadrature excitations at modulation frequency f of

quasi-monochromatic light at frequency ⌫ (fast oscilla-

tion). (a) Xf,�f quantifies the depth of the amplitude

modulation at frequency f , integrated over the band

f ± �f . (b) Similarly, Yf,�f quantifies the amplitude

of the phase quadrature excitation. Both quantities

are dimensionless and proportional to electric field

strengths.
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