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Abstract

The last decades have seen a tremendous progress in the creation and control of novel
quantum systems. As a part of this ongoing research, the field of hybrid quantum
systems tries to combine different types of these quantum systems. The combination
of their respective advantages offers exciting prospects for new quantum technologies
ranging from quantum enhanced sensing to quantum information processing. Further-
more, hybrid quantum systems open the door for fundamental research on emergent
phenomena or the universality of quantum mechanics. In sight of these research goals,
we have realized a hybrid atomic-mechanical system consisting of a cryogenically cooled
Si3N4 membrane oscillator coupled to a cloud of laser cooled 87Rb atoms. The long-
distance coupling is mediated by a light field and is enhanced by placing the mechanical
oscillator inside an optical fiber cavity.
This thesis presents details on the experimental setup and the first experiments we
have performed in our system. Specifically, the hybrid coupling enables sympathetic
cooling of the mechanical oscillator to a minimum mode temperature Tmin ≈ 20 mK
through laser cooling of the 87Rb atoms. A maximum sympathetic cooling rate Γsym =
23.3(14) Hz and a hybrid cooperativity Chybrid = 151(9) could be determined. In ad-
dition to the sympathetic cooling, a setup for active feedback cooling of the oscillator
was built up and characterized. The feedback is applied via the radiation pressure of
a dedicated laser beam, which is modulated by the homodyne signal of the oscillator.
In this way, we achieve a minimum mode temperature of Tmin = 234(42) µK, which
corresponds to a thermal mode occupation of nm = 18.5(33) phonons.
In a further experiment we have demonstrated for the first time the combination of
feedback cooling with sympathetic cooling. This proves the technical combinability of
feedback cooling with the hybrid coupling mechanism. In the near future, this will
enable us to couple a Bose-Einstein condensate to a feedback cooled mechanical os-
cillator near the quantum ground state. This will be the first realization of a true
atomic-mechanical hybrid quantum system.



Zusammenfassung

In den letzten Jahrzehnten wurden enorme Fortschritte in der Entwicklung und Kon-
trollierbarkeit neuer Quantensysteme erzielt. Teil dieser Forschungsbemühungen ist das
Feld der hybriden Quantensysteme, welches sich mit der Kombination verschiedener
Quantensysteme beschäftigt. Die Kombination ihrer jeweiligen Vorteile eröffnet viel-
versprechende Aussichten für neue Quantentechnologien, welche von quantenbasierten
Messverfahren bis zur Quanteninformationsverarbeitung reichen. Des Weiteren bieten
sich zahlreiche neue Möglichkeiten der Grundlagenforschung in Bereichen wie Emer-
genz komplexer Systeme oder fundamentale Tests der Quantenmechanik. Mit Blick auf
diese Forschungsziele haben wir ein hybrides System realisiert, bestehend aus einem
kryogen gekühlten Si3N4 Membranoszillator und kalten 87Rb Atomen. Die Wechsel-
wirkung zwischen den räumlich getrennten Partnern des hybriden Systems wird über
ein Lichtfeld vermittelt und durch eine optische Fasercavity verstärkt, in der sich der
Oszillator befindet.
Diese Arbeit präsentiert die Ergebnisse erster hybrider Kopplungsexperimente in unse-
rem System. Speziell wurde der mechanische Oszillator durch Laserkühlung der 87Rb
Atome sympathetisch bis zu einer minimalen Modentemperatur Tmin ≈ 20 mK her-
untergekühlt. Eine maximale sympathetische Kühlrate Γsym = 23.3(14) Hz und eine
hybride Kooperativität Chybrid = 151(9) konnten dabei ermittelt werden. Zusätzlich
zum sympathetischen Kühlen wurde ein Aufbau zum aktiven Feedback-Kühlen des
Oszillators fertiggestellt und charakterisiert. Das Feedback wird durch den Strahlungs-
druck eines speziellen Laserstrahls ausgeübt, welcher mit dem Homodyne-Signal des
Oszillators moduliert wird. Auf diese Weise erreichen wir eine minimale Modentem-
peratur von Tmin = 234(42) µK, was einer thermischen Besetzung von nm = 18.5(33)
Phononen entspricht.
In einem weiterführenden Experiment haben wir zum ersten Mal erfolgreich Feedback-
Kühlen mit sympathetischem Kühlen kombiniert. Dies zeigt die technische Kombinier-
barkeit von Feedback-Kühlen und des hybriden Kopplungsmechanismus. In der nahen
Zukunft werden wir so in der Lage sein, ein Bose-Einstein Kondensat an einen durch
Feedback gekühlten mechanischen Oszillator nahe des Quantengrundzustandes zu kop-
peln. Dies wird die erste Realisierung eines wahren hybriden Quantensystems aus Ato-
men und einem mechanischen Oszillator darstellen.
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Chapter 1

Introduction

In the early 20th century, the discovery of quantum mechanics revolutionized our un-
derstanding of the world. Suddenly, unsolved puzzles like the stability of the atom or the
spectrum of the black-body radiation could be explained consistently. Yet, the truly
groundbreaking significance of quantum mechanics has been revealed in the follow-
ing decades, when the fruitful interplay between theoretical and experimental research
caused pioneering progress in physical science. Today, the quantum theory forms the
foundation of all modern physics together with Einstein’s theory of relativity. Closely
tied to this scientific revolution, the quantum physical knowledge lead to breakthrough
technologies like the laser or semiconductor chips, which are the basis of modern elec-
tronics.
In the beginning of the 21th century, quantum technology has reached a new level. Un-
like lasers and semiconductors which can be described semi-classically, modern quantum
technologies utilize physical systems that require a full quantum mechanical description.
These systems range from single photons [1], atoms and ions [2, 3], spins [4] and semi-
conductor quantum dots [5] to superconducting [6] and nanomechanical devices [7, 8].
Complete control over these quantum objects enables the preparation, manipulation
and detection of their individual quantum states and openes the door for fascinating
new research fields. Some spectacular examples of quantum technological advances are
the first realization of Bose-Einstein condensation in 1995 [9, 10] which opened up the
field of ultra-cold quantum gases or the first detection of gravitational waves from a
black hole merger in 2015 [11] which ushered in a new era of astronomy.
Besides the great importance of quantum technologies in fundamental research, a wide
range of their practical applications are about to find their way into today’s technology.
This offers exciting prospects like quantum computation [12], quantum cryptography
in secure communication [13] and quantum enhanced sensing [14]. The technological
progress is, however, confronted with major difficulties, which complicates the minia-
turization, performance and scalability of current quantum technologies. First of all,
decoherence destroys pure quantum states which can only be prevented by perfectly
isolating the quantum system from the environment. This requires elaborate techniques
like ultra-high vacuum chambers or cryogenic cooling. Furthermore, none of the men-
tioned quantum systems is currently capable of combining reliable storage, processing
and transmission of quantum states. The reason for that is that each of the systems
is only suitable for one specific task, but no single system is universally suitable for
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all desired applications. For example, photons are well suited for transmitting quan-
tum information, spins may serve as long-lived quantum memories and superconducting
devices could allow for rapid information processing. One very promising option to over-
come these obstacles is the hybridization of different quantum systems, which forms a
so-called hybrid quantum system [15–19]. These hybrid systems combine the advantages
of different quantum systems at the price of a controllable interface between them. Dur-
ing the last decade, hybrid quantum systems have developed into a rapidly growing,
interdisciplinary field of research. Within this context, a large amount of theoretical
work has focused on hybrid systems and their prospects for quantum state prepara-
tion, quantum state transfer, enhanced probing and sensing, entanglement and ground
state cooling [20–36].
One system that is particularly well suited for interfacing it with other systems is a
mechanical oscillator. This is because mechanical objects can be designed to couple
via all kinds of different interactions: capacitively, electrostatically, magnetically, via
radiation pressure, via van der Waals forces, etc. Moreover, modern manufacturing
techniques enable the construction of micro-mechanical devices with such a high quality,
that individual mechanical modes can be cooled into the quantum ground state. Today,
ground state cooling of mechanical motion has become state of the art [37–44]. Hence,
mechanical oscillators are an ideal cadidate for hybrid quantum systems. A wide range
of hybrid systems has been realized by coupling mechanical oscillators to spins [45–
49], semiconductor quantum dots [50, 51], superconducting circuits [37, 44, 52, 53] and
atomic ensembles [54–59].
Within this context, the Nano-BEC experiment aims at creating a hybrid quantum
system by interfacing a mechanical oscillator with an ensemble of ultra-cold rubidium-
87 atoms. For several reasons, cold atoms are particularly well suited as a constituent
in a hybrid quantum system. Firstly, cold atoms can be perfectly isolated from the
environment, which allows for very long coherence times on the order of seconds. This
relaxes the experimental requirements on timing for the preparation and detection of
quantum states. Secondly, bosonic rubidium-87 can be condensed into a Bose-Einstein
condensate (BEC), which is the perfect realization of many-body system in its quantum
ground state. This allows for high-purity quantum state preparation and offers exciting
possibilities like entanglement and teleportation in the hybrid system [25]. Thirdly, the
sophisticated toolset of quantum optics allows for full control over the internal and
external states of the atoms [60]. This enables a wide variety of schemes for interfacing
[61], state preparation and detection of the cold atoms.
Our experiment focuses on a light-mediated coupling between the two parts of the
hybrid system, which has several advantages. Interfacing the mechanical oscillator via
radiation pressure opens up the possibility to enhance the optomechanical coupling
with an optical cavity and benefits from the sophisticated techniques of cavity optome-
chanics [8]. Like already mentioned, optical coupling is also an optimal way to couple
different degrees of freedom on the atomic side of the hybrid system. Furthermore, op-
tical coupling enables long-range interactions between the two systems, which allows
for separating them by several meters. In this way, the setup can be kept modular
and modifications on both sides of the hybrid system can be performed separately.
Moreover, both parts can be housed in an environment that is specifically optimized
for each individual system. Thus, the mechanical oscillator can be cryogenically cooled
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with minimal optical access to prevent heating through black-body radiation, while the
cold atoms can be trapped in a glass cell with maximal optical access to enable laser
cooling, optical trapping, state preparation and detection.
For such a hybrid atomic-mechanical system with long-range mediated light interac-
tions, several proposals for the coupling to internal [25, 35, 36, 62] and to external
(motional) atomic states [27, 31, 34, 63] have been published. Recently, internal-state
coupling has been realized in such a hybrid system and the coupling was utilized for
quantum back-action evading measurements of the mechanical motion [59]. Likewise,
this hybrid scheme was realized with external-state coupling [56] and it was used for
sympathetic cooling of the mechanical oscillator by laser cooling the atoms [57].
In the first stage of the project we also couple a mechanical oscillator to the external
degrees of freedom of an atomic ensemble, as depicted in Figure 1.1. The mechanical
oscillator (a silicon nitride membrane [8, 64], widely used in optomechanics) is cryo-
genically pre-cooled and located inside a Fabry-Pérot cavity, which is called membrane-
in-the-middle (MiM) configuration [65]. The cavity is formed by two glass fiber tips
(called fiber cavity [66, 67]) and since light enters the cryostat only through these two
fibers, the MiM system can be fully enclosed by cryogenic radiation shields. Further-
more, glass fibers have a low thermal conductivity, which minimizes the heat transfer
into the cryogenic chamber. One of the cavity fibers guides the coupling light to a
glass cell in which atoms can be trapped and laser cooled. This light forms an optical
1D lattice, which creates a bi-directional coupling of atomic and mechanical motion
[31]. The lattice is formed by retro-reflected light from the cavity. The other cavity
fiber is used for a feedback laser beam that cools the membrane motion far below the
cryogenic equilibrium temperature via optical feedback cooling [68, 69]. For this, the
membrane motion is measured via homodyne detection and the signal is fed back to the
membrane through radiation pressure of the feedback beam. This creates an artificial
damping force which removes kinetic energy from the membrane.

Figure 1.1: Sketch of the realized experimental setup. Experimental realization of a
hybrid system consisting of a membrane oscillator inside a fiber cavity coupled to an ensemble
of cold atoms trapped in an optical lattice. The membrane is housed in a cryogenic HV chamber
(minimum achievable temperature 30 mK) and the cold rubidium-87 atoms are trapped in an
optical 1D lattice inside a UHV chamber. The coupling is mediated by the optical lattice which is
guided by a glass fiber (yellow line). Resonant coupling of mechanical motion and atomic motion
is achieved if the oscillator frequency ωm matches the atomic trapping frequency ωat. Balanced
homodyne detection is used for detection and optical feedback cooling of the membrane motion.
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Our hybrid system consisting of a cryogenically cooled membrane oscillator coupled
to the motion of cold rubidium-87 atoms is, to the best of our knowledge, the first
realization of this scheme in combination with cryogenic cooling. In this setup, three
major experiments were performed. Firstly, sympathetic cooling of the membrane to a
minimum mode temperature of Tmin ≈ 20 mK was demonstrated. Both optical molasses
cooling and magneto-optical trapping were used for laser cooling the atoms and their
parameters for optimal sympathetic cooling of the membrane were optimized. Through
these coupling experiments, a maximum hybrid system cooperativity of Chybrid = 151±
9 was determined. Furthermore, the dependency of the hybrid coupling rate Γsym on the
atom number and the atomic cooling rate were analyzed. In a second major experiment,
feedback cooling of the membrane down to a minimum mode occupation of nm =
18.5± 3.3 was achieved. Finally, feedback cooling could be combined successfully with
sympathetic cooling. This demonstrates the coupling of a mechanical oscillator in the
quantum regime to cold atoms in a lattice potential, which paves the way for quantum
hybrid experiments with ultra-cold atoms and a quantum mechanical oscillator.
The present thesis is structured as follows:

Ch. 2 – The hybrid experiment
The second chapter deals with the experimental setup for a hybrid quantum sys-
tem. After a brief description of the cold atom apparatus, the main focus will
be on the design and alignment of the fiber cavity MiM system. In this context,
an interferometric method will be presented which enables the alignment of the
fiber cavity under cryogenic conditions. Finally, the optical coupling lattice will
be characterized concerning technical implementations and calibration measure-
ments on the lattice depth using matter wave diffraction of ultra-cold atoms.

Ch. 3 – Optomechanics in the MiM system
The third chapter covers the realized MiM system, beginning with measurements
on the optomechanical coupling parameters. In the following, homodyne detection
of the membrane motion will be discussed regarding the setup and detection
limits. Furthermore, different thermometry calibrations will be presented and
compared. Finally, the properties of the membrane oscillator will be characterized.

Ch. 4 – Feedback cooling of mechanical motion
In the course of this thesis, feedback cooling of a mechanical oscillator to a mode
occupation of nm = 18.5±3.3 was realized using optical homodyne feedback. The
fourth chapter focuses on the principles of feedback cooling and evaluates the ex-
perimental results in the context of fundamental limits and future enhancements.

Ch. 5 – Hybrid coupling experiments
The last chapter covers the experiments with cold atoms in an optical 1D lat-
tice coupled to a mechanical oscillator. After introducing the principles of this
coupling mechanism, the performed measurements on sympathetic cooling will
be discussed. Finally, measurements on combined feedback cooling and sympa-
thetic cooling will be presented. The chapter concludes with an outlook on future
experiments with a hybrid quantum system using ultra-cold atoms.



Chapter 2

The hybrid experiment

This chapter outlines our setup for a hybrid quantum system with ultra-cold
87Rb atoms coupled to a cryogenic optomechanical MiM device. Following
the description of all individual parts of this setup, crucial alignment meth-
ods for the MiM device and for an optical lattice will be presented, which
allows for coupling of the atomic motion to the optomechanical system.

Ultra-cold atoms and mechanical oscillators are particularly well suited for the creation
of a hybrid quantum system. On the one hand, quantum optics offers a versatile toolset
for trapping, laser cooling, quantum state preparation and detection of cold atoms.
This allows for the preparation of quantum states with very long lifetimes of several
seconds. Specifically, Bose-Einstein condensates (BECs) of ultra-cold atoms have found
wide applications for quantum information storage [70], long-distance entanglement
creation [71] and non-classical state preparation [72]. On the other hand, mechanical
devices have the huge advantage of high scalabilty, small size and the potential for
quantum operations at room temperature [73–75]. Besides these technical merits of
mechanical oscillators, macroscopic solid state systems in the quantum regime are a
fascinating subject for fundamental research. While the microscopic world is governed
by the laws of quantum mechanics, macroscopic objects in the every day life experi-
ence behave classically. One century after the development of quantum mechanics, this
contradiction is still in the focus of intensive research. Several studies propose general
tests of quantum mechanics in the macroscopic regime including collapse models (non-
standard decoherence) [76, 77], gravitational decoherence models [78, 79] or even tests
of quantum gravity [80] using optomechanical devices.
The advantages of a long-range light interaction between the two parts of the hybrid
system were already mentioned in chapter 1. In summary, long-range interactions allow
for a modular setup with individually optimized subsystems, the possibility to cou-
ple different atomic degrees of freedom, as well as a cavity enhanced optomechanical
coupling rate.
In the following, design considerations for the creation of an atomic-mechanical hybrid
quantum system will be discussed. For this, both quantum systems should be housed
in an optimal environment in terms of maximal coherence time, optimal detection and
manipulation possibilities and a large coupling to the mediating light field. This light
coupling can be quantified by the atom-light cooperativity Ca and the oscillator-light
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cooperativity Cm. In the limit of negligible light losses, the cooperativity of the hybrid
system Chybrid is proportional to the product CaCm [34]. Hence, in order to maximize
Chybrid, the two subsystem cooperativities should be maximized and light losses should
be as small as possible.

Design considerations for a hybrid atomic-mechanical system

(i) Cold atom apparatus. First of all, the atomic species should allow for a ro-
bust creation of ultra-cold atoms using conventional laser cooling techniques. The
science chamber for the cold atoms should have maximal optical access for prepa-
ration, detection and coupling of the atomic sample. UHV conditions are beneficial
for long coherence times and the possibility to create BECs is desirable. It should
also be possible to trap the atoms independent of their internal states, in order to
enable all possible coupling schemes between the atoms and the oscillator. A vari-
able spatial shape of the atomic ensemble can also be beneficial for an increased
coupling to the light field of a laser beam.

(ii) Mechanical oscillator. In order to prepare a mechanical oscillator in the quan-
tum regime, one specific mode of the oscillator must be isolated very well from the
environment. That is, the coupling Γm of the mode to its supporting mechanical
structure should be as small as possible and the mechanical noise (thermal or
technical) in this supporting structure should be minimized. This can be achieved
by large mechanical Q-factors Q ∼ 1/Γm and a cryogenic environment with low
technical noise (mechanical vibrations). Furthermore, the frequency ωm of this
mechanical mode should match an atomic frequency ωa (internal or external) for
resonant coupling of the hybrid system.

(iii) Optical interface. Placing the mechanical oscillator in a cavity enhances the op-
tomechanical cooperativity Cm. For a maximal hybrid cooperativity Chybrid, this
cavity should have a large optical incoupling and large reflectivity on resonance,
in order to minimize light losses in a bi-directional hybrid coupling scheme. Re-
garding the specific kind of coupling scheme, the coupling light beam should also
be suitable in terms of wavelength, optical power and beam shape.

Cold atom apparatus. Regarding the considerations of item (i) we decided to im-
plement a 87Rb BEC machine in a 2D/3D MOT configuration [81], which can produce
large samples of NMOT ≈ 1× 1010 cold atoms or NBEC ≈ 2× 106 ultra-cold atoms in a
robust manner. Furthermore, the modular configuration enables excellent optical access
to the 3D MOT chamber. The setup is equipped with an optical crossed dipole trap for
storing the atoms independently of the internal states. By changing the beam param-
eters, this enables the elongation of the atomic sample in order to increase the optical
coupling along this dimension. Details on the cold atom apparatus will be described in
section 2.2.
Mechanical oscillator. The mechanical oscillator which was used for the experiments
presented in this thesis is a high-stress silicon nitride (Si3N4) square membrane from
Norcada. The membrane is a thin film with a thickness of d = 50 nm, an area of
1.5 mm × 1.5 mm, whose fundamental mode has a large mechanical Q-factor of Q ≈
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1× 107 at low temperatures. High-stress Si3N4 membranes combine a very low optical
absorption (Im(n) . 2× 10−5 at 780 nm [82]) with exceptionally high Q-factors which
are among the largest in optomechanical devices [64, 73, 74, 83]. The Q-factor is so large
due to the high stress of the membrane [73, 83], which minimizes the bending losses at
the supporting frame. Regarding item (ii), Si3N4 membranes are also suitable for hybrid
experiments with atoms, because their low fundamental mode frequencies of fm ≈
300 kHz can be matched with external atomic trapping frequencies ωa and Zeeman-
splittings of the internal hyperfine states. A purely technical advantage of the low
frequencies are the relaxed requirements on detection and processing of the measured
signals from the oscillator.
As considered in item (ii), we use a customized 3He/4He dilution refrigerator from
Oxford Instruments with a minimum base temperature of 30 mK in order to achieve
the best cryogenic cooling of the mechanical oscillator. Dilution refrigerators have the
advantage of large cooling powers at low temperatures, which is prevents heating of the
cryogenic chamber due to the optical coupling beam of the hybrid system. Our cryostat
has a cooling power of 560 µW at 100 mK. The cryogenic chamber is also UHV compati-
ble in order to allow for coupling ultra-cold atoms directly to the mechanical oscillator in
possible future experiments. Technical details on the cryogenic optomechanical system
will be discussed in section 2.3. In order to minimize mechanical vibrations (technical
noise), external pumps were placed in a neighboring room. Details on the laboratory
infrastructure will be presented in section 2.1.
Optical interface. A beneficial way of interfacing micromechanical membranes is the
so called membrane− in− the−middle (MiM) configuration [65, 84], where the mem-
brane is embedded in a Fabry-Pérot cavity. A MiM configuration enables a large op-
tomechanical coupling, even though the reflectivity of Si3N4 membranes is typically
rather low. A large on-resonance reflectivity of the cavity, as considered in item (iii),
can be achieved by an asymmetric cavity with different mirror reflectivities. In order
to minimize the mentioned light losses, the asymmetric cavity of our MiM device is a
planar-concave fiber cavity [66], which enables perfect in-coupling mode match from
the planar side [67]. As already mentioned in chapter 1, the fiber-based MiM device has
also the huge advantage of being suitable for cryogenic operation (the thin fibers can be
guided through tiny holes into the fully shielded cryogenic chamber). Since asymmetric
fiber cavities require sub-micron alignment precision of the fibers with respect to each
other [67], the cryogenic operation is problematic due to the thermal expansion of the
used materials. Therefore, our fiber MiM device has piezo-driven alignment stages with
five degrees of freedom for each fiber. The cryogenic MiM device as well as an alignment
procedure at cryogenic temperatures is presented in section 2.3.
In our first hybrid coupling experiments, we couple the mechanical oscillator to the
motion of the atoms in an optical lattice. Regarding the considerations in item (iii),
the coupling lattice beam was optimized for the specific demands of the hybrid system.
The atomic trapping frequency ωa in the lattice has to match the oscillator frequency
ωm ≈ 300 kHz. In order to achieve such a large ωa with small laser powers on the
order of Plat ≈ 1 mW (to prevent heating of the cryogenic MiM device), we employ a
lattice beam which is very near-detuned (between 50 Mhz and 5000 Mhz) with respect
to the atomic transition. Furthermore, the lattice beam waist at the position of the
atoms has a small waist of wlat = 78 µm, which allows for large intensities and large
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trapping frequencies at a small laser power. The setup of the coupling laser system, as
well as lattice alignment methods and characterization measurements will be presented
in section 2.4.

2.1 Laboratory infrastructure

The complexity of the hybrid experiment requires special arrangements for the different
parts of the setup. Important parameters are spacial distances, temperature stability,
air purity, mechanical vibrations and scientific convenience.
The laboratory is is divided into three rooms. The upper room contains the experimen-
tal control and the laser systems. This allows researchers the direct access to all parts
of the experiments that need constant maintenance (lasers, phase locks, the cryostat,
electrical drivers, experimental control, data acquisition etc.) without disturbing the
experiments in the lower room, where the hybrid system is located. A third, separated
room houses all noisy equipment like pumps for the cryostat or the water cooling of the
cold atom apparatus. All pumps are mounted on rubber feet and soft bellows are used
along all tube connections in order to reduce transmission of vibrations to the cryostat.

upper floor

lower floor

cryostat 

 separate foundation

 gas handling
    system

 mixture
 dump

 roots pump

 1-K-pot pump

 nitrogen
cold trap

separated room for noisy equipment

cryostat
chamber 

cold atom
 set-up 

1 m

 still pumping line

                 

  vibration isolation
 for pumps

 load lock chamber

 soft bellows

cooling laser
module

air damping
legs   

dipole trap module Ti:sapphire laser system

  He pump
3

Figure 2.1: Sketch of the laboratory infrastructure. Overview of the laboratory with the
experimental setup designed to realize an atomic-mechanical hybrid quantum system. The UHV
dilution cryostat with the all-fiber MiM cavity inside (section 2.3), the cold atom apparatus
(section 2.2) and the homodyne detection (section 3.3) are placed on an optical table in the
lower floor, which stands on a separate foundation. The coupling and homodyne detection laser
system (section 2.4), as well as the feedback cooling laser system (section 4.3) are assembled on
a second optical table that is located in the upper floor, together with the experimental control
and data acquisition. All mechanical pumps used to run the cryostat and the magnetic traps of
the cold atom apparatus, as well as the gas handling system, the 3He/4He-mixture dump and
the nitrogen cold trap of the cryostat are kept in a separate side room. Further details on the
experimental setup were published in [85], where this figure was taken from.
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The separation of the experiment into two rooms requires a well-conceived organisation
of electrical and optical connections between these rooms. A large cable loom with patch
fields in both rooms enables quick installations and changes of electrical connections,
without the need of installing new cables trough the ceiling. Since the laser systems
are located in the upper room, all laser beams are guided into the lower room by
optical fibers which are shorter than 10m (high power transmission of P ≈ 10 W is
possible). Both rooms have the same climate control which is regulated by an external
temperature sensor, placed in the upper room.
In order to minimize the distance between the cryostat and the the cold atom apparatus,
both systems were placed on the same optical table in the lower floor to minimize the
optical phase noise in the coupling laser beam. A small phase noise is also beneficial
for the homodyne detection of the mechanical oscillator, which is why the detector was
also placed on the same table. This table is supported by air damping legs and for
even better vibration isolation the table rests on a separate foundation. Above the area
with the optical components, a temperature controlled flow box is installed. A hole in
the ceiling provides access to the upper room from where the cryostat is supplied with
liquid nitrogen and liquid helium.

2.2 The cold atom apparatus

The 87Rb BEC machine was planned and set up by A. Bick and C. Staarmann and a
detailed description can be found in their PhD theses [86, 87]. This sections outlines
the key features of the machine.

266.7

157.0

Figure 2.2: Sketch of the laser system for cooling and detection of 87Rb. The laser
system consists of two master lasers (DL Pro from Toptica), one cooling laser and a repumping
laser. Both are locked by doppler free absorption spectroscopy to crossover transitions (dashed
lines on the right). The cooling laser M1 seeds a tapered amplifier (TA), whose output beam
is split for the detection, optical pumping and pushing light (DUP), and for the 3D MOT
(Cluster Input 1) and 2D MOT. The 3D MOT can be switched on and off with a fast EOM. The
repumping laser M2 is split and overlapped with the 2D MOT cooling beam and also coupled
into a separate fiber for the 3D MOT (Cluster Input 2). The DUP fiber is depicted exemplary,
even though in the experiment the three DUP beams are coupled into three individual fibers.
Figure adapted from [86].



The cold atom apparatus 11

Figure 2.3: Drawing of the experimental apparatus to produce a 87Rb BEC. (a)
Top view showing upper breadboard and 2D-MOT setup. Shown are the beam paths for the
2D-MOT (yellow) and the 3D-MOT (red). The 2D-MOT beam is split using a polarizing beam
splitter and expanded employing a cylindrical telescope to form elliptic beams as required for
the 2D-MOT. (b) Side view showing upper and lower glass cell and the magnetic trap (green
housing) in the magnetic field compensation coil cube. Two 3D-MOT telescopes are located
on the upper breadboard. The corresponding beams (red) are reflected through elliptical holes
in the breadboard onto the lower glass cell. Both beams are rotated by 8◦ with respect to
the 45◦ axes which is reserved for a retro-reflected 2D lattice (not shown here). The pushing
beam (orange) passes vertically through the differential pumping tube in the center of the
vacuum chamber and transfers the atoms from the 2D-MOT into the 3D-MOT. Also shown
is the detection beam (green). (c) Top view on the lower (3D MOT) breadboard showing the
counter-propagating 3D MOT beams (yellow), the two perpendicular dipole trap beams D1 and
D2 (red), the detection beam (green) and the coupling beam (blue). The glass cell is located
in the center, where all beams cross each other. The D1 telescope is mounted on a translation
stage in order to adjust the focus with respect to the atoms. Figure adapted from [86] and [87].
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Rubidium is an ideal candidate for a reliable source of ultra-cold atoms, since it can
be efficiently laser-cooled and the atomic transitions can be driven with standard com-
mercial laser technology. The D2 line |52S1/2, F

′ = 2〉 → |52P3/2, F
′ = 3〉 serves as

the cooling transition. Since this transition does not form a closed cycle, an additional
repumping laser is used. The laser system is shown in Figure 2.2.
2D/3D MOT setup. The laser light is prepared in the upper part of the laboratory
and propagates via optical fibers to the BEC system in the lower room, which is placed
next to the cryostat on the same optical table. The setup is based on a scheme with
two separated glass cells, as depicted in Figure 2.3. In the upper cell a two-dimensional
magneto-optical trap (2D-MOT) catches atoms from a background gas and in the lower
cell a 3D-MOT operates at pressures below 1×10−11 mbar. These two different vacuum
glass cells are connected via a differential pumping stage, allowing for pressures that
can differ by a factor of 103. The atoms are transferred from the upper to the lower
glass cell by gravity or a near-resonant pushing beam. The advantage of this two-cell
setup is the extremely good optical access to the lower 3D-MOT glass cell, which allows
for different manipulation, coupling and detection schemes of the cold atoms.
Sequence for a BEC in the magnetic trap. A typical experimental sequence is
depicted in Figure 2.4. We start by loading the 3D MOT for less than 10 s resulting in
atom numbers of NMOT ≈ 1 × 1010 at temperatures of T ≈ TD, where TD = 146 µK
is the Doppler temperature of 87Rb. Subsequently, the atoms can be further cooled
in an optical molasses reducing the temperature to Tmol ≈ 10 µK, which is multiple
times larger than the 87Rb recoil temperature of Trec ≈ 362 nK. In order to generate
a BEC, we load our atoms in a magnetic trap (a hybrid cloverleaf 4D trap) and use
forced evaporation cooling for less than 20 s. This magnetic trap loading is optimized
by an optical pumping pulse in the molasses phase, which transfers the atoms into mF
states that can be captured by the magnetic trap. The BECs have a particle number
of NBEC ≈ 2× 106 without any discernible amount of thermal atoms.
Crossed dipole trap setup. For experiments aiming at coupling internal atomic de-
grees of freedom to the mechanical oscillator, it is necessary to trap the atoms in a
potential that is independent of the particular internal state to avoid fast dephasing

t

Pushing Beam

2D & 3D
MOT

Molasses Evaporation TOFMagnetic Trap
isotropic compressed

Opt. Pumping

8s
0.4s

Detection

10ms
1.5ms 36ms 1.5s 15s 15ms

Figure 2.4: Experimental sequence for creating a 87Rb BEC in the magnetic trap.
The 3D MOT is loaded by a resonant pushing beam which transfers the atoms through the
differential pumping stage (see Figure 2.3). After the molasses phase for Sub-Doppler cooling,
the atoms are loaded into the isotropic magnetic trap which is subsequently compressed. This
transfer is enhanced by an optical pumping pulse. The atoms are condensed into a BEC via
radiofrequency evaporation and then released from the trap. Following a time-of-flight (TOF)
phase, an absorption image is taken. The sequence takes less than 30 s. Figure taken from [87].
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Figure 2.5: Experimental sequence for creating a 87Rb BEC in the dipole trap.
Initially, cold atoms are radio frequency evaporated in the magnetic trap (MT), depicted by
the blue shaded area (see Figure 2.4). The final frequency of 910 kHz is slightly larger than the
typical value for creating a BEC in the MT (typically 850 kHz). Shortly before switching off
the gradient coils (GC) of the MT, the dipole trap (DT) beams D1 and D2 are ramped up to
a power of PD1 = 180 mW, PD2 = 1 W. After the MT and the radio frequency are switched off,
the power of the DT beams is ramped down exponentially, which causes a final evaporation in
the DT. After the evaporation, the BEC can be held in the DT with a lifetime of τ1/e ≈ 10 s.
After switching off the DT via the AOMs, the BEC is in freefall (time-of-flight) and can be
detected via absorption imaging. This sequence was optimized for maximum particle number
and optimal particle number stability in the DT BEC. Figure adapted from [87].

and to be able to trap all atomic hyperfine states. This is guaranteed by using a far
detuned optical dipole potential. A dipole trap is also helpful for pure BEC experi-
ments and characterization measurements like the calibration of the coupling lattice
presented in section 2.4.2. For these purposes, our setup is equipped with a crossed
optical dipole trap derived from a Nd:YAG laser operated at 1064 nm with circular
beam waists of wD1 = 52 µm and wD2 = 242 µm. The maximum available optical power
at the experiment is 8 W per beam. A detailed description of the dipole trap setup and
characterization measurements can be found in the PhD thesis of C. Staarmann [87].
Sequence for a BEC in the dipole trap. The experimental sequence for creating a
BEC in the dipole trap starts with a normal BEC sequence in the magnetic trap (see
Figure 2.4). During the evaporation phase in the magnetic trap, the BEC is loaded into
the dipole trap, followed by a final evaporation phase where the atoms are trapped only
by the dipole trap. Figure 2.5 shows the experimental sequence for creating a BEC in
the dipole trap, which was optimized in terms of absolute value and stability of the
particle number. The BECs have a particle number of NBEC,DT ≈ 4× 105 without any
discernible amount of thermal atoms.
Dipole trap frequencies. The BEC inside this dipole trap has an elongated cigar
like shape and radial trapping frequencies (ωy, ωz) = 2π × (144, 105)Hz, where gravity
points along the z-direction (for PD1 = 100 mW, PD2 = 1 W). The beam with the
larger waist wD2 can be used to tune ωx between 2π × (1 . . . 20)Hz (ωx ≈ 12 Hz for
PD1 = 90 mW, PD2 = 1 W). In this way, we can vary the elongation of the atomic cloud
along the x-direction of the coupling beam in hybrid experiments. A BEC held in the
crossed dipole trap has a lifetime of τ1/e ≈ 10 s.
Absorption imaging. In order to detect the properties of the cold atoms samples,
a flexible absorption imaging system is used, which allows for different magnifications
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ranging from 0.5 to 10 (telescope NA = 0.15, resolution ≈ 3 µm, focal length f =
137 mm, [86]). The detection beam used for imaging points in a direction perpendicular
to the coupling beam, as depicted in Figure 2.3.

2.3 The cryogenic optomechanical device

The cryogenic membrane-in-the-middle (MiM) device is the central component of the
optomechanical part of our experiment. The MiM cavity is an asymmetric fiber cavity
with different reflectivities of the dielectric coatings at the fiber ends, respectively. Both
fibers can be adjusted with five degrees of freedom for the alignment of the MiM system
under cryogenic conditions. This is necessary, since asymmetric fiber cavities require
an xy-alignment precision better than 200 nm [67] (see subsection 2.3.2), which can not
be assured if the MiM structure is cooled down from room temperature. Furthermore,
the full alignment control allows for exchanging the mechanical oscillator in the cavity,
even without breaking the vacuum and also under cryogenic conditions.
This section deals with the design and the alignment of the MiM setup. Firstly, the
structure of the MiM setup will be presented in subsection 2.3.1. Afterwards, subsection
2.3.2 gives a brief overview on the production and the properties of the asymmetric
fiber cavities. Finally, the installation of the fiber cavity into the MiM structure and
the alignment of the fiber cavity in the MiM configuration using a special white-light
method will be presented in subsection 2.3.3.
The following people contributed to the experimental realization of the MiM setup:
the fiber cavity was built by the author together with A. Bick, C. Staarmann and O.

Figure 2.6: Section view of the MiM cav-
ity setup. The inset on the left side of the figure
is a sketch of the fiber cavity in the center of the
MiM structure. The cavity housing encloses two
identical piezo-driven positioning stages with a
z-, xy-, and θφ -stepper motor, which provide
five degrees of freedom for each fiber. The mem-
brane holder (see Figure 2.7) is located between
them. Both fibers are glued into a piezo tube
to fine-adjust their z-positions and to scan the
cavity length L as well as the fiber-membrane
spacings L1 and L1 (see inset). Details on the
alignment can be found in subsection 2.3.3. The
MiM cavity temperature TMiM is measured with
a ROX sensor as well as with a Cernox sen-
sor. Both are attached next to each other to
the cavity housing. A detailed description of the
MiM setup and its implementation in the cryo-
stat was published in [85], where this figure was
taken from.
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Figure 2.7: Membrane holder in the
MiM device. The cavity housing of
the MiM device (see Figure 2.6) has
a slide-in slot (a) for an exchangeable
shuttle (b) which carries the membrane.
The experiments presented in this the-
sis were performed with is a high-stress
Si3N4 square membrane from Norcada
(1.5 mm × 1.5 mm × 50 nm, ωm(0, 0) =
2π × 264 kHz, Q ≈ 1 × 107 at TMiM =
500 mK). The membrane was glued to
the shuttle with with Torr Seal epoxy.
Electrical spring contacts allow for driv-
ing a dither piezo element underneath the
shuttle. The shuttle can be inserted from
outside the cryostat using a wobble stick.
Details can be found in [85], where this
figure was taken from.

Hellmig. The MiM structure was built by G. Fläschner and H. Zhong, who installed it
into the cryostat together with the author. The interferometric white-light method for
the alignment of the fiber cavity was developed and performed by the author.

2.3.1 MiM setup

Our all-fiber MiM cavity device (see Figure 2.6) is directly connected to the 3He/4He
mixing chamber of the dilution refrigerator. It is made of gold-plated copper and has
an outer diameter of 70 mm and a height of 135 mm. The two cavity fibers enter the
UHV system via Swagelock fiber feedthroughs on the bottom of the UHV-cryostat
chamber. They are guided through tiny holes in the cryogenic radiation shields to the
MiM device. Further details on the cryogenic implementation of the MiM structure and
all parts of the MiM device can be found in [85].
In the center of the MiM device, the two cavity fibers are glued into zirconia ferrules
(see Figure 2.6). Each ferrule is glued into the free end of a piezo tube, which is used
for fine-adjustments of the cavity length L in z-direction (tune the cavity resonance or
fast scanning). This also changes the respective fiber-membrane spacing L1 or L2 (see
inset of Figure 2.6). L1 and L2 can be scanned with the piezo tubes over approximately
one free spectral range (FSR) ∆L ≈ 1 FSR ≈ 500 nm using high voltage. Basically
all the rest of the MiM structure is used for the alignment of the fiber cavity with
five degrees of freedom (x,y,z,θ and φ), which is described in subsection 2.3.3. For this
purpose, piezo-driven slip-stick stepper motors [88] are used, which a translational and
angular accuracy better than 1 nm and better than 0.1◦, respectively. More details on
the construction of the slip-stick positioning stages (design, electrical control, step size,
calibration, etc.) was published in [89].
The MiM device is structured as follows: the supporting structure is the cavity housing,
which is a copper tube (tube axis in z-direction) that can be mounted directly on
the thermal link to the 3He/4He mixing chamber. The cavity housing has rectangular
windows, in order to observe the fiber cavity using microscope cameras from outside



16 The hybrid experiment

of the cryostat (for this, the radiation shields can be rotated [85]). Inside the cavity
housing, the two xy-stages for the two fibers are located. They enable a transversal
(xy) movement of the fibers in the cavity housing using slip-stick stepper piezos. Inside
each xy-stage, a z-stage is installed, which allows for a z-movement of each fiber on
the order of several millimeters. Each z-stage contains a rotatable θφ -stage, based on a
sapphire ball which is surrounded by piezos [89]. A slide-in slot in the center of the MiM
structure allows for inserting a shuttle with a membrane oscillator, as shown in Figure
2.7. This can be done from outside of the cryostat using a wobble stick to transfer the
shuttle from a separated load lock chamber to the shuttle slot in the MiM device [85].
In this way, different oscillators can be installed into the MiM device without breaking
the vacuum and under cryogenic conditions. It should be noted that after inserting
a membrane shuttle, the membrane position is fixed. Further alignment of the MiM
cavity is done by moving the fibers with respect to the membrane. The membrane
shuttle also has a piezo element attached to it. This can be used for resonant driving
of the membrane or as a mechanical actuator for feedback cooling (see chapter 4).

2.3.2 Asymmetric fiber cavities

This subsection outlines the principles and the production of the asymmetric fiber
cavities used in our experiment. We produce our cavities in-house using CO2-laser
ablation. Further details on the topic can be found in the Master’s theses of the author
[90] and J. Petermann [91], as well as in the PhD theses of A. Bick [86] and C. Staarmann
[87]. These results were also published in [67].
The use of fiber cavities [66] for our cavity optomechanical system has several advan-
tages: bending of the glass fibers allows flexible modifications of the MiM system or its
surrounding cryogenic setup, without the need of adapting the optical coupling into the
cryostat. Furthermore, no additional mode matching optics are needed in front of the
cavity. The use of optical fibers also allows for perfect shielding the MiM setup with
cryogenic radiation shields, without special coated windows in the shields to couple light
into the cryostat. Fiber cavities have very small mode volume, which enables large op-
tomechanical coupling to small mechanical devices like trampoline oscillators [73, 74],
cantilevers or nano beams [7]. They are also typically very short (L < 1 mm), which
results in a very large optomechanical coupling strength gm = ∂ωcav/∂xm ∼ 1/Lcav.
This can be useful for reaching the so called strong optomechanical coupling regime in
certain applications (for example a single atom in a cavity [66]).
Ideal fiber cavities. In order to enable a bi-directional light coupling in a hybrid
quantum system, the cavity needs to be single-sided, which means that it has a finite
reflectivity on resonance. This can be achieved by an asymmetric cavity with different
reflectivities R1 and R2 of the two cavity mirrors. The combination of R1 and R2 can
also be used to optimize the finesse F of the cavity for the specific application. To
reduce light losses, the coupling efficiency into the cavity should be optimal, which
requires a perfect mode match β between the optical mode in the fiber and the cavity
mode on the incoupling mirror. This can be realized by using a planar-concave cavity,
which has a planar mirror on the incoupling fiber.
Fiber cavities in practice. The practical realization of asymmetric fiber cavities is
more complex than the simple considerations mentioned above may suggest. This is
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because the fibers act as a mode filter for the reflected and transmitted light from
the cavity. For this reason, the relative power σref that gets reflected back into the
incoupling fiber depends strongly and in a non-trivial manner on the mode match β

[67]. Therefore, the concave cavity mirror needs to have an optimal radius of curvature
around 50 µm and the fiber cavity needs to be aligned very precisely.
Production of fiber cavities. In order to meet the highly demanding requirements
on the fiber cavity geometry, we produce our fiber cavities in-house using CO2-laser
ablation and an interferometric surface analysis of the machined concave fiber tips. The
dielectric mirror coatings of the fibers were deposited with an in-house coating machine.

Ideal fiber cavities (β = 1)

The two most important properties of the fiber cavities for our experiment are the
(relative) reflected power on resonance σref ∈ [0, 1] and the finesse F . The finesse
is defined by the total losses of the cavity: F = 2π/Ltot. If the only relevant loss
mechanism is the light leakage through the cavity mirrors, the finesse only depends on
the mirror (power) reflectivities R1 and R2:

F = π(R1R2) 1
4

1−
√
R1R2

. (2.1)

It is useful to introduce the (field) reflectivity on resonance ρ̄ with ρ̄2 = ρ [86]:

ρ̄ =
√
R1 −

√
R2

1−
√
R1R2

, ρ̄ ∈ [−1, 1] . (2.2)

If both mirrors have the same reflectivity, all light gets transmitted through the cavity
and ρ̄ is zero. If the cavity is asymmetric (R1 6= R2), some of the light gets reflected
by the resonant cavity. The fact that ρ̄ is not symmetric in R1 and R2 gets important

Figure 2.8: Combinations of cavity mirror reflectivities. Left panel: the plot shows
lines of constant (power) reflectivity on resonance ρ (red) and constant finesse F (blue) in the
parameter space spanned by R1 and R2. Right panel: zoom into the plot in the left panel into
the high finesse region of large reflectivities.
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for an imperfect mode match β 6= 1, which will be discussed in the following paragraph
on practical realizations. However, for an ideal fiber mode match β = 1, the reflected
power σref (measured at the open end of the incoupling fiber) is equal to the reflected
power ρ from the cavity.
By choosing a combination of R1 and R2, the cavity parameters ρ and F can be
optimized for a specific application. For the hybrid experiment, a large reflectivity on
resonance is beneficial. However, if ρ ≈ 1, no light is transmitted through the cavity.
Since the transmitted light is useful for many practical tasks (monitoring of cavity
signals, etc.), the optimal ρ is around 0.85. The cavity reflection signal with a visible dip
(for ρ < 1) is also useful for the alignment of the fiber cavity (see section 2.3.3). A large
finesse is beneficial for the detection noise floor of the homodyning (see section 3.3) and
for the cooperativity Chybrid of the hybrid system. However, if the finesse is too large, the
intra-cavity power gets so large that thermal heating becomes the dominant decoherence
mechanism [31]. Hence, the reflectivities R1 and R2 of the fiber cavity must be carefully
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Figure 2.9: Mode match in planar-concave fiber cavities. (a) Sketch of a planar-concave
fiber cavity (length L) with optimal mode match (β = 1, w0 = wf ) on the planar side. The
radius of curvature (ROC) of the cavity mirrors is denoted by r1 and r2. The waists wf , w0
and w2 correspond to the fiber mode and the cavity mode on the mirrors, respectively. (b)
Cavity waist on the planar mirror w0 as a function of the cavity length L in units of r2 for three
different values of r2 and λ = 780 nm (see equation 2.3). The waist w0 has a broad maximum
at a cavity length of L = 0.5 r2. For an optimal ROC r2,MM (r2 = 69.5 µm in this case), this
maximum corresponds to the fiber waist wf (indicated by the dashed line). For r2 < r2,MM,
perfect mode match is impossible. For r2 > r2,MM, mode match is only possible at the two
intersection points of w0 and the dashed line. Note that the mode match on the curved side
is always smaller than one, because even if w2 = wf , the wave front curvature of the modes
can not be matched [67]. (c) Optimal ROC r2,MM as a function of the fiber waist wf . The two
dashed lines correspond to two different fibers that were used for the production of fiber cavities
(HP780 from Thorlabs with measured wf = 2.618(28) µm and the Cu800 copper coated fiber
with wf = 2.938(17) µm [91]). Figure (b,c) taken from [91].
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balanced for an optimal performance and feasibility of the specific experiment. In order
to visualize the dependency of ρ and F on the reflectivities, equations 2.1 and 2.2 were
solved for R1, as shown in Figure 2.8. This allows for plotting a specific ρ or F as a line
in the parameter space spanned by R1 and R2. The combination of R1 and R2 for a
given set of ρ and F can be read off at the intersection point of the two corresponding
lines.
By choosing a planar-concave cavity geometry, at least the planar fiber can have a
perfect mode match β with the cavity mode, as depicted in Figure 2.9 (a). In the
experiment, the most critical beams can be coupled in from the mode matched planar
side. Optimal mode match β = 1 is achieved if the cavity waist w0 on the planar side
is equal to the fiber mode waist wf . In a planar-concave cavity the radius of curvature
(ROC) of the planar mirror is r1 = ∞ and the cavity waist w0 only depends on the
ROC on the curved side and the cavity length L [92]:

w0(r2, L) =
√
r2λ

π

(
L

r2

(
1− L

r2

)) 1
4
. (2.3)

This function has a broad maximum at L = 0.5 r2, as shown in Figure 2.9 (b). One
can speak of stable mode match if (A) the cavity mode waist w0 on the planar side can
be matched with the fiber mode wf and (B) this mode match does not depend on the
cavity length L in a critical manner. This is only possible with the optimal ROC r2,MM
of the curved mirror, which depends on the specific fiber mode waist wf . Solving the
equation w0(r2, L = 0.5 r2) = wf for r2 yields the optimal ROC r2,MM = w2

f · 2π/λ.
The dependency of r2,MM on the fiber waist wf is shown in Figures 2.9 (b).

Fiber cavities in practice

In the previous paragraph, the reflectivity on resonance ρ was introduced as a key
parameter for an asymmetric fiber cavity. However, for an imperfect mode match β < 1
the reflected intra-cavity power ρ can vary drastically from the observed reflected power
σref at the open end of the incoupling fiber. This effect is not only governed by light
losses but also by a parasitic interference effect, which can fully cancel out the reflected
power σref . In practice, many technical reasons lead to an imperfect mode match. For
example, our laser machining technique (see end of this subsection) creates Gaussian
mirror profiles instead of perfectly spherical mirrors. Hence, the cavity modes differ
from the ideal case of spherical mirrors, which changes the mode match in a complex
manner. The above considerations about ideal fiber cavities also neglect the critical
dependency of the mode match on the alignment of the fiber cavity. This paragraph
gives a brief overview on the role of mode match in asymmetric fiber cavities and
its great importance for their performance. A comprehensive study of the topic was
published in [67] and [93].
In order to understand the critical role of mode match in asymmetric fiber cavities,
one needs to calculate the propagation of an input field ψin, which is coupled into the
open end of one fiber from the fiber cavity. The normalized input field ψin can be
decomposed into a part ψm that is mode matched with the cavity ground mode and
into a non-mode-matched part ψn [67]:
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ψin = β̄nψn + β̄mψm , (2.4)

using β = |β̄m|2 = 1 − |β̄n|2. When the input field approaches the cavity, the mode
matched part ψm enters the cavity and gets reflected with the on-resonance field re-
flectivity ρ̄. The reflected light interferes with the non-mode-matched part ψn that is
reflected directly by the incoupling cavity mirror with the off-resonance reflectivity
ρ̄off ≈ 1. This is a good assumption for a sufficiently high finesse [67]. The reflected
field is therefore:

ψref = β̄nψn + ρ̄β̄mψm . (2.5)

The interference of these two reflected fields is depicted in Figure 2.10 (a). The crucial
point which leads to the non-trivial behavior of asymmetric fibers cavities is directly
related to the field ψref . It arises from the fact that ψref needs to be mode matched
with the fiber mode. Yet, for β 6= 1 the reflected field ψref can have a circular shape far
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Figure 2.10: Interference effects in asymmetric fiber cavities. (a) The gray area indi-
cates the virtual zone between the end of the fiber and the coating. The input field ψin is split
into a mode-matched part ψm and a non-modematched part ψn. While the first enters the cavity
and is subsequently reflected with the field reflectivity on resonance ρ̄, the latter is non-resonant
and gets directly reflected. These two fields interfere. The field transmitted through the cavity
ψ′m has to be matched with the mode of the outcoupling fiber ψout. (b) Reflected relative power
σref as a function of the mode match β for three different values of the reflectivity on resonance
ρ, when coupling into the cavity from the lower reflecting side (see equation 2.6). For ρ > 0,
the power σref has a zero crossing for some specific mode match β < 1. (c) The same as (b)
but for coupling into the higher reflecting side of the cavity. Figures taken from [67].
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from Gaussian and a minimum in the region of the fiber core [67]. In this case, no light
is coupled back into the incoupling fiber and the measured reflectivity on resonance
σref at the end of this fiber is zero, even though the reflectivity ρ of the cavity mirrors
might be non-zero. For ρ ≈ 0.8 this happens for a mode match β ≈ 0.5, which can easily
happen for imperfect cavity mirrors, the wrong cavity length of slight misalignment of
the fiber cavity. The dependency of σref on the mode match is shown in Figure 2.10
(b,c). The critical behavior of σref only occurs if the light is coupled in from the lower
reflecting side of the cavity. If the light is coupled into the higher reflecting side, σref
gets larger for decreasing β. However, also in this case the light has interacted less with
the cavity than for β = 1. In most applications this is also not desirable.
The dependency of σref can be directly calculated from the expressions ψref and ψin:

σref =
∫
ψrefψ

∗
in dA = |1− β + ρ̄β|2 . (2.6)

Since ρ̄ can have a positive or negative sign depending on the incoupling side of the
asymmetric cavity, σref behaves differently for coupling into the higher or lower reflect-
ing side.
Figure 2.10 shows the dependency of the reflected power σref on the mode match. As
mentioned before, the mode match itself depends on many other parameters like the
cavity length L, the mirror shape or the cavity alignment. Therefore, σref can also be
plotted as a function of these parameters. Figure 2.11 shows the measurable reflected
and transmitted power of the cavity as a function of the cavity length. Only for the
optimal ROC r2,MM the reflected signal σref has a broad maximum. However, the plot
also shows that the transmitted power σtrans is not optimal for this ROC. Details on
this calculation can be found in [67] and [86].
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Figure 2.11: Cavity signals from asymmetric fiber cavities. (a) Reflected power σref as
a function of cavity length L for three different ROC r2 of a planar-concave asymmetric fiber
cavity. Simulation according to equation 2.6, for coupling into the lower reflecting, planar side.
The dashed line indicates a maximum cavity reflectivity on resonance ρ = 0.8. The triangles
indicate the points of perfect mode match β. In the case of stable mode match, these two points
overlap. (b) Transmitted power σtrans as a function of cavity length, calculated in a similar
manner as (a). The dashed line is at the theroretical maximum of σtrans = 0.2 = 1 − ρ. The
simulation assumes a fiber NA = 0.12 and λ = 780 nm. Figures taken from [67].
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Figure 2.12: Alignment sensitivity of asymmetric fiber cavities. (a) Measured trans-
mission and reflection signal from an asymmetric fiber cavity with L = 25 µm as a function
radial (xy) displacement of the fibers. The error bars correspond to the error of the microme-
ter drive calibration. The solid lines are the expected behavior according to equation 2.6. The
transmission data and model have been normalized. (b) Angular dependence of the transmis-
sion and reflection signal. The error bars correspond to the error of the angle determination
using an optical microscope. The solid blue line is a Gaussian fit to the transmission signal.
The transmission data and model have been normalized. The dashed red line is a guide to the
eye. Figures taken from [67].

Using equation 2.6 one can also calculate the dependency of the cavity reflection signal
σref on the radial (xy) misalignment of the cavity fibers (and also in a similar manner the
transmission signal σtrans [67]). The behavior was also measured for an asymmetric fiber
cavity with length L = 25 µm (not the one which was installed into the MiM device).
For this, the cavity length was scanned around the resonance and the scan traces
were acquired using an oscilloscope. In this way, the shape of the resonance (height of
transmission peak σtrans and reflection dip σref) could be analyzed for different radial
offsets of the two fibers using a micrometer screw. As shown in Figure 2.12, the data is
in good agreement with the analytic model. For a radial misalignment of xrad = 200 nm
the reflection signal σref drops already significantly and it goes to zero for xrad = 2 µm.
The same measurement was done for different angular misalignments. We found that
σref is relatively insensitive on the tilt of the fiber axes, while an optimal transmission
through the fiber cavity requires sub-degree alignment precision.
As mentioned before, our fiber processing using CO2-laser ablation produces fiber tips
with Gaussian profiles instead of spherical mirrors. The effect of this imperfect mirror
shape was simulated using the numerical Matlab FFT-code OSCAR1, which can cal-
culate the steady-state circulating fields in Fabry-Pérot cavities. It turns out that the
Gaussian shape leads to higher order modes in the cavity which creates unexpected dips
in the reflection signal σref for certain cavity lengths. Furthermore, the finite size of the
mirrors (the area where the profile can be approximated by a sphere) limits the area of
stable mode match to lengths L < 0.5 r2. For longer cavities the reflection and transmis-
sion signal start to behave very unpredictable. However, the optimal ROC r2,MM can
be achieved with different depth and widths of the Gaussian profile. Hence, these two

1by Jerome Degallaix, v3.14, http://www.mathworks.com/matlabcentral/fileexchange/20607-oscar

http://www.mathworks.com/matlabcentral/fileexchange/20607-oscar
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Figure 2.13: Fiber cavity signals for Gaussian mirror profiles. (a) Different Gaussian
mirror profiles with ROC r2 = 51 µm, which are in the typical range of the used fiber profiles.
(b) Simulations of planar-concave fiber cavities: reflectivity on resonance σref as a function of
cavity length L for the different profiles in (a) according to equation 2.6 using the numerical
FFT-code OSCAR to calculate the intra-cavity field and the mode match. The maximum
reflection is σref = 0.8. (c) Transmitted power on resonance σtrans. Figures taken from [87].

parameters can be optimized for a stable mode match around the wanted cavity length.
Figure 2.13 shows that deeper and wider Gaussian profiles behave very predictable for
L < 0.5 r2, but reflection and transmission quickly break down for L > 0.5 r2. Shallower
and smaller Gaussian profiles can be used for cavities that must be longer than 0.5 r2
at the cost of unwanted dips of the cavity signals for L ≈ 0.5 r2.

Production of fiber cavities

In order to produce concave mirror structures on glass fiber tips, we employ CO2-laser
ablation as first described in [66] and [94]. For this, a single laser pulse with duration
τ ≈ 5 − 10 ms, a power of P ≈ 0.5 W and a wavelength of λ = 10.6 µm is focused
on the fiber surface using a parabolic mirror. The beam with a typical spot radius of
w = 50 µm evaporates material from the surface which results in a concave Gaussian
profile on the fiber tip. A thin melt layer on the surface of the structure results in an
ultra-low roughness glass surface which can later be deposited with a dielectric mirror
coating. After a pulse was fired on the fiber, a flip mirror enables the direct 3D analysis
of the resulting structure using a home-built interferometric profilometer. The fiber
cavity for the MiM device was deposited with an in-house coating machine. Further
details on the fiber processing setup can be found in the Master’s thesis of the author
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Figure 2.14: CO2-laser setup for the production of fiber cavities. (a) A CO2-laser
(Pmax = 28 W, λ = 10.6 µm, w0 = 1.8 mm) is focused onto a fiber on a translation stage us-
ing a parabolic gold mirror (RFL = 25.4 mm). The optimal focusing of the mirror (minimal
aberrations) as well as the positioning of the fiber in the CO2-laser focus is achieved by super-
imposing the CO2-laser beam with an alignment beam from a red laser diode, which is coupled
into the fiber. If the parabolic mirror collimates this alignment beam without aberrations (we
use a removable flip mirror to observe the beam on a screen at a distance > 5 m), the two
beams can be superimposed using two iris apertures. Another flip mirror enables the direct
interferometric analysis of the fiber surface using an imaging system (magnification M ≈ 20,
resolution ≈ 2 µm) with an integrated Michelson interferometer setup. The light source is a
resonant cavity LED (PR65-F1P0T from Optowell, λ = 650 nm, coherence length lc = 27 µm
[86]) and the image is taken with a CCD camera. An important feature is the use of similar
lenses in the two arms (aspheric lenses with f = 25 mm). A new version of the setup, which
uses a ZnSe lens for focusing and a better CO2-laser was described in [91]. Figure taken from
[87]. (b) CCD image of a processed fiber. If the reference arm is blocked (top) a normal image
of the fiber can be acquired. If the reference arm is unblocked (bottom) an interference image
occurs. The circular fringes in the center correspond to a typical concave profile used for fiber
cavities (depth < 1 µm, ROC ≈ 50 µm) that was created by a laser pulse.

[90] and the PhD theses of A. Bick [86] and C. Staarmann [87]. The fiber cavity in the
MiM device was produced with this setup. A new version of the setup was presented in
the Master’s thesis of J. Petermann [91], which uses a CO2-laser with better stability
and controlability. Furthermore, the new setup uses a ZnSe lens for focusing, instead
of the parabolic mirror in the old setup.
Figure 2.14 shows a sketch of the CO2-laser setup and the interferometric profilometer
that was used for the production of the fiber cavity in the MiM device. Also shown is
a typical interferometric image that can be acquired directly after the laser machining.
By blocking the reference arm of the interferometer, a normal image can be acquired
without interference. This additional reference image is used to remove the background
of the interferometric image, which improves the fringe visiblity. We employ a method
called phase shifting interferometry [95] for the three-dimensional reconstruction of the
fiber profile. For this, different phase shifted interferometric images with an unknown,
arbitrary phase relation are acquired, which can be done simply by applying mechanical
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stress on the optical table. The images are then processed by a phase shifting algorithm
which reconstructs the phase (the wrapped phase modulo 2π) of the interferometric
images, which is proportional to the height profile of the fiber surface. A detailed
comparison of the performance of different algorithms using images from our setup can
be found in [87].

2.3.3 MiM alignment

The usage of asymmetric planar-concave fiber cavities requires a radial (xy) alignment
precision of 200 nm, sub-degree angle (θφ) alignment and cavity lengths L < 30 µm (see
section 2.3.2). Furthermore, in a MiM system based on a fiber cavity the membrane
must be placed in the very short gap between the fibers. This alignment must be
performed at cryogenic temperatures, since cooling down from room temperature while
keeping the mentioned alignment precision would be technically very challenging. An
additional factor that complicates the alignment is the fact that the silicon frame which
supports the used membrane has a thickness of 200 µm and hides the view from the side
on the lower fiber when it is close to the membrane (see inset of Figure 2.6). Therefore,
we employ a special white-light method (similar to [96]) for measuring the distance
between each fiber and the membrane with light coupled into the fibers. This method
will be explained in the end of this subsection.
In the context of this subsection, the MiM system can be regarded as aligned if the
fiber cavity is completely aligned and the membrane is located between the fibers, per-
pendicular to the fiber axis. This is achieved by a four-stage process including different
techniques, which will be explained in the following. The procedure corresponds to the
alignment of a new fiber cavity with a new membrane that is aligned for the first time.
If an existing MiM system needs to be realigned (for example after a warm-up of the
cryostat), some steps of the following procedure might be obsolete.
After the pre-alignment described in this subsection, the lengths L1 and L2 (see inset of
Figure 2.6) must be fine-adjusted on the order of 10 nm to place the membrane in the
right position of the intra-caviy standing wave. This fine-alignment will be presented
later in section 3.1.

Step 1: Empty fiber cavity alignment

It is very helpful to align the empty fiber cavity first before inserting the membrane.
This simplifies the later alignment of the fiber cavity with membrane in between. The
fiber cavity alignment is done at a cryostat temperature TMiM ≈ 25 K. In this regime,
the cryostat can be operated with open inspection apertures in the cryogenic radiation
shields. This allows for observing the MiM system with microscope cameras from out-
side of the cryostat chamber (see also [85]). The two perpendicular visual axes enable the
coarse alignment of the fiber cavity with respect to the angle (θφ), the xy-displacement
and the z-alignment (L ≈ 15 µm), as shown in Figure 2.15 (a). After this coarse align-
ment using the cameras, the xy fine-alignment on the order of 100 nm is done with
the cavity signals. The three-step procedure to maximize the mode match of the fiber
and the cavity ground mode using the reflection and transmission signals is described
in Figure 2.15 (b). In the final alignment stage, the higher order mode next to the
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Figure 2.15: Alignment of the fiber cavity in the MiM device. (a) Image of the fiber
cavity in the MiM device (see Figure 2.6) taken from outside of the cryostat chamber through
the inspection apertures of the radiation shields using a microscope CCD camera (cryostat
temperature TMiM ≈ 25 K). The image was taken after a coarse alignment of the fibers using
the five axis stepper motors of the MiM device. The cavity length L ≈ 15 µm was adjusted
by using the fiber diameter d = 125 µm as a reference. (b) Fine-alignment using the cavity
reflection signal σref and the transmission signal σtrans of a beam coupled in from the lower
reflecting side. For this, the cavity length is scanned with the piezo tubes (see section 2.3.1)
over a range of ∆L ≈ 500 nm. Firstly, the xy-displacement is changed slightly on the order
of 10 µm until cavity resonances like in panel 1© occur with mode match β ≈ 0.5 such that
σref = 0 (see Figure 2.10). Then, the xy-displacement is changed slightly on the order of 1 µm
to maximize the transmission like in panel 2©. This also optimizes the mode match leading to
σref > 0. Finally, very small xy-steps on the order of 100 nm are performed until the side dip
next to the ground mode vanishes and turns into a peak, as indicated by the arrow in panel 3©.
The aligned cavity has a reflectivity on resonance σref = 0.73 and a finesse F = 60.

ground mode turns from a dip into a peak. This has been found to be the the optimal
xy-alignment of the fibers. The existence of this peak indicates that the off-resonance
reflectivity is slightly smaller than expected (which would be ≈ 1). Further details on
possible origins of such a peak in the reflection signal can be found in [93].

Step 2: Positioning of upper fiber close to membrane

After the empty fiber cavity was aligned in step 1, the fibers need to be fully retracted
again with the z-stepper motors in order to insert the membrane. For this, the mem-
brane shuttle (see Figure 2.7) is picked up from the load lock chamber using the wobble
stick [85]. After the shuttle has been placed in the MiM device, the fibers can be moved
back. Firstly, the upper planar fiber is brought near the membrane using the cam-
eras, as can be seen in Figure 2.16. If the fiber is not centered in the middle of the
membrane, it can be moved horizontally with the xy-stepper motors until the fiber is
perfectly centered on the intersection point of the diagonals of the membrane. In this
way, the optical coupling to the ground mode can be optimized, since its displacement
is largest in the center. After the horizontal translation, an xy-alignment of the fiber
cavity in step 1 is destroyed and needs to be repeated later. After centering the upper
fiber, it can be approached to a distance of L1 ≈ 5 µm using white-light that is coupled
into the upper fiber (as described later). Distortions in the spectrum due to the lower
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Figure 2.16: Fiber alignment around
the membrane. Image taken from outside
the cryostat with a microscope CCD cam-
era. The upper fiber is very close to the
membrane, visible by the small gap between
the fiber and its mirror image on the mem-
brane. The edges of the membrane in the
silicon frame are indicated by red dots and
can be used to define aid lines for centering
the fiber in the middle of the membrane.
The lower fiber is far below the membrane
frame and needs to be further approached
in a subsequent alignment step.

fiber can be avoided by axially misaligning the lower fiber. The distance L1 is chosen
to be shorter than L2, since the waist of the intra-cavity field of the planar-concave
cavity is located at the planar mirror of the upper fiber. Here, reflected light from the
membrane is mode matched with the intra-cavity field.

Step 3: Positioning of lower fiber (creating a MiM system)

After the upper fiber has been positioned, the lower fiber can be approached. This can
be done with the white-light method, by coupling into the lower fiber and measuring
the spectrum of the reflected light. After a distance L2 ≈ 15 µm has been adjusted
(⇒ L1 + L2 ≈ 20 µm), the lower fiber can be moved horizontally until the fibers are
axially aligned. Subsequently, the fine-adjustment of the fiber cavity xy-alignment (see
Figure 2.15) can be repeated.

Step 4: Cooldown of MiM system to base temperature

After the alignment of the MiM system at TMiM ≈ 25 K, the cryogenic radiation shields
can be closed and the cryostat can be cooled down to base temperature. The expected
thermal contraction of the fiber cavity is so small that this can be done safely. After
the cooldown, the xy-alignment of the fiber cavity can be optimized again using the
cavity signals (as in Figure 2.15) and the cavity lengths L1 and L2 can be measured
again using white-light. After this final step the MiM system is aligned. This alignment
has proven to be stable over months as long as TMiM stays below 1 K.

White-light spectroscopy for distance measurements

In order to measure the length L of a Fabry-Pérot cavity, it is sufficient to know two
wavelengths λi that fulfill the resonance condition ni,jλi,j = 2L. Furthermore, they must
be separated by a know index interval ∆n = nj − ni. It follows:

L = ∆n
2

(
λiλj
λi − λj

)
. (2.7)

For example, if the fiber cavity in the MiM system is aligned, the laser can be tuned
from one resonant wavelength λi to the next resonance at λi+1, which can be measured
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Figure 2.17: Resonant wavelengths
in short Fabry-Pérot cavities. Shown
are the resonant wavelengths in a Fabry-
Pérot cavity for different lengths L <
20 µm plotted against their index n ac-
cording to the resonance condition nλ =
2L. For cavities with L ≈ 5 µm the spec-
tral interval between two resonances is
∆λ ≈ 60 nm around 800 nm.
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with a wavemeter. In this way, the cavity length L can be determined. Special care
needs to be taken in the MiM system, since the membrane can significantly alter the
FSR (λi - λi+1) and thus the measured L on the order of 30% (see section 3.1).
However, this method only works if the fiber cavity is already aligned, since the reflec-
tivity of the mirrors is usually designed to be large for the wavelength of the used laser.
Hence, no light can be coupled into the cavity if it is misaligned and not mode matched
with the laser beam. This also means that the method is not suitable for measuring
the distance of a fiber to the membrane, since its reflectivity is very small compared
to the fiber mirrors. Hence, the fringe visibility of the fiber-membrane etalon would
be extremely small. Furthermore, for very short cavities with L < 15 µm the spectral
interval between two resonant wavelengths becomes larger than the usual wavelength
range of a laser. This can be seen in Figure 2.17.
For two reasons, white-light can overcome the limitations mentioned above. Firstly, the
spectral range of a white-light source can be much larger than the wavelength tuning

λ

White-light
source

Spectrometer

Mating
sleeve

Fiber
Splitter

Membrane

Figure 2.18: White-light spectroscopy setup for distance measurements. The light
from a bright broadband LED light source (KL 1500 LED from Schott, λ = 400 − 750 nm,
spectrum in Figure 2.19) is focused by a lens (f = 80 mm) into a fiber coupler at one port of
a fiber splitter. The splitter is connected to one fiber of the MiM device, whose reflecting side
is close to the membrane (L1,2 < 150 µm). The dips in the reflected spectrum correspond to
the resonant wavelengths of the fiber-membrane etalon. This light is free space coupled into a
spectrometer (Qwave NIR from rgb photonics, resolution < 0.5 nm) by focusing it with a fiber
coupler into the spectrometer. If the other fiber of the MiM system is approached from the
other side of the membrane (not shown), also the transmitted light can be analyzed and the
reflected light will contain additional information about the total cavity length L.
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range of a usual laser. It is also not necessary to tune the wavelength like described
above, since all the wavelengths are present at the same time and can be analyzed
simultaneously with a spectrometer. Secondly, the fiber coatings were designed to have
the highest reflectivity around 780 nm. Thus, at wavelengths far away from 780 nm
the reflectivity is much lower and the fiber-membrane etalon has a much larger fringe
visibility.
The principle of our white-light method for measuring the fiber-membrane distance is
to couple light with a very broad spectrum into the fibers and to measure the spec-
trum of the reflected light from the fiber-membrane etalon. The dips in the reflected
spectrum correspond to resonances of this etalon, which can be used to determine its
length by a fit with the function λ = 2L/n (see Figure 2.17). A similar technique was
published in [96]. Although the idea behind the method is rather simple, it is a techni-
cal challenge to couple enough white-light into a fiber and to couple the reflected light
into a spectrometer. Furthermore, the analysis of the measured spectra is not trivial,
since many parasitic effects lead to distortions of the original spectrum that need to be
distinguished from the resonance features of interest.
Figure 2.18 shows a sketch of the optical setup for the white-light spectroscopy. We use
a bright LED lamp to free space couple light into the fiber. This has been proven to be a
suitable light source for our fibers and fiber coatings. Another possible choice would be
a fiber coupled SLED. These are available on the market with wavelengths ranging from
400 nm to 1700 nm. However, the spectrum of the light source needs to include a broad
interval of wavelengths ∆λ that is guided by the used fibers and that is reflected by the
fiber coating in a suitable manner (broadband reflectivity R∆λ ≈ Rmem). Hence, each
mirror coating has its own optimal wavelength for the white-light method. Care should
be taken when the materials in the dielectric coatings start to become absorptive at the
used wavelengths, which might destroy the coating. In order to observe the reflected
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Figure 2.19: Light spectra of the white-light source. Left panel: spectrum of the broad-
band LED light source used for white-light spectroscopy. Right panel: spectrum of the light
coupled into the fiber (780HP from Thorlabs) measured after the fiber splitter (see Figure 2.18)
and the reflected spectrum from the lower reflecting, planar fiber in the MiM system. This
spectrum can be used as a reference for the modulated spectra of the fiber-membrane etalon,
since the membrane was far away from the fiber. The two spectra are not to scale.
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light, we use a fiber splitter that is connected with a fiber optic mating sleeve with the
fiber of the MiM system. Since the light power is very small, we free space couple the
reflected light into the spectrometer, which has been proven to be more efficient than
any fiber connection.
The spectrum that can be used in the white-light spectroscopy method is limited by the
light that can be coupled into the fibers. Figure 2.19 shows that the usable spectrum
in the fiber can be approximated by a Gaussian centered at λ0 = 650 nm with a width
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Figure 2.20: Validation of the white-light spectroscopy. (Top left) Spectra of the
reflected light from the upper fiber (lower reflecting side) were acquired with a spectrometer in
a setup similar to Figure 2.18 (0.7 s exposure time, two times averaging). From each spectrum
a reference spectrum without membrane was subtracted (black curve). This spectrum is the
one shown in Figure 2.19 after smoothing it with a moving average filter. In an interval ∆λ ∈
[580 nm, 630 nm] (dashed vertical lines), the resonances of the fiber-membrane etalon can be
extracted from the subtracted signal using a peak finder routine (blue circles). (Top right)
In the interval ∆λ the spectra were analyzed for different distances L1 between fiber and
membrane, which was altered by multiples of a calibration wavelength λc = 625 nm (dashed
vertical line). (Bottom left) Extracted resonant wavelengths λ (dots) and fits (function λfit =
2L/n) to the data for the spectra shown in the top right panel. Each fits yields a length L1 .
(Bottom right) Fit results for L1 versus the calibration scale defined by multiples of λc and
a linear fit using slope and y-intercept as free parameters. Fit results: slope 1.015, y-intersect
−100 nm, root-mean-square deviation ∆L ≈ 150 nm from the data.
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of ∆λFWHM = 50 nm. However, the reflected spectrum from the planar fiber mirror
(lower reflecting side) is relatively smooth only below 650 nm, where it can be used
for the distance measurement by fitting the resonances of the fiber-membrane etalon.
This procedure is shown in Figure 2.20. In order to enhance the robustness of the
fit routine, the reference spectrum without membrane (see Figure 2.19) is subtracted
from the measured spectra. The number of dips (resonant wavelengths) in the resulting
spectrum needs to be at least two in order to extract the fiber-membrane distance
L1 (L1 defined in Figure 2.6). The corresponding wavelengths can be fitted with the
function λ = 2L1/n using L1 and n as two free fit parameters. After this, the resulting
index n is rounded to the nearest integer and the fit is repeated with this fixed n ∈ N
using L1 as the only free fit parameter. Since n is known to be integer, this enhances
the fit result for L1.
Our white-light method (similar to [96]) enables the reliable determination of absolute
distances L1 ∈ [5 µm, 150 µm] and has an accuracy of ∆L1 ≈ 150 nm. This accuracy was
determined by changing the distance L1 between the upper fiber and the membrane
by multiples of a calibration wavelength λc and comparing this calibration scale with
the white-light fit results for L1. Walking the distance λc can be performed simply by
moving the z-stepper motor until a dip in the spectrum at λc reappears at the same
position (see Figure 2.20).
White-light measurements of the distance of one fiber to the membrane if the other fiber
is far away (as depicted in Figure 2.18) have proven to work for both the higher and the
lower reflecting fiber. Furthermore, if the other fiber is approached from the other side
of the membrane to build a MiM system, the lengths L1 (first subcavity) and L (total
length of the fiber cavity) can be measured simultaneously. For example, if the light is
coupled in from the upper fiber, scanning the lower fiber position with the piezo tube
washes out the resonances related to L and keeps only the resonances related to L1. The
same holds if the light is coupled into the lower fiber and the upper fiber is scanned,
respectively (measuring L2 and L). In these cases it is also possible to extract the total
cavity length L from the transmitted light through the cavity. However, it should be
noted that the measured L can deviate because of the optomechanical coupling of the
membrane, which can change the effective FSR of the cavity on the order of 30% (see
section 3.1). However, this effect is averaged out in the white light method since many
resonances are taken into account.

2.4 The coupling laser system

In order to couple the two constituents of the atomic-mechanical hybrid system and
to detect the motion of the mechanical oscillator, a dedicated laser system was imple-
mented (see Figure 2.21). The laser system is located in the upper laboratory and all
beams derived from this system are guided through optical fibers to the hybrid system
apparatus in the lower room (see Figure 2.1). The system is based on a Ti:sapph, which
has a wide wavelength tuning range including the D2 line (λair = 780.0 nm) and the D1
line (λair = 794.8 nm) [97] of the 87Rb atoms, which makes it suitable for many different
coupling and detection schemes of the cold atoms. Furthermore, this monolithic solid-
state laser has a narrow linewidth resulting in a small phase noise for high-performance
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Figure 2.21: Laser system for coupling and detection of the MiM device. The Ti:sapph
laser (MBR 110 from Coherent) can be locked relative to the 87Rb D2 line via a transfer cavity
(FPI 100 from Toptica, FSR = 997.544(4) MHz [86]) which is locked to the M1 laser of the
rubidium laser system (see Figure 2.2). Four branches are derived from the Ti:sapph laser:
(1) the coupling beam for interfacing the oscillator in the MiM device with the Rb atoms, (2)
a feedback cooling beam for cooling the oscillator, (3) A PDH locking beam for locking the
fiber cavity in the MiM device and (4) a beam for homodyne detection of the oscillator. A
wavemeter (WS6-600 from HighFinesse) allows for monitoring the wavelength of the Ti:sapph.
The laser system is located in the upper room and guided via optical fibers to the MiM device
and the BEC machine in the lower room, which is marked by the dashed line (see Figure 2.1).
The coupling and homodyne beam are both blue detuned by 90 MHz and 70 MHz with AOMs,
respectively. The AOMs are also used for the intensity control of these two beams. The PDH
beam has sidebands at 6.72 GHz from a resonant phase modulator by Newport. Coupling and
homodyne beam are coupled into the planar MiM fiber, which allows optimal mode match and
minimal losses (see Figure 2.9). The realized setup for feedback and homodyning slightly differs
from this sketch and is shown in appendix B.1. Figure adapted from [87].

homodyne detection without the need of additional filter cavities. The laser system is
equipped with a transfer cavity which allows for locking the Ti:sapph relative to the
atomic transitions by multiples of its FSR of appromimately 1 GHz. Four main beams
are picked up from the Ti:sapph laser: (1) the coupling laser beam of the hybrid sys-
tem, (2) a beam for feedback cooling of the oscillator, (3) a beam for Pound-Drever-Hall
(PDH) locking of the fiber cavity in the MiM device and (4) a beam for balanced ho-
modyne detection of the mechanical oscillator. After a brief description of the PDH
locking scheme, the feedback cooling and the homodyne detection, the main focus of
this section will be on the coupling laser beam.
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Pound-Drever-Hall locking of the fiber cavity length

In order to be able to lock the fiber cavity length L to the coupling and detection
laser system, a Pound-Drever-Hall (PDH) lock [98] has been implemented. For this,
a resonant phase modulator is used to generate sidebands at 6.72 GHz on the PDH
beam which is coupled through an optical isolator into the fiber cavity (see Figure
2.21). The reflected light from the cavity is then split off by the optical isolator and
can be measured with a fast photodiode. The frequency for an optimal PDH signal
would be around ten times larger than the linewidth of the fiber cavity. However,
the fiber cavity with a length L ≈ 20 µm and a finesse F ≈ 100 has a linewidth
∆ν = FSR/F = c/2LF = 75 GHz and frequencies on this order of magnitude or even
larger are not suitable for electronic processing. Thus, sidebands at 6.72 GHz are a
trade-off between electronic performance and the largest possible sideband frequency
for the best PDH error signal. Furthermore, the electronics designed for generating and
processing signals at 6.72 GHz will be compatible with a setup for driving the hyperfine
87Rb ground state transition of 6.83 GHz [97] in possible future experiments.
The size of the PDH error signal depends on the ratio between sideband frequency
and cavity linewidth, as well as the incoupling side of the asymmetric fiber cavity.
We measured a ten times larger PDH error signal for coupling into the planar, lower
reflecting side than for coupling into the curved, higher reflecting side of the fiber
cavity. However, the planar side has the optimal mode match [67] and is reserved
for the coupling and homodyne beam (see also Figure 2.9). Moreover, due to the small
sideband frequency compared to the large cavity linewidth, the PDH error signal is very
small and requires a large electronic amplification gain. For this, we employ two low
noise amplifiers with a total gain of 90 dB to amplify the signal from the fast photodiode
before mixing it down with the local oscillator that drives the phase modulator. When
implementing an electric feedback loop for locking the cavity length with the piezo tubes
of the MiM device (see Figure 2.6), special care needs to be taken. This is because any
electric noise on the piezo tubes around the oscillator frequency can drive the mechanical
oscillator.
The measurements presented in this thesis were performed without PDH locking the
cavity length of the MiM device. This is possible because the passive stability of the
used fiber cavity length is sufficiently high, caused by the extremely good thermal
isolation of the MiM device in the cryostat and the low finesse. Further details on the
passive stability of the cavity will be presented in section 3.1.

Homodyne detection and feedback cooling

The state of the mechanical oscillator in our hybrid experiment is measured with bal-
anced homodyne detection [99, 100]. This quantum limited detection scheme allows for
measuring the motion of the oscillator down to the single quantum level. Details on
the principles of this optomechanical detection scheme, the experimental setup and a
comprehensive characterization of the homodyne detection will be presented in section
3.3.
Furthermore, we use the homodyne measurement for active feedback cooling [68, 69] of
the mechanical oscillator into the quantum regime. For this, the homodyne signal is fed
back to the oscillator through radiation pressure of the feedback beam. This creates an
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artificial damping force which removes kinetic energy from the oscillator. The feedback
beam is coupled into the curved side of the fiber cavity and is intensity modulated
by a fiber optic amplitude modulator. A comprehensive treatment of the principles
of feedback cooling, as well as the experimental setup and realization is presented in
chapter 4.

The coupling beam for hybrid experiments

In the first stage of the project, we couple the mechanical oscillator to the motion of
the cold atoms in an optical 1D lattice, as depicted in Figure 1.1. The lattice is formed
by the retro-reflected coupling beam from the cavity, which creates a bi-directional
coupling of atomic and mechanical motion [31]. The setup of the coupling laser beam
will be presented in the following subsection 2.4.1. Subsequently, lattice characterization
measurements using matter wave diffraction in the lattice potential will be presented
in subsection 2.4.2.

2.4.1 Coupling lattice setup

In order to generate a resonant coupling between the two parts of the hybrid system, the
atomic trapping frequency ωa along the 1D lattice has to match the oscillator frequency
ωm ≈ 250 kHz (further details on this hybrid coupling scheme will be given in chapter
5). In units of the atomic recoil energy Er/h = 3.77 kHz [97] this corresponds to a 1D
lattice potential depth of V0 = 1

2maω
2
a/k

2 ≈ 1100Er [101]. This is a relatively deep
optical lattice potential, which is usually generated by very large laser powers on the
order of 10 W. However, due to the cryogenic implementation and light absorption of
the mechanical oscillator we are limited to a laser power of the coupling lattice beam
on the order of Plat ≈ 1 mW. Nevertheless, the lattice potential scales with V0 ∼ I0/∆
[101] with the peak intensity I0 of the laser beam and the detuning ∆ from the atomic
transition. Thus, we generate the required lattice depth using a very near-detuned laser
beam with a detuning on the order of ∆ ≈ 1 GHz and a small waist of wlat = 78 µm
[87] to increase the intensity at the position of the atoms.
Frequency stabilization. Due to the near-resonant operation of the coupling beam,
the wavelength of the coupling lattice needs to be monitored and precisely adjusted.
For this, we monitor the wavelength of the Ti:sapph with a wavemeter, which allows for
measuring relative frequency changes on the order of 5 MHz (digital quantization of the
wavemeter). The absolute frequency of the Ti:sapph can be determined differently with
an accuracy on the order of 3 MHz. This is done by locking the Ti:sapph to the transfer
cavity (linewidth ≈ 3 MHz), which is locked to the rubidium M1 laser, as depicted
in Figure 2.21. With this method we also calibrate the wavemeter on a daily basis.
The frequency of the M1 laser corresponds to the frequency ω2,3 of the 87Rb D2 line
(|52S1/2, F = 2〉 → |52P3/2, F = 3〉) [97] plus the frequency shift 2 × 67.1 MHz of the
double-pass AOM which tunes the M1 laser on resonance for the absorption imaging
of the cold atoms (see Figure 2.2). Furthermore, the coupling lattice is 90 MHz blue
detuned from the Ti:sapph laser. Hence, if the Ti:sapph is locked to the transfer cavity
by multiples nFSR ∈ N of the cavity FSR, the lattice beam has a frequency of

ωlat/2π = ω2,3/2π + 2× 67.1 MHz + 90 MHz + nFSR × FSR , (2.8)
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which is determined with an accuracy of 3 MHz (transfer cavity linewidth) and which is
fixed by the lock with sub-megahertz precision over a time scale of hours [86]. However,
in some of the hybrid experiments presented in this thesis the Ti:sapph was not locked to
the transfer cavity, because the lattice frequency needed to be adjusted more precisely
than the 1 GHz steps of the transfer cavity FSR. Nevertheless, we measured a stability
of the internal lock of the Ti:sapph laser (an etalon dither lock and an internal reference
cavity) on the order of 10 MHz on a time scale of 10 min [86], which was sufficient for the
measurements presented in this thesis. Besides, if the Ti:sapph frequency drifts during
a measurement, it can be readjusted manually in 20 MHz steps using the manual scan
knob of the internal cavity.
Optical setup. The experimental setup of the coupling lattice is shown in Figure
2.22. The coupling beam is derived from the Ti:sapph in the upper room and is cou-
pled through an AOM which is used for frequency shifting (90 MHz), fast switching
(τr,f ≈ 50 ns) and intensity control. After the AOM the beam can be blocked with
a mechanical shutter for total light extinction which is crucial for blocking the near-

Figure 2.22: Setup of the optical coupling lattice. Sketch of the realized setup of the 1D
lattice for coupling a BEC and a mechanical oscillator in a MiM system. Ti:sapph light is blue-
shifted 90 MHz by an AOM and guided via a polarization maintaining (PM) fiber into the lower
room (see Figure 2.1), where it is connected to the lattice telescope T1 (fiber collimator 60FC-L-
4-M20L-02 with beam Ø= 3.6 mm and a focusing lens 13M-S500-05-S from Schäfter+Kirchhoff,
in between a polarizer cube, specified working distance of 49.2 cm). T1 is mounted on a trans-
lation stage for fine-adjustment of the distance to the BEC. The beam is reflected into the
glass cell using a beam splitter substrate S1 (home-built, reflectivity R780 = 9.7%), mounted
on a mirror holder with differential micrometer screws for fine-alignment of the beam onto the
BEC. The transmitted light is reflected from an identical substrate (to compensate wavelength
dependency) and used for the intensity control of the beam using the AOM. After the glass cell,
a dichroic mirror substrate S2 reflects the lattice beam and allows for superimposing the dipole
trap beam D1 at 1064 nm (compare also Figure 2.3). Subsequently, the beam is coupled into T2
(same components as T1) using another differential screw holder, used for superimposing the
back reflected lattice beam with the incident beam. The cube in T2 superimposes the lattice
with the homodyne beam (perpendicular polarizations). These beams are coupled into the pla-
nar fiber of the MiM device (PM fiber with AR-coated FC/APC connector). The fiber coupler
in T2 is installed in a rotatable cage system mount (for PM coupling without wave plate).
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resonant lattice during the BEC cycle (see Figure 2.4). Subsequently, the light is coupled
into a polarization maintaining (PM) fiber for guiding the light into the lower room
where the BEC machine is located. This fiber is connected to the first lattice telescope
T1, which consists of a fiber collimator, a polarizer cube for optimizing the polarization
purity and a focusing lens (see Figure 2.22). The telescope has a working distance of
approximately 50 cm and is mounted on a translation stage in order to fine-adjust the
beam focus z-position with respect to the BEC in the vacuum glass cell. The corre-
sponding xy-alignment is done with differential micrometer screws in one of the mirror
holders in front of the glass cell. The usage of differential screws is necessary due to
the small lattice beam waist of wlat = 78 µm, which needs to be centered on the BEC.
The mirror in this specific holder is a home-built substrate S1 with a reflectivity of
R780 = 9.7% at 780 nm which is used to pick up light for the intensity control of the
lattice beam. In order to control the lattice power Plat at the position of the atoms, the
control signal needs to be measured at a position where the power is proportional to
Plat. This is why we pick up the control light after purifying the polarization. Neverthe-
less, the reflectivity of the beam splitter substrate has a small wavelength dependency
(R780/R783 = 1.02) which would alter the control power in the glass cell if the wave-
length of the lattice is changed. Therefore, we employ a second, identical substrate and
pick up the reflected light for the intensity control (see Figure Figure 2.22). In this
way, the parasitic effect of the wavelength dependency is suppressed by 99%. After the
glass cell with the BEC, the beam is coupled into the telescope T2. This is done with
a second mirror holder with differential screws, which is crucial for the fine-alignment
of the back reflected beam with the incident beam in order to create an optical lattice.
The PBS in telescope T2 is used for superimposing the homodyne detection beam with
the lattice. Both beams are coupled into the planar (PM) fiber of the MiM device with
perpendicular polarizations. In order to align the polarizations with the PM axes of the
fiber, the components of telescope T2 are mounted in a cage system with a rotatable
mount for the fiber coupler. In this way, additional optical losses of a wave plate to
rotate the polarization can be avoided. The light gets reflected by the fiber cavity in
the MiM device and after the reflected beam has passed the glass cell again it can be
monitored on a photodiode behind the substrate S1 (see Figure 2.22). For example, this
photodiode is very useful for monitoring the fiber coupling of the lattice into the cryo-
stat, the cavity signals (cavity alignment, tuning on resonance, length determination,
etc.) and the time evolution of the lattice power in experimental cycles.
Intensity control: stabilization, ramping and pulse generation. The intensity
control for the lattice (bandwidth ≈ 50 kHz) is based on a home-built analog control
box. It stabilizes the signal from the intensity control photodiode (see Figure 2.22) to
an analog reference signal by active feedback on the RF input of the lattice AOM. This
is done by coupling the RF drive signal (90 MHz sine from a DDS) for the high-power
AOM amplifier through a mixer and modulate the DC port of the mixer with the
control signal from the intensity control box. In this way, the lattice power Plat at the
position of the atoms can be stabilized and ramped up and down with analog reference
signals from the experimental control.
However, in some experimental protocols for the lattice it is necessary to generate
arbitrary pulse strains of the lattice beam. For example, the characterization of deep
lattices using Kapitza-Dirac diffraction of ultra-cold atoms is performed with short
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Figure 2.23: Performance of lattice pulse generation. For 30 experimental cycles (cycle
time 26 s), a single lattice pulse of duration 10 µs was generated as described in the text (duration
between sample-and-hold slot to the pulse ≈ 20 s). Left: 30 time traces of the pulses (red) and
the pulse trigger (blue) from the experimental control. All 30 pulses perfectly overlap. Delay
between pulses and trigger: 500 ns. The overshoot at the beginning of the pulses is an artifact of
the used photodiode (intensity control photodiode, PDA36 from Thorlabs). Right: Analysis of
the pulse fluctuations. Blue: shot-to-shot fluctuations ∆E of the integrated pulse energy from
the mean value Ē, normalized to Ē. The root-mean-square (rms) deviation of 0.3% is indicated
by the dashed blue lines. Red: rms deviation ∆P from the mean power P̄ during a single pulse,
normalized to P̄ . The average value of 0.6% is indicated by the dashed red line.

pulses of the lattice beam (see subsection 2.4.2). The duration of these pulses needs to
be adjusted on the order of 100 ns. Furthermore, for loading a BEC into a near-resonant
lattice, we perform an optimal control sequence for non-adiabatic state transfer into the
ground state of the lattice. This procedure uses pulse strains of two or more pulses with
a total duration of approximately 25 µs. Further details on the non-adiabatic loading of
the lattice will be presented in the thesis of T. Wagner. We create these arbitrary pulse
strains using a programmable function generator which is triggered and programmed by
the experimental control via VISA commands. This function generator triggers a fast
RF switch in the RF signal path of the AOM driver. In order to prevent interference
with the intensity control (the RF switch is installed in the feedback control loop), we
use the sample-and-hold function of the control box. In a typical experimental sequence,
we regulate the lattice power to the desired value and use this sample-and-hold function
to store the corresponding control signal in the control box. The light is then switched
off and later switched on again for the pulse strain using the stored control signal for
the AOM power. The power is then not regulated anymore, but set to the desired mean
value by the hold function, whereas the time sequence of the pulse strain is generated
by the function generator.
In this way, we are able to adjust pulse lengths on the order of 100 ns with a cycle-to-
cycle pulse power stability of 0.3% in a normal BEC cycle of approximately 25 s (see
Figure 2.23). For this technique it is particularly important to optimize the fiber cou-
pling of the lattice in the upper room, because during the pulses the power fluctuations
due to imperfect fiber couplings are not compensated by the intensity control.
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Optical losses. In order to achieve a maximum cooperativity Chybrid of the hybrid
system, light losses in the coupling beam path should be as small as possible. Besides
the linear decrease of Chybrid with the optical losses [102], also more complex non-
linear effects can lead to a reduction of the hybrid coupling rate or even instabilities
in the hybrid system [103, 104]. In section 5.1.3, these effects will be discussed in
detail. Furthermore, the optical losses lead to a reduced lattice depth V0 for a given
incident beam power Plat. This must be compensated by increasing the input power or
by decreasing the detuning ∆ from the atomic transition. The former leads to parasitic
effects like heating of the cryogenic MiM device, heating of the mechanical oscillator or a
potentially larger optical spring effect, which shifts the mechanical resonance frequency
(see section 3.1). A small detuning ∆ leads to an increased photon scattering of the
atoms in the lattice and an effective loss of atoms which participate in the coupling
through heating of the atoms out of the lattice potential.
For the above reasons, it is important to characterize the different optical loss mecha-
nisms to optimize the optical setup and the system parameters. A detailed sketch and
a listing of the measured losses of the optical elements is given in appendix A.1. The
most relevant losses are the low reflectivity on resonance σref = 0.61 of the aligned MiM
system and the fiber coupling into the MiM cavity fiber, which also exhibits relatively
large internal losses. All in all, only 35% of the light that passes the atoms in the lattice
incident beam is reflected back to the atoms. This leads to a large power imbalance of
the coupling lattice beams, which will be discussed later. In a future setup, a reflected
power of 60% instead of 35% is a realistic prospect (see appendix A.1).

2.4.2 Coupling lattice depth calibration

In order to perform quantitative measurements with the coupling lattice, the lattice
depth needs to be calibrated, which is discussed in this subsection. The presented
measurements as well as the construction of the coupling lattice (see subsection 2.4.1)
were performed by the author together with T. Wagner, who also programmed the
Kapitza-Dirac fit routine which numerically solves the time dependent Schrödinger
equation.
The depth of the lattice potential in the beam waist V0 ∼ I0/∆ [101] depends on the
lattice detuning ∆ from the atomic transitions and the intensity I0, which is given by
the beam waist wlat and the beam power Plat. In principle, the quantities wlat, Plat and
∆ can be measured precisely and the corresponding lattice depth V0 can be calculated
very accurately. However, the theoretically predicted V0 usually deviates strongly from
the experiment. The most critical factor is usually the alignment of the lattice beams
with respect to each other (radial xy-alignment and z-position of the waists) and the
alignment of the intensity maximum of the two beams with respect to the atoms. All
these misalignments are difficult to measure. Further imperfections can be wave front
errors in the beams, whose effect on the lattice depth may also be hard to predict.
Moreover, pump asymmetries due to different waists or powers of the two beams (e.g.
due to losses in the back reflected beam) can lead to a complex distortion of the lattice
geometry through atomic back-action or dynamical instabilites of the atoms [103]. For
these reasons, a calibration of the achieved lattice depth with respect to the theoretical
value V0 is necessary.
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Since a direct measurement of the quality of the optical lattice is very difficult, optical
lattices are usually calibrated indirectly by looking at an atomic sample in the lattice
potential. For this, we use Kapitza-Dirac diffraction of ultra-cold atoms and validate
the resulting lattice depths via parametric heating measurements of BECs in shallow
lattices [105, 106]. The Kapitza-Dirac diffraction also generates an unambiguous signal
which can be used to optimize the alignment of the lattice.

Principles of Kapitza-Dirac diffraction

The diffraction of matter waves from a standing light wave was originally predicted for
electrons by Kapitza and Dirac in 1933 [107]. After the first observation of Kapitza-
Dirac diffraction in a BEC in 1999 [108], it has become a standard tool in the field of
ultra-cold atoms in optical lattices.
The effect can be understood as a coherent process of multi-photon scattering events.
The atoms are located in a standing light wave, which can be regarded as two plane
waves with the same intensity and frequency that travel in opposite directions. The
lowest energy coherent process is the two-photon scattering event of absorption and
stimulated emission into one of the two waves. While this process preserves the energy,
the momentum change of the atoms is either zero (emission into the same wave) or
±2~k (emission into the opposite wave) along the direction of the traveling waves.
During the interaction time with the optical lattice, the atoms experience coherent
Rabi oscillations between these two momentum orders. Hence, if the lattice is switched
off after a certain time ∆t, the interaction has generated a certain population transfer
from the initial order p = 0 to the first momentum order at p = ±2~k. This momentum
distribution can be measured via time-of-flight (TOF) images of the BEC. In a cycled
experiment with different lattice pulse times ∆t, the Rabi oscillations of the momentum
orders can be visualized and its frequency is directly proportional to the lattice potential
depth V0. This is the basic principle of the lattice depth calibration using Kapitza-Dirac
diffraction.
If the intensity of the light waves is increased (or the detuning ∆ to the atomic tran-
sition is reduced), even higher order scattering processes (p = ±4, 6, ... ~k) start to
become important. Since these processes have different Rabi frequencies, the resulting
interference between all the coherent scattering processes leads to a more complicated
time evolution of the momentum orders. For this, it is useful to turn away from the
single particle picture above and describe the Kapitza-Dirac diffraction as the time
evolution of waves in a periodic potential, similar to the formalism of electronic Bloch
waves in an atomic crystal.
The eigenfunctions of a single particle in a periodic potential V (x) are given by the
Bloch wave functions

ψn,q(x) = eiqx/~ · un,q(x) , (2.9)

where q is the quasi momentum of the wave function, n is the band index and un,q(x) is
a function with the same periodicity as V (x), which in this case is the optical 1D-lattice2

potential V (x) = V0 cos2(kx) with a periodicity of λ/2 = π/k. Neglecting mean-field
2This can be generalized to the 3D case, since the corresponding Hamiltonian is fully separable.
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interactions, a BEC can be modeled as such a matter wave ψn,q(x) in the optical lattice.
If we use a BEC as a probe for the lattice potential, the information on the lattice depth
V0 is encoded in the function un,q(x). However, since the BEC is measured in free space
during TOF, we can only measure the Bloch state in the plane wave basis of the free
space Hamiltonian. Therefore, it is useful to express the time evolution of the Bloch
state in the basis of plane waves. In this basis, the Hamiltonian is non-diagonal and the
wave function experiences a non-trivial time evolution, which can be directly measured
with TOF images.
The Hamiltonian in the plane wave basis can be found by expressing the functions
un,q(x) with plane waves. Since un,q(x) is a periodic function, the solution is simply
given by the Fourier series un,q(x) = ∑∞

l=−∞ cl,n,qe
i2klx, where the periodicity was set

to be λ/2. With this ansatz the Bloch functions become

|n, q〉 = ψn,q(x) =
∞∑

l=−∞
cl,n,q |φ2l~k+q〉 with |φ2l~k+q〉 = ei(2lk+q/~)x . (2.10)

Inserting this into the time independent Schrödinger equation yields [109]

∞∑
l=−∞

Hl,l′ · cl,n,q = En,q cl,n,q with Hl,l′ =


(2l + q/~k)2 + s/2 if l = l′

−s/4 if |l − l′| = 1
0 else

,

(2.11)
where s = V0/Er is the lattice potential depth in units of the recoil energy Er =
~2k2/2m. For our analysis we assume that the lattice interaction takes place on a time
scale that is much faster than the motion of the atoms. This so-called Raman-Nath
regime [110] is a very good approximation, since we keep our BEC in the dipole trap
during the lattice pulse (q = 0) and the lattice pulses are much shorter than the trapping
frequency in the lattice. This means that the kinetic energy before and after the lattice
interaction is zero, which is why we set q = 0 in the Hamiltonian above. It should be
noted that for very deep lattices the trapping frequency becomes comparable to the
time scale of the lattice pulses. However, in deep lattices the band structure becomes
flat, which means that the Hamiltonian is also independent of q.
In order to fit the data from our TOF images, we numerically solve the time dependent
Schrödinger equation i~ ∂

∂t |ψ(t)〉 = H |ψ(t)〉, where |ψ(t)〉 is a normalized vector with
2l + 1 entries for the momentum orders ranging from −l to l. We usually cut off the
Hamiltonian at the maximal momentum order that can be detected in the absorption
images. The entries of the parametric solution |ψ(t)〉 for each momentum order l can be
fitted to the measured occupations Nl/Ntot in this specific order. Further mathematical
details can be found in appendix A.2.

Validation of the Kapitza-Dirac calibration

In order to validate our Kapitza-Dirac calibration in a simple configuration, the back
reflex of the lattice was generated by a mirror instead of the fiber cavity. In this way,
possible parasitic effects like power fluctuations or phase noise of the back reflected
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beam could be avoided. Furthermore, the Kapitza-Dirac measurements were compared
with parametric heating measurements of a BEC loaded into the lattice [105, 106].

Figure 2.24: Time evolution during Kapitza-Dirac diffraction. (a) Images of a BEC
in the dipole trap after a single lattice pulse during the hold time, acquired after 21.5 ms TOF
for different lattice pulse duration ∆t. The hold time in the dipole trap was 6 s to reduce the
particle number and density effects like s-wave scattering. Each pulse leads to Kapitza-Dirac
diffraction into different momentum orders l. The sequence was repeated once to obtain two
samples for each ∆t. The shown TOF images correspond to the fit in the lower left panel of (b)
with s ≈ 80. Lattice generated by a back reflex mirror. (b) Data from the TOF images and
a fit to the data to obtain the lattice depth s = V0/Er for four different red lattice detunings
∆ and constant lattice power Plat = 1 mW. The plots show the summed fractions Nl/Ntot
of the atoms in the orders l and −l and the fit functions multiplied by two, respectively. All
momentum orders l were fitted together by minimizing the residual of all orders simultaneously
which yields the value for s. The error bounds correspond to the lowest and largest boundaries
of individual fits to the orders up to |l| = 2, which were performed separately.
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Figure 2.24 (a) shows the TOF images of a typical Kapitza-Dirac measurement with
a BEC in the dipole trap, which was illuminated by short lattice pulses of different
duration ∆t. The short pulses are generated with a dedicated function generator (see
subsection 2.4.1). By fitting the parametric solution of the time dependent Schrödinger
equation to the particle number in the different momentum orders, we can determine
the lattice depth s = V0/Er with an accuracy of 1%, as shown in Figure 2.24 (b).
In this way, the lattice depth was determined for a constant power of Plat = 1 mW
and different detunings ∆ between 60 GHz and 1700 GHz, as shown in Figure 2.25.
The results were compared with parametric heating measurements [105, 106] of BECs
which are loaded adiabatically into the lattice. For this, the lattice power is modulated
at twice the atomic trapping frequency ωa in the lattice and the excitation of atoms
into higher bands is measured by counting the atom number in the momentum orders
l = ±1 in the TOF images. The lattice modulation drives excitations at a frequency that
corresponds to the energy between the lowest band and the third lowest band (according
to ∆E = ~ωmod, ∆q = 0 and parity conservation). We calculate the corresponding
energy gap by solving the eigenvalues En of the Hamiltonian in equation 2.11 as a
function of the lattice depth (assuming q = 0). Figure 2.25 shows the measured lattice
depths s from the two different lattice calibration methods. Both methods agree very
well for s > 15Er. For very large lattice depths only Kapitza-Dirac scattering can be
used, since adiabatic lattice loading at small detunings ∆ < 100 GHz is not possible for
the parametric heating measurements.
A fit to the Kapitza-Dirac data of the test lattice with back reflex mirror yields a
calibration of ccal = s/stheo = 63.1% between experimentally realized lattice depth s
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Figure 2.25: Validation of the Kapitza-Dirac lattice calibration. Kapitza-Dirac diffrac-
tion measurements (blue circles) of the lattice depth s compared to parametric heating mea-
surements (green triangles) in a simple version of the lattice setup without fiber cavity (back
reflex mirror instead of fiber coupler in telescope T2, see Figure 2.22). The different lattice
depths were realized with a constant lattice power of Plat = 1 mW and different red detunigs ∆
between 60 GHz and 1700 GHz. The fit function (red solid line) to the Kapitza-Dirac data takes
into account the D1 line, as well as all involved hyperfine levels of the D2 line. The fit yields a
calibration of ccal = s/stheo = 63.1% of the theoretical lattice depth. Taking into account the
optical losses of this setup (two times cube, lens, glass cell: Ttot = 0.845, see appendix A.1),
this realized lattice depth corresponds to ccal/

√
Ttot = 68.6% of the theory value with losses

(red dashed line). The measurements were performed over four days without realignment.
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and the theoretical lattice depth stheo. Here, stheo follows from the incident beam power
Plat, the beam waist and the detuning (taking into account the D1 line, as well as all
involved hyperfine levels of the D2 line). Including the known optical losses into the
theoretical prediction stheo, the resulting lattice depth is 68.6% of this value. Hence,
the remaining lattice imperfections must originate from misalignment of the two lattice
beams, deviations of the waists from the expected value or wave front distortions in
the waist.

Lattice depth calibration

The optical coupling lattice in its final configuration (TMiM = 500 mK, setup as in Figure
2.22) was calibrated using the Kapitza-Dirac method described above. For this, the fiber
cavity in the MiM device was tuned off-resonance with the piezo tubes, which creates a
stable condition for the measurement. The resulting lattice depth s = 19.0(2)Er is 50.1%
of the theoretical value (Plat = 500 µW, red detuning ∆F=3 = −264 GHz, taking into
account the D1 line and all involved hyperfine levels of the D2 line, assuming no optical
losses). If the optical losses of the back reflected beam are taken into account (Plat,2 =
TtotPlat = 0.576Plat, see appendix A.1), the realized lattice depth is 50.1/

√
0.575 =

66.1% of the theoretical value, as the lattice depth scales with s ∼
√
Plat,2

√
Plat.

In a further Kapitza-Dirac measurement, we validated that the lattice depth in a hybrid
experiment (fiber cavity on resonance) is reduced by the expected factor √σref = 0.78
due to the reduced power of the back reflected lattice beam: resulting lattice depths
with fiber cavity on and off resonance son/soff = 0.79(3). Finally, the table below
shows the realized lattice depth for a resonant (off-resonant) fiber cavity compared
to the theoretical lattice depth including no losses (including the measured optical
transmittance Ttot) in the back reflected beam, respectively (see appendix A.1). The
fact that the resulting lattice depth is less than in the test lattice (with back reflex
mirror) could be explained by a different waist size or waist z-position of the back
reflected beam from the telescope T2. Also additional wave front distortions of this
beam due to the fiber coupling could play a role.
Lattice alignment. For the final lattice alignment the incident beam was firstly aligned
with respect to the atoms. For this, the near-resonant beam is first roughly aligned with
respect to the MOT by looking at the resonant atom jet on a camera. Subsequently,
the beam can be fine-aligned by maximizing the losses in the BEC. Afterwards, the
back reflected beam is aligned by maximizing the Kapitza-Dirac diffraction into the
first momentum order (see e.g. Figure 2.24 (a)). In this way, also the incident beam
can be optimized again (using the differential screws in front of the glass cell). The
alignment of the waist z-position of the back reflected beam using the BEC is very
difficult and could not be performed. The fact that the z-position was only adjusted by
measuring the distance of the telescope T2 to the glass cell might be the reason for the
lower lattice depth compared to the test lattice.

Lattice depth calibration
cavity on resonance cavity off-resonant

ccal = s/stheo 0.39± 0.01 0.50± 0.01
c′cal = s/(

√
Ttot · stheo) 0.52± 0.01 0.66± 0.01



Chapter 3

Optomechanics in the MiM
system

To determine the optomechanical properties of the MiM device, a thorough
characterization was performed. This enabled a precise optimization of the
optomechanical coupling strength and a self-contained calibration method for
homodyne thermometry of the mechanical mode temperature. The calibra-
tion was validated through temperature sweeps of the MiM device.

As discussed in the preface of chapter 2, the hybrid experiment benefits from a large
optomechanical cooperativity between the coupling laser beam and the mechanical os-
cillator. In order to fine-align this optomechanical coupling, the optomechanical prop-
erties of the MiM device were characterized by measurements on the fiber cavity. This
chapter covers the principles of cavity optomechanics in MiM systems, the performed
characterization and alignment measurements on the MiM device and the homodyne
detection of the mechanical oscillator.
The interdisciplinary field of cavity optomechanics [8] seeks control over mechanical
quantum states by exploiting the powerful tools of quantum optics in optomechanical
systems. The huge success of combining mechanical systems and quantum optics in the
last two decades has lead to unprecedented engineering concepts for precision sensing, a
wide variety of possible applications for novel quantum technologies and has opened the
door for fundamental tests of quantum mechanics in a completely new parameter regime
of macroscopic quantum objects. The transferability of techniques between quantum
optics and optomechanics was facilitated by a strong analogy between the two fields: the
optomechanical situation of an optical cavity mode interacting with a mechanical mode
can be mapped onto the case of two-mode quantum optics where two optical modes
interact via a non-linear medium [111]. The prototypical setup of this optomechanical
paradigm is an optical cavity with a vibrating end mirror [112]. The motion of the end
mirror changes the resonance frequency of the cavity and thus the intra-cavity pump
power. This changes the amount of radiation pressure on the mirror which creates an
optomechanical coupling between the mechanical motion and the cavity mode. Most of
the optomechanical systems are modifications of this simple scheme.
A particularly well-studied optomechanical system is the so-called membrane-in-the-
middle (MiM) configuration, where a thin dielectric membrane is placed between the
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two mirrors of a Fabry-Pérot cavity [64, 65, 84, 113]. Recently, MiM systems were uti-
lized for the observation of radiation pressure shot noise on mechanical motion [114],
mechanical ground state cooling [40], as well as sympathetic cooling [57] and quan-
tum back-action-evading measurements [59] in hybrid atomic-mechanical systems. The
huge success of the MiM scheme is mainly based on the fact that the mechanical os-
cillator does not serve as an end mirror of the optical cavity, which would require a
combination of exceptionally good mechanical and optical propoerties. In contrast, the
MiM scheme combines the high mechanical Q-factors of membrane oscillators with the
well-established production of optical high finesse cavities. Since the membranes are
optically flat they scatter photons in a well-defined direction, which allows for stable
high finesse cavity modes in the MiM scheme [112]. In this way, a purely dispersive
(non-dissipative) optomechanical coupling can be created if the membrane is placed at
the slope of the intra-cavity field. In this configuration of linear optomechanical cou-
pling, the cavity detuning ∆ωcav depends linearly on the membrane position x. Another
interesting feature of the MiM scheme is the possibility to place the membrane at a
node (or antinode) of the intra-cavity field. In this way, a quadratic dispersive coupling
∼ x2 is generated, which allows for quantum non-demolition (QND) measurements of
the membrane’s phonon number eigenstate [84]. The periodic change from linear to
quadratic coupling (and even quartic coupling if the membrane is tilted) is another
special feature of the MiM scheme [113].

3.1 Optomechanical coupling

In cavity optomechanical systems the mechanical displacement xm changes the reso-
nance frequency ωcav of the cavity. For a simple Fabry-Pérot cavity of length L with a
moving end mirror, this displacement-induced frequency shift is given by the optome-
chanical coupling G [112]:

G = ∂ωcav
∂xm

= ωcav
L

. (3.1)

However, in a MiM system the optomechanical coupling gm = ∂ωcav/∂xm has a more
complicated form and depends on many more parameters than just the total cavity
length. For example, gm is periodic in the membrane position xm, as mentioned above.
Hence, the membrane must be placed precisely at the right position of the intra-cavity
field to obtain the maximal linear coupling. The best way to measure the behavior
of gm as a function of the membrane position in our system is to vary the distances
L1 and L2 between the fibers and the membrane (see Figure 2.6), while measuring
the transmission of the MiM system. In this way, the effective membrane position xm
in the cavity can be varied while the transmission signal provides information on the
resonance condition, which yields the sought quantity ωcav(xm).
In order to simulate this behavior of gm in a MiM system for different subcavity lengths
L1 and L2, the transmission |tMiM|2 can be calculated using the transfer matrix formal-
ism of a simple planar Fabry-Pérot cavity with a semitransparent film in the middle
[115]. We use the explicit expression in [102] for |tMiM(L1, L2)|2, which was calculated
from the transfer matrices. Figure 3.1 (a) shows the calculated transmission |tMiM|2 for
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Figure 3.1: Modulation of the cavity resonant length by the membrane. Numerical
simulation of the MiM transmission |tMiM(L1, L2)|2 (eq. 1.69 in [102]) of a planar-planar Fabry-
Pérot cavity for different subcavity lengths L1 and L2 (or the effective membrane position
xm = (L1 − L2)/2). Parameters used: mirror power reflectivities R1 = R2 = 0.75, membrane
field reflectivity rm = 0.38, total cavity length L0 = 2.34 µm, λ = 780 nm, assuming no losses.
(a) Four different resonant cavity lengths L = L1 + L2 for different membrane positions xm =
(L1 − L2)/2. L is altered by a symmetric change of the subcavity lengths L1 and L2 around
the membrane. (b) |tMiM|2 for an independent scan of the lengths L1, L2. The small sketches
above indicate how the plots can be generated experimentally.

a planar Fabry-Pérot cavity as a function of the membrane position xm and the total
length L = L1 + L2. Here, L is varied by a symmetric change of L1 and L2 around
the membrane. The sinusoidal lines correspond to the resonant lengths of the cavity,
which are altered periodically by the position of the membrane. If the membrane is well
centered in the MiM system (L1 = L2), this is also the expected plot for the resonant
laser frequency as a function of the membrane position. The derivative of the sinusoidal
resonance lines is related to the optomechanical coupling gm in the MiM device. The
plot shows that gm changes its sign for each resonant length and is equal for every
second cavity resonance.
Nevertheless, the technically more relevant case is depicted in Figure 3.1 (b). This is
because it can be performed without any prior knowledge of the piezo constants of
the cavity mirrors, since both mirrors are scanned individually and do not need to be
synchronized as for the symmetric case in (a). In the end of this subsection it will be
discussed how such an image can be measured and how it can be used for aligning the
MiM system and extract the optomechanical coupling gm.
Figure 3.1 shows that the resonant length of the cavity changes sinusoidally with the
membrane position. However, the physically more relevant quantity is the change of
the resonance frequency ωcav as a function of the membrane position, which is more
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(b)(a)

Figure 3.2: Modulation of the cavity resonance for off-centered membrane positions.
Numerical simulation of the MiM transmission |tMiM|2 (eq. 1.69 in [102]) of a short planar-planar
Fabry-Pérot cavity for a sweep of the membrane position from one end mirror (at xm = −L0/2)
to the other end mirror of the cavity (at xm = L0/2). Parameters as in Figure 3.1. (a) Four
different resonant cavity lengths L = L1 + L2 for all possible membrane positions xm in the
cavity. L is altered by a symmetric change of the subcavity lengths L1 and L2 around the
membrane. The sign of |tMiM(xm)|2 is equal for every second resonant length, which holds for
all membrane positions. (b) |tMiM|2 for four different resonant wavelengths λ and all possible
membrane positions in the cavity. While |tMiM(xm ≈ 0)|2 is equal for every second resonance, the
behavior for |xm| = L0/2 is equal for every resonance, which yields an asymmetry of ωcav(xm).
The small sketches above indicate how the plots can be generated experimentally.

complicated, as it also depends on the macroscopic position of the membrane inside
the cavity. This can be explained by a simple geometric argument. Consider a cavity
with constant length L0 with a membrane in the center (L1 = L2). If the driving laser
is detuned by multiples of the FSR, the intra-cavity field at the membrane position will
alternate between a node and an antinode, which yields the same gm for every second
FSR, similar to the symmetric length change as in Figure 3.1 (a). Now consider the
case that the membrane is very close to one of the cavity mirrors. If the driving laser is
detuned by multiples of the FSR, the intra-cavity field at the membrane position will
look very similar from one FSR to the next. Hence, the optomechanical coupling must
be periodic in one FSR, not in two FSR as if the membrane is centered. This behavior
is depicted in Figure 3.2, which shows the change of the resonant length (a) and the
resonant wavelength (b) if the membrane position is sweeped from one end mirror to
the other.
Consequences of the asymmetry in ωcav(xm). The fact that the behavior of
ωcav(xm) is altered if the membrane is off-centered was first described in [115] and
has some important consequences. Firstly, the maximal optomechanical coupling gmax

m
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is not equal for every slope of ωcav(xm), which is relevant for the MiM fine-alignment
presented later. Furthermore, gmax

m can even become larger [115] than G for a moving
end mirror (see equation 3.1). Hence, it can be beneficial to off-center the membrane in
the cavity. This harmonizes well with the fact that the membrane in our planar-concave
cavity is positioned close to the planar mirror, as mentioned in subsection 2.3.3 (Step 2
of MiM alignment). This is because close to the planar mirror the intra-cavity field has
planar wave fronts, which means that reflected light from the membrane is reflected
back into the cavity mode. This might be relevant especially for cavities with a larger
finesse. Finally, the complicated behavior of gm if the membrane is off-centered is the
reason why measuring the total length of the MiM system by tuning the laser frequency
(according to equation 2.7) is not reliable. This does not necessarily hold for measuring
the total length of the MiM system with the white-light method described in subsection
2.3.3, because with much more resonances the membrane effects are averaged out.

Measurement of gm

In order to measure the optomechanical coupling gm of our fiber cavity MiM system,
the theory plot in Figure 3.1 (b) was measured by acquiring the cavity transmission
signal while the position of both cavity fibers were scanned at different frequencies

Figure 3.3: Transmission of the MiM system for different fiber positions. Measured
transmission signal |tMiM(L1, L2)|2 of the fiber MiM system for the maximum scan range of
±250 V (of the used HV amplifier) applied to the piezo tubes of the MiM device (see Figure 2.6).
The measurement corresponds to the simulation in Figure 3.1 (b). The solid line corresponds
to a fit which indicates the line of constant cavity length L0 = L1 + L2. Its slope (-2.43) is
used to calibrate the piezo tubes with respect to each other, while the known distance λ/2
of the two resonances in the scan of the lower fiber gives an absolute calibration. Result:
clow = 1.24(1) nm/V, cup = 0.51(1) nm/V. Parameters: cryostat temperature TMiM = 500 mK,
λ = 780 nm, acquisition: upper fiber scanned with 10 Hz while lower fiber translated half a
period with 10 mHz. Figure adapted from [116].
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Figure 3.4: Change of resonance frequency through membrane displacement. (a)
Measured change ∆ωcav of the cavity resonance frequency as a function of membrane dis-
placement xm extracted from Figure 3.3 (see caption for parameters). The point of maximal
linear optomechanical coupling gm is indicated by the tangent (dashed line). (b) Numerical
derivative of (a) in units of G (see equation 3.1). At xm = 0 the linear coupling gm is max-
imal: gmax

m = 0.98G with G = 2π × 16.2 GHz/nm. At |xm| = λ/4 = 195 nm the coupling is
only gmin

m = −0.77G, caused by the asymmetry of ∆ωcav(xm) which is due to the off-centered
membrane position (L1 ≈ 6 µm, L2 ≈ 18 µm). Figure taken from [85].

using high voltage at the piezo tubes (see Figure 2.6). In this way, |tMiM(L1, L2)|2 can
be measured in the whole parameter space of the maximum scan range of the piezo
tubes. The measurement is shown in Figure 3.3. It shows that the maximum scan range
of the used HV amplifier is not sufficient to scan the upper fiber over one FSR (λ/2).
However, this is possible with the lower fiber which yields an absolute calibration of
clow = 1.24(1) nm/V at the MiM temperature TMiM = 500 mK [116]. The temperature is
important since the piezo constants are strongly temperature dependent (for example,
clow = 1.70(1) nm/V at TMiM = 17 K). The fit of the sinusoidal transmission signal
|tMiM|2 yields the line of constant cavity length (black line) which enables the relative
calibration of the upper piezo tube: cup = 0.51(1) nm/V at TMiM = 500 mK [116].
The calibration of the piezo tubes allows for converting the axes of Figure 3.3 in units
of λ. In this way, the optomechanical coupling gm can be extracted from the data.
The result is shown in Figure 3.4, which shows that for our MiM configuration with
L1 ≈ 6 µm and L2 ≈ 18 µm the maximal optomechanical coupling is gmax

m = 0.98G =
2π × 15.9 GHz/nm on the steeper slope of ωcav(xm), while on the opposite slope it is
gmin

m = 0.77G = −2π × 12.5 GHz/nm. The data also allows for fitting the measured
function ωcav(xm) with the model [64, 65], which results in a membrane field reflectivity
of rm = 0.38 [116]. This is close to the theoretical value of rm = 0.4 for our membrane.
The fact that an oscillator with a very low power reflectivity of Rm = r2

m ≈ 0.15 can
reach the same optomechanical coupling (gmax

m ≈ G) as a highly reflecting, moving end
mirror confirms the surprising performance of MiM systems.
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Alignment of gm

As described above, the maximum linear optomechanical coupling gmax
m is reached only

if the membrane is placed precisely (∆xm = ±10 nm, see Figure 3.4 (b)) at the slope of
the intra-cavity field. Furthermore, due to the off-centered membrane position in our
MiM system, it must be ensured that the right slope is chosen, since for every second
slope the coupling is only gmin

m .
The following alignment strategy holds for our current configuration of a planar-concave
MiM system with the membrane close to the upper, planar fiber (L1 < L2, see Figure
2.6). The alignment goal is to reach a situation like in Figure 3.3, where the cavity is
on resonance for very low voltages applied to the piezo tubes and the optomechanical
coupling is maximal at the same time. To reach this point, we scan the lower fiber
position with a triangular voltage at the piezo tube and observe the transmission signal
like in Figure 3.3. By applying a DC voltage to the piezo tube of the upper fiber, the
width of the transmission resonance can be minimized. This is achieved at the desired
point of maximal optomechanical coupling (intersection point of transmission line and
solid line in Figure 3.3). Similar to [65, 115], we also observe that the transmission is
maximal at this point, which can be used as a further alignment signal. Subsequently,
the z-stepper motor of the upper fiber can be used to compensate for the DC offset that
was necessary to minimize the width of the transmission peak. Finally, the z-stepper
motor of the lower fiber is used to shift the cavity resonance at approximately 6 V at
the lower piezo tube, which is the optimal value for tuning the cavity on resonance with
a 12 V battery, as described later.
We observe that this fine-alignment of the MiM device is stable over months, as long
as the cryostat temperature is constant. This is indicated by the fact that the voltage
that is needed to tune the cavity on resonance with the lower piezo tube is always the
same (and symmetric drifts of L1 and L2 are rather unlikely).

Optical spring effect

In the above considerations, the shift of the cavity resonance frequency ωcav due to
the displacement of the membrane in the cavity was described by the optomechanical
coupling gm = ∂ωcav/∂xm. Nevertheless, this interaction also works in the opposite
direction: pumping the MiM system with a detuned laser leads to a shift ∆ωm of the
mechanical resonance frequency. To understand this effect, the oscillator position xm
must be treated as a dynamical quantity, not as a static quantity as in the previous
considerations. The shift of ωm by the so-called optical spring effect can be understood
as a dynamical back-action of the radiation pressure on the oscillator [8, 112], which
is modulated by the oscillator itself through the optomechanical coupling gm (and a
modulation of the intra-cavity power, correspondingly). This feedback effect can be
treated mathematically in the same manner as the active feedback cooling formalism
presented later in chapter 4. Here, the passive feedback loop generates a new effective
susceptibility χeff of the mechanical oscillator with a new effective spring constant k′m =
mω′2m = m(ωm+∆ωm)2 and a new effective mechanical damping rate Γ′m = Γm+Γopt [8].
This additional optomechanical damping rate Γopt can be positive or negative, which
can lead to cooling or heating of the mechanical oscillator.
In the limit of weak radiation pressure the shift of the mechanical resonance frequency
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∆ωm and the optomechanical damping rate Γopt are proportional to the intra-cavity
photon number n̄cav and g2

m [8]:

∆ωm = n̄cav g
2
mx

2
zp

[ ∆ + ωm
(∆ + ωm)2 + κ2/4 + ∆− ωm

(∆− ωm)2 + κ2/4

]
(3.2)

Γopt = n̄cav g
2
mx

2
zp

[
κ

(∆ + ωm)2 + κ2/4 −
κ

(∆− ωm)2 + κ2/4

]
, (3.3)

with the quantum zero-point motion xzp =
√
~/(2mωm) of the oscillator, ∆ the cavity

detuning and κ/2π = FSR/F the FWHM line width of the cavity resonance.
In order to measure the optical spring effect in our MiM system, the coupling beam
(P = 500 µW) was coupled into the MiM device (see Figure 2.21) with the cavity on
resonance. Subsequently, different Ti:sapph detunings were adjusted using the wave
meter and the mechanical resonance frequency was measured with a spectrum analyzer
connected to the homodyne detector (see section 3.3). The laser detuning leads to a
cavity transmission signal which can be fitted very well with a Lorentzian, as shown
in Figure 3.5. Hence, the intra-cavity power in this experiment is not constant as in
equation 3.2 and we assume n̄cav to be a Lorentzian function of the cavity detuning.
In this way, we can fit the optical spring shift ∆ωm very accurately with equation
3.2, as shown in Figure 3.5. For the power of 500 µW the maximum frequency shift
is ∆ωm/2π ≈ 30 Hz at a detuning ∆ ≈ 2π × 2 GHz which corresponds to the point

-30 -20 -10 0 10 20 30

Cavity detuning (∆/2π) / GHz

0

0.2

0.4

0.6

0.8

1

T
ra
n
sm

is
si
o
n

-40

-20

0

20

40

(∆
ω
m
/
2
π
)
/
H
z

-50 0 50

Cavity detuning (∆/2π) / GHz

-10

-5

0

5

10

Γ
o
p
t
/
m
H
z

Figure 3.5: Optical spring effect in the MiM system. (Left) Measured cavity trans-
mission (blue dots) with a Lorentzian fit (blue line) and measured mechanical frequency shift
∆ωm (red dots) fitted with equation 3.2 modified by a Lorentzian intra-cavity photon num-
ber n̄cav(∆) for different Ti:sapph detunings ∆. The red dashed line indicates the fit result
assuming constant n̄cav(∆ = 0). The dashed blue line is the FWHM of the Lorentzian fit with
κ/2π = 40.0 GHz, which deviates 7% from κ/2π = 42.9 GHz which results from the fit to
∆ωm. Parameters: using coupling beam (see Figure 2.21/2.22) at 500 µW, deviation ∆ωm from
ωm = 2π×263.9 kHz (at TMiM = 500 mK) measured with a spectrum analyzer, fiber cavity pas-
sively stable (no lock). (Right) Optomechanical damping Γopt extracted from the fit of ∆ωm
(left) using equation 3.3 modified by a by a Lorentzian intra-cavity photon number n̄cav(∆).
Γopt for constant n̄cav(∆ = 0) indicated by the dashed line.
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of approximately 70% cavity transmission. If the intra-cavity photon number would be
constant at n̄cav(∆ = 0) the maximum shift would be slightly larger (∆ωm/2π ≈ 48 Hz),
which is indicated by the dashed red line.
Due to the same prefactor of the equations 3.2 and 3.3, the fit of ∆ωm can also be
used to extract the optomechanical damping Γopt, which is shown in the right panel of
Figure 3.5. Similar to the fit of ∆ωm we assume a Lorentzian function of n̄cav(∆) which
yields a maximum optomechanical damping of Γopt ≈ 7.5 mHz (again the function for
a constant n̄cav is indicated by a dashed red line).
All in all, the optical spring effect in our current MiM system is almost negligible. This
is caused by the small finesse of our cavity (small intra-cavity photon number n̄cav) and
the extremely large (empty cavity) linewidth κ/2π ≈ 75 GHz (L ≈ 20 µm, F ≈ 100).
Therefore, optomechanical cooling through dynamical back-action plays a minor role
in our system, as the maximum cooling effect can be estimated to be a 10% reduction
of the mechanical mode temperature using [57]

Topt
Tbath

= Γm
Γm + Γopt

(3.4)

(assuming optimal detuning and P = 1 mW). Furthermore, small drifts of the cavity
resonance during experiments will only cause very small drifts ∆ωm of the mechanical
oscillator frequency, which facilitates the time-resolved zero-span measurements of the
oscillator temperature (as discussed later in section 4.4.1). This relaxes our demands
on the cavity resonance condition and enables experiments without locking the cavity
length, as discussed in the following.

Passive stability of the cavity length

In order to verify the passive stability of the fiber cavity length in our cryogenic MiM
device, the cavity was tuned on resonance with a DC voltage from a stable power supply
connected to one of the cavity piezo tubes. Subsequently, the transmission signal of the
intensity controlled coupling beam was acquired over a period of 14 h. The measured
fluctuations are on the order of 1% and include possible fluctuations of the fiber coupling
into the MiM fiber and possible length changes of the cavity. Hence, this measurement

Figure 3.6: Transmission of the
unlocked fiber cavity MiM de-
vice. Measured cavity transmission of
an intensity controlled laser beam (red
line: control signal) without locking the
fiber cavity length, acquired over a time
period of 14 h. The fluctuations include
possible fluctuations of the fiber cou-
pling into the MiM fiber and possible
length drifts of the fiber cavity. Param-
eters: cryostat temperature stable at
TMiM = 500 mK.
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yields a lower boundary of the passive length stability of the cryogenic MiM system.
In the presented measurement in Figure 3.6 the passive stability of the fiber cavity
length is so good that the optical spring effect (see Figure 3.5) (including the shift of the
mechanical resonance frequency and the optomechanical damping Γopt) is completely
negligible. However, in cycled experiments with beam powers on the order of 1 mW
the thermal load of the laser can lead to a significant length change of the cavity
and a potentially non-negligible optical spring effect. Therefore, we always monitor the
cavity transmission signal (or the lattice reflection photodiode, see Figure 2.22) during
cycled experiments to ensure that the thermal length drift is on an acceptable level.
All measurements presented in this thesis were performed without using the Pound-
Drever-Hall lock for the fiber cavity (see section 2.4).

3.2 Mechanical systems in the quantum regime

The previous section discussed how the motion of the mechanical oscillator in a cavity
optomechanical system effects the optical mode of the cavity. However, the character-
istic properties of this mechanical motion have not been discussed so far. It can be
described in the framework of a thermally driven mechanical oscillator. This is impor-
tant for understanding the characteristic displacement noise spectra of the oscillator,
their relation to the mechanical mode temperature, the coupling to the environment,
the timescales and sample size of the data acquisition and finally the quantum behavior
near the quantum mechanical ground state. A comprehensive overview on the topic of
nanomechanical systems in the quantum regime can be found in [7, 8, 115]. This section
reviews the most important principles from these publications.
Assume a single, spectrally well isolated mechanical mode of vibration of frequency ωm.
The energy damping rate Γm describes the loss of mechanical energy of the mode and is
related to the Q-factor: Q = ωm/Γm. The motion of the oscillator is generally described
by some global mode displacement xm(t), which can be defined very differently for
different types of mechanical oscillators (consider cantilevers, doubly-clamped beams,
membranes, microdiscs, etc.) or even for different modes of the same oscillator [7]. In
order to describe the mode with the correct mechanical energy, the arbitrary definition
of the mode function is accounted for by meff , the so-called effective mass. This is
especially relevant for the measurement of the mechanical motion (see section 3.2). If
the probe beam changes its size or the position on the mechanical mode function, the
effective mass needs to be adapted in order to obtain the correct energy (or temperature)
of the oscillator. For simplicity, the mechanical mode will in the following be regarded
as being point-like with an effective mass meff = m, which can easily be generalized to
arbitrary mode functions with the corresponding meff 6= m.
The temporal evolution xm(t) of a thermally driven mechanical oscillator can be de-
scribed by the equation of motion

m
dx2

m(t)
dt2 +mΓm

dxm(t)
dt +mω2

mxm(t) = Fth(t) , (3.5)

where Fth(t) denotes the random thermal Langevin force. Equation 3.5 can be solved
in frequency space using the Fourier transform xm(ω) =

∫∞
−∞ xm(t)e−iωtdt:
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−mω2xm(ω) + imωΓmxm(ω) +mω2
mxm(ω) = Fth(ω) , (3.6)

where xm(ω) = χm(ω)Fth(ω) defines the mechanical susceptibility χm, which connects
the external force to the response of the oscillator:

χm(ω) = 1
m(ω2

m − ω2)− imΓmω
. (3.7)

Description in the frequency domain

The quantity 〈|xm(ω)2|〉 = Sx(ω) is called power spectral density (PSD) of the oscillator
displacement. It is related to the force noise PSD SFth via the response function χm:

Sx(ω) = |χm(ω)|2 SFth(ω) . (3.8)

Assuming the force noise SFth is white around the oscillator bandwidth (and using
expression 4.18 to integrate |χm(ω)|2), the (single-sided, ω > 0) displacement PSD
Sx(ω) can be used to calculate the variance of the displacement:

〈x2
m〉 = 1

2π

∫ ∞
0

Sx(ω)dω = 1
4

1
m2Γ2

mω
2 SFth . (3.9)

In thermal equilibrium the mode temperature of the oscillator equals the environmental
temperature Tbath and the equipartition theorem relates the variance of the displace-
ment to this temperature: 1

2mω
2
m〈x2

m〉 = 1
2kBTbath. In this way, the relation between

the single-sided force noise PSD SFth and the properties of the oscillator can be found:

SFth = 4kBTbathΓmm. (3.10)

This Fluctuation-Dissipation Theorem shows that the force noise PSD can be obtained
directly from the oscillator properties, without knowing its microscopic origin [7].
Out of equilibrium the force noise is no longer given by equation 3.10 and the oscillator
temperature Tmode can be different from Tbath. However, the first equality in equation

Figure 3.7: The oscillator in frequency and time domain. (a) Displacement noise PSD
Sx(ω) of a damped harmonic oscillator with natural damping rate Γm. The area under the
curve is proportional to the mode temperature. (b) Brownian motion of the oscillator in time
domain (schematic) with amplitude and phase fluctuations on a time scale set by Γ−1

m . Figure
taken from [8].
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3.9 is always valid and one can define the general expression for the effective mode
temperature of the oscillator:

Tmode = mω2
m

kB
〈x2

m〉 = mω2
m

kB
· 1

2π

∫ ∞
0

Sx(ω) dω. (3.11)

Hence, the mode temperature of the oscillator can be obtained by integrating the
displacement PSD Sx(ω), which yields the area under the PSD curve depicted in Figure
3.7 (a). For weak damping (Γm � ωm ⇔ Q� 1) this curve can be approximated by a
Lorentzian of width Γm:

Sx(ω) = |χm(ω)|2 SFth(ω) = 4kBTbathΓm
m

1
(ω2

m − ω2)2 − Γ2
mω

2

⇒ Sx(ω ≈ ωm)
Q�1
≈ kBTbath

mω2
m

Γm

(ωm − ω)2 + Γ2
m
4

.

It should be noted that in the quantum regime (kBT ≈ ~ωm) the noise PSD becomes
asymmetric around ωm [117].

Description in the time domain

The time evolution of the thermally driven oscillator is of particular importance for
the experimental determination of the mode temperature Tmode ∼

∫∞
0 Sx(ω). This is

because the expectation value 〈|xm(ω)2|〉 = Sx(ω) of the displacement PSD can in
principle only be measured over an infinite time or an infinite number of experimental
runs. For this, the analysis of the theoretical time evolution xm(t) of a thermally driven
oscillator is necessary to estimate the principle limitations of experimental temperature
determinations.
If a thermal noise force Fth(t) drives the oscillator with random kicks, the oscillator
vibrates with its resonance frequency ωm but its phase and amplitude vary on a much
larger timescale, as depicted in Figure 3.7 (b). The auto-correlation functions of the
displacement, amplitude and phase all fall off at time scales ∼ Γ−1

m [7].
Due to the Brownian motion of the oscillator the displacement PSD Sx(ω) for tempera-
ture measurements must be acquired for a period τ � Γ−1

m . However, this is experimen-
tally not always possible, for example if a short interaction in the hybrid experiment is
investigated. Therefore, the experiment must be performed many times N in order to
obtain a meaningful temperature estimation. In [118] the Brownian motion was simu-
lated numerically and the measurement error of the temperature Tmode of N averaged
time traces of duration τ (with sufficient time separation � Γ−1

m ) was quantified as:

∆Tmode = Tmode√
N(1 + τΓm/2)

. (3.12)

Description in the quantum regime

For very low mode temperatures (kBTmode ≈ ~ωm), the classical description breaks
down and the quantized energy-level structure of the mechanical oscillator becomes
important. The quantum mechanical treatment yields the Hamiltonian Ĥ = ~ωm(b̂†b̂+
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1
2) with the phonon creation (b̂†) and annihilation (b̂) operators. These are related to
the position and momentum operators via x̂ = xzp(b̂†+ b̂), p̂ = imωmxzp(b̂†− b̂), where

xzp =
√

~
2mωm

(3.13)

is the zero-point fluctuation amplitude in the mechanical vacuum state |0〉. The quantity
b̂†b̂ in the Hamiltonian is the phonon number operator, whose average yields the average
phonon occupation n̄m of the quantum mechanical oscillator: n̄m = 〈b̂†b̂〉.
The zero-point fluctuations lead to finite quantum thermal fluctuations at zero temper-
ature which implies that in the quantum regime Tmode 6= Tbath and at zero temperature
the oscillator temperature saturates at the zero-point energy: T zp

mode = 1
2~ωm/kB. In

the semi-classical approach (by replacing the force noise of equation 3.10 by the Callen
and Welton equation [7, 117]) the average phonon occupation becomes:

n̄m =
[
exp( ~ωm

kBTbath
)− 1

]−1
= kBTmode

~ωm
− 1

2 . (3.14)

At the temperature T n̄=1
bath = ln(2) ~ωm/kB the average phonon occupation is n̄m = 1

and the probability of finding the oscillator in the ground state is 50%. In the context
of optomechanics, cooling a mechanical oscillator into the ground state usually means
a phonon occupation n̄m ≤ 1.
While classically the effect of mechanical dissipation is described by the decay of the
amplitude at the damping rate Γm, the quantum mechanical description relies on the
average phonon number. Assuming that the oscillator is initially in the ground state,
n̄m(t = 0) = 0, the average phonon number will evolve according to n̄m(t) = n̄th(1 −
e−Γmt), where n̄th is the average phonon number of the environment. Hence, the rate
at which the oscillator is heated out of the ground state is

d
dt n̄(t = 0) = n̄thΓm ≈

kBTbath
~Q

. (3.15)

The quantity Γth = n̄thΓm is often referred to as the thermal decoherence rate. Another
important quantity is the so-called Qf product [8, 73, 83], which is proportional to the
ratio of the mechanical frequency ωm and the thermal decoherence rate:

ωm
Γth

= Qfm ×
(

h

kBTbath

)
(3.16)

The Qf product gives the number of quantum coherent oscillations of an oscillator which
is initially prepared in a quantum state and gets heated out of the quantum regime by
the environment.

3.3 Homodyne detection of mechanical motion

The motion of the mechanical oscillator in the MiM device modulates the resonance
frequency of the cavity, as discussed in section 3.1. This leads to a phase modulation of
the reflected light from the cavity, which can be read out with a phase sensitive detector.
Balanced homodyne detection [99, 100] is a standard detection scheme for phase sen-
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sitive measurements of a laser beam, which is capable of being quantum noise limited.
This section outlines the basic principles of homodyne measurements in cavity optome-
chanical devices, the realized experimental setup and characterization measurements
on the performance of the detection. Finally, homodyne characterization measurements
on the mechanical oscillator will be presented together with a comprehensive listing of
the optomechanical properties of the MiM device.

Principles of continuous weak measurements

Homodyne detection is based on a signal beam which is brought into interference with
a local oscillator beam that serves as a phase reference. This interference signal yields
a measure of the signal phase. In contrast to heterodyne detection, the signal beam
is derived from the local oscillator itself. Through a coherent subtraction of the two
outputs of a beam splitter, all the noise contributions of the local oscillator can in
principle be suppressed, while the difference signal scales with the amplitude of the
local oscillator. This scheme is called balanced homodyne detection [99] and can be
shot-noise-limited.
The optomechanical coupling of the mechanical oscillator in the cavity converts the
displacement x of the oscillator to a phase shift φ ∼ gmxm/κ [8, 117]. If N photons
interact with the cavity, the uncertainty relation between photon number and phase
yields a shot-noise-limited imprecision δφ = 1/2

√
N [8, 117]. This means that a very

intense flash of light can produce an instantaneous phase (and position) detection with
arbitrary precision. This leads to strong squeezing of the mechanical position quadra-
ture, which will be discussed later in the context of pulsed optomechanics (see section
4.5). However, this intense pulse disturbs the oscillator through a large momentum kick,
which can be seen as a measurement back-action on the oscillator. Usually the oscilla-
tor is continuously probed with a rather weak detection beam with an optimal power
that corresponds to minimum shot-noise and minimum radiation pressure back-action.

Figure 3.8: The standard quantum limit
of displacement sensing. (a) Total mea-
sured noise PSD Stot

x (ω) of a mechanical os-
cillator including its intrinsic displacement
noise, the imprecision noise of the detector
and the back-action noise from the radia-
tion pressure of the detection beam. (b) PSD
Stot

x (ω) evaluated at the mechanical noise
peak at ωm as a function of the detection
beam power. At low powers, imprecision noise
dominates, while at larger powers the back-
action noise dominates. Figure taken from [8].
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This so-called standard quantum limit (SQL) [8, 117] represents a fundamental uncer-
tainty principle. Nevertheless, through variational readout the sensitivity can become
even better than the SQL, which was demonstrated in a MiM system similar to our
configuration [119].
In summary, the optimal detection sensitivity is reached with a quantum-noise-limited
detector which operates at an optical power which corresponds to the SQL of the cavity
optomechanical device.

Experimental setup

The homodyne setup was built and characterized by T. Wagner during his Master’s
thesis [116]. This subsection very briefly outlines the most important technical features.
We derive our homodyne detection beam from the Ti:sapph laser in the coupling laser
system, as shown in Figure 2.21. Since many technical details are related to the realiza-
tion of active feedback cooling, these will be discussed later in section 4.3.2. A detailed
sketch of the balanced homodyne setup is shown in section 4.3 (see Figure 4.8 and B.1).
Specifically, we use a digital AOM driver in the homodyne branch to reduce phase noise
and control the detection beam power with a photodiode which is located directly at the
PBS cube in the lattice beam telescope T2 (see Figure 2.22). Through this telescope, the
homodyne detection beam is coupled into the planar fiber of the MiM system together
with the coupling beam at orthogonal polarizations. The measurements presented in
this thesis were performed with a detection beam power of approximately 150 µW
(power in the fiber entering the MiM device).
An important issue is the generation of the error signal for the homodyne phase lock.
Although the most simple solution is to use the DC part of the balanced homodyne
signal as the error signal, this causes problems with electronic noise in the homodyne
measurement of the oscillator. Therefore, we generate the phase lock signal with an-
other photo detector using residual light from the PBS where the detection beam is
superimposed with the local oscillator (LO) (see Figure 4.8). Another important feature
is the optical isolator in the detection beam (see Figure B.1), which prevents that light
which is amplitude modulated through interference with the LO gets reflected back
into the MiM device. We observed that this light can potentially drive the mechanical
oscillator. Particular care was also taken to optimize the common mode rejection of the
balanced detection.

Characterization measurements

In order to estimate the frequency dependency of the detection noise floor of the homo-
dyne setup, a broadband spectral measurement of the homodyne signal was acquired,
as shown in Figure 3.9. The measured spectral noise PSD is denoted by Sy(ω), which
is the sum of the displacement noise PSD Sx(ω) of the mechanical oscillator and the
imprecision noise Sxn(ω) of the detector (note that this relation does not hold during
active feedback cooling: Sy(ω) 6= Sx(ω) + Sxn(ω), as discussed later in section 4.1).
The measurement shows that the detection noise floor Sxn(ω) becomes flat for ω/2π >
50 kHz and is below the measured signal Sy(ω) in a broad frequency interval. In a
separate measurement, we verified that all the noise peaks for ω/2π > 100 kHz which
are not related to the membrane modes do not come from vibrations in the MiM
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Figure 3.9: Broadband spectral measurement of homodyne signal.Measured electronic
noise spectral density

√
Sy(ω) of the homodyne signal from the MiM device. The circles indicate

the (m,n) eigenmodes of the membrane, while the triangles mark peaks originating from the
intrinsic 91 kHz modulation of the Ti:sapph laser. The red noise signal corresponds to the
electronic noise of the detector if the detection light is blocked. Parameters: TMiM = 480 mK,
light power 5 µW, acquisition with spectrum analyzer: span 10 kHz to 1 MHz and BW 30 Hz,
properties of the optomechanical system summarized in table 3.1. Figure taken from [85].

system. This was proven by tuning the cavity far off-resonant. Hence, these peaks must
originate from phase noise or intensity noise of the laser, which is not generated by the
MiM cavity. It could also be proven that all of these noise peaks (except for the second
Ti:sapph harmonic at 180 kHz) are mostly related to phase noise, because blocking the
detection beam (measuring only the LO) could fully suppress these noise peaks. The
fact that these peaks are mostly related to phase noise is also the reason why they are
not fully suppressed by the common mode rejection of the balanced detection.
The fact that the (2,2) mode is not visible in the spectrum is caused by the centering
of the fiber mode in the middle of the membrane, as described in section 2.3.3. The
very small mode field diameter of the fiber cavity mode is thus very well centered on
the node line of the even modes, where the displacement is zero.
In order to verify that our homodyne detector operates in the shot-noise-limited regime,
the detection beam power was varied and the detection noise floor around 250 kHz was
measured. As expected for a shot-noise-limited detection (see above), the noise floor
spectral density

√
Sxn decreases with a square-root law if the detection beam power is

increased.

Homodyne calibration for thermometry

This subsection describes how the mode temperature of the oscillator can be measured
in practice using homodyne detection. As described in section 3.2, the mode tempera-
ture of the mechanical oscillator can be obtained directly from the displacement PSD
Sx(ω). However, the signal from the homodyne detector is just a voltage signal which
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is proportional to the oscillator displacement. Therefore, the homodyne signal needs to
be calibrated in order to measure the oscillator displacement PSD.
Method 1: parameter estimation. The calibration factor between the homodyne
voltage U and the oscillator displacement xm is given by ∂U/∂xm, which can be de-
composed into three individual factors. Firstly, the optomechanical coupling gm =
∂ωcav/∂xm, which denotes the change of the resonance frequency in the cavity for
a given oscillator displacement. Secondly, this change of the resonance frequency is
related to a phase change of the reflected light from the cavity which is given by the
quantity ∂φ/∂ωcav. Finally, this phase change leads to a certain voltage signal of the
homodyne detector, which is given by the quantity ∂U/∂φ. With these three quantities
the homodyne calibration factor is given by:

∂U

∂xm
= ∂ωcav

∂xm

∂φ

∂ωcav

∂U

∂φ
. (3.17)

If this calibration factor and the effective mass (see section 3.2) are known, the dis-
placement PSD Sx(ω) can be measured1 and the mode temperature can be calculated
using equation 3.11.
In the Master’s thesis of T. Wagner, three different ways to measure the factors in
equation 3.17 for our MiM system were presented [116]. As shown there, one method
yields the most promising result, which works as follows. Firstly, we measure the two
factors ∂ωcav

∂xm
∂φ

∂ωcav
= ∂φ

∂xm
in one single step. For this, the membrane is displaced by

a known distance ±∆xm which shifts the resonance frequency of the fiber cavity and
reveals the line shape of the cavity resonance (this can be done by changing L1 and
L2 at constant L0 = L1 + L2 using the piezo tube calibration of the cavity fibers, see
Figure 3.3). By measuring the line shape of the Lorentzian reflection dip, the phase
change ∂φ/∂xm can be estimated by a fit to the Lorentzian. This yields a phase change

∂φ

∂xm
= 0.93 rad

nm . (3.18)

Finally, we determine the homodyne voltage per phase change ∂U/∂φ by scanning the
phase of the local oscillator (LO) by multiples of 2π (using the phase lock piezo), which
leads to a sinusoidal interference signal with a peak-to-peak voltage Vpp and a maximum
slope of ∂U/∂φ = Vpp/2. While ∂φ/∂xm is a fixed quantity of our aligned MiM system
(see subsection 3.1), the quantity ∂U/∂φ depends on many critical parameters (fiber
couplings, the spacial overlap between the LO beam and the detection beam, etc.).
Therefore, we measure Vpp on a daily basis and obtain the homodyne calibration

∂U

∂xm
= 0.93 rad

nm ·
Vpp
2 . (3.19)

To calculate the mode temperature from the calibrated displacement spectra, we esti-
mate the effective mass meff of the (1,1) mode (ωm/2π = 264 kHz at TMiM = 500 mK)
of our membrane oscillator to be meff = 1

4 mphys = 76 ng (see section 3.4).

1If Sx(ωm) � Sxn (ωm), the measured PSD Sy(ω) is approximately equal to Sx(ω) and the inte-
grated, measured PSD Sy(ω) is a very good estimate for the mode temperature. For very low mode
temperatures, the real displacement PSD Sx(ω) can be determined by a fit, as presented in section
4.4.3
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Method 2: Direct calibration. Another possible way to calibrate the homodyne
signal is to measure the homodyne noise spectrum at a known oscillator mode tem-
perature (or a known temperature change). The advantage is that the result is the
least prone to errors, because all factors in equation 3.17 and the effective mass are
obtained simultaneously. The disadvantage is that the different factors in the product
Tmode ∼ meff(∂xm

∂U )2 ∫∞
0 SU

x dω can not be determined individually (using the voltage
PSD SU

x = 〈|U(ω)2|〉 in equation 3.11). Furthermore, the measurement is very time
consuming and can not be done on a daily basis. This is why we performed this method
only once as a validation of the method 1 presented above. In this way, we combine the
advantages of both methods to achieve on the one hand a reliable, very good estimate
of the mode temperature, which on the other hand can be easily checked by measuring
Vpp before and after each optomechanical experiment.
In order to adjust the mode temperature of the oscillator for the calibration, the tem-
perature of the MiM device TMiM was altered between 1.5 K and 37 K and the mode
temperature of the oscillator was measured for each cryostat temperature. Special care
needs to be taken since the fine-alignment of the optomechanical coupling gm (see sub-
section 3.1) changes with TMiM and needs to be readjusted for each cryostat tempera-
ture. Furthermore, we observe that the mode temperature very slowly approaches the
steady state value after TMiM was changed, which might be caused by a weak thermal
link between the copper MiM structure and the membrane frame at low temperatures.
Hence, one needs to wait approximately 1 h after TMiM was adjusted until Tmode can
be measured.
Figure 3.10 shows the measured mode temperatures Tmode as a function of the MiM
temperature TMiM and a linear fit to the data. It shows that the mode temperature
is significantly larger than the cryostat temperature. This is consistent with the mode
temperature of ≈ 3 K which we usually observe in experiments at the cryostat base
temperature of 500 mK (see for example section 4.4) and which lies within the 95%
confidence interval of the y-intercept of the linear fit curve. The reason for the larger
mode temperature is unclear. However, it must be some kind of noise in the system
which is not related to the temperature related thermal noise in the membrane frame.
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Figure 3.10: Mode temperature for dif-
ferent cryostat temperatures. Mode tem-
peratures Tmode of the oscillator as a function
of the MiM temperature TMiM, calculated with
the homodyne calibration from equation 3.19
with meff = 76 ng. Fit result (red line): slope
sc = 1.23±0.22, y-intercept 7.3±4.3K. Acqui-
sition: TMiM measured with sensor in MiM de-
vice (see Figure 2.6), Tmode measured in zero-
span mode of lock-in amplifier (as described in
section 4.4.1): N ≈ 15 sample traces of dura-
tion τ ≈ 1 min, demodulator BW 1 kHz. Each
data point is the average of N ≈ 15 temper-
ature values obtained by time averaging each
temperature time trace, the error bars corre-
spond to their standard deviation.
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For example, the dither piezo element on the membrane shuttle (see Figure 2.7) might
act as a transducer between electric noise coupled in from outside of the cryostat and
mechanical vibrations in the MiM system which drive the membrane. Most likely, the
reason is not related to heating through the detection laser, because we observe no
significant increase of the mode temperature if the laser power is increased.
Nevertheless, the actual result of the measurement is the slope of the fit curve. It must be
exactly one and any deviation from this value must originate from a wrong temperature
estimation of Tmode through the homodyne calibration in equation 3.19. This can be
understood as follows. Assuming that the oscillator is in thermal equilibrium with the
environment and the thermal Langevin force is the only force that acts on the oscillator,
the mode temperature is equal to the temperature of the environment: Tmode = Tbath
(as long as kBTmode � ~ωm). Hence, for an ideal homodyne calibration, the slope in
Figure 3.10 must be one. If an additional, temperature independent force acts on the
oscillator (⇒ Tbath 6= Tmode as in our case), this will lead to an increase of Tmode that
is independent of Tbath. Hence, the slope of Tmode as a function of Tbath will also be
equal to one.
Final calibration. We account for the deviation of the slope sc = 1.23 · (1 ± 0.18)
from one (see Figure 3.10) by adding √sc as an additional correction factor into the
homodyne calibration in equation 3.19:

∂U

∂xm
= √

sc · 0.93 rad
nm ·

Vpp
2 . (3.20)

In this way, the calculated mode temperature Tmode ∼ meff(∂xm
∂U )2 ∫∞

0 SU
x dω (using the

voltage PSD SU
x = 〈|U(ω)2|〉 in equation 3.11) yields the correct value and the slope in

Figure 3.10 is equal to one. By measuring the voltage Vpp
2 before every optomechanical

experiment, we can perform mode temperature measurements of our oscillator with a
systematic error of less than 20% (the relative error of sc) using this calibration. All the
measured mode temperatures shown in this thesis have this systematic error. However,
this systematic temperature error will be omitted and only statistical errors from each
measurement will be indicated (unless stated otherwise). The specified values for PSDs
like for example the detection noise Sxn have the same systematic error, assuming that
the estimated effective mass is correct.
The calibration also allows for the determination of the homodyne displacement noise
floor PSD Sxn around the oscillator frequency ωm. We perform our measurements with
an LO power of 12 mW (the destruction threshold of the one single photodiode of
the balanced detector is 10 mW, see appendix B.2) and a detection beam power of
approximately 150 µW which yields Sxn = 8.5 · 10−33 m2

Hz = 0.0085 fm2

Hz . This is the
best detection noise floor which could be achieved in this setup, after implementing a
digital AOM driver for the homodyne beam (with a significant enhancement) and after
adjusting the beam powers mentioned above. It corresponds to the usual measurement
configuration with the MiM cavity on resonance.

2In practice, we measure Vpp at a low detection beam power and scale the value according to the
final measurement power, because at the final power the photodiode clipps at ±10 V. Furthermore, we
scale Vpp by 0.95

2 , where 0.95 accounts for the losses of the bandpass (see Figure 4.8, appendix B.3)
and the factor 1

2 accounts for the fact that Vpp is measured at high-Z, while the oscillator is measured
parallel to a 50 Ω resistor (see section 4.3.2).
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3.4 Optomechanical properties of the MiM device

This section summarizes the optomechanical properties of the cryogenic MiM device.
All measurements presented in this thesis were performed with this MiM setup.
Empty fiber cavity. Assuming a Finesse of F0 = 60 ± 2 (see Figure 2.15) and a
reflectivity on resonance ρ = 0.76± 0.013 (see equation 2.2), one can use a plot similar
to Figure 2.8 to give an estimate on the mirror power reflectivities R1 and R2 of the
cavity fibers: R1 = 0.907 ± 0.004, R2 = 0.994 ± 0.001. For this, the lower error bound
of ρ was estimated to be slightly larger than the reflectivity on resonance σref = 0.73
of the empty fiber cavity.
MiM fiber cavity. The aligned MiM system has a reflectivity on resonance σref = 0.61
(see appendix A.1) and a finesse Fm ranging from 45 to 160 [116], depending on the
membrane position [115]. The optomechanical coupling also depends on the membrane
position, as shown in Figure 3.3: gm = 2π × −12.5 · · · 15.9 GHz/nm. Compared to the
optomechanical coupling for a moving end mirror (see equation 3.1), this corresponds
to gm = gminm · · · gmaxm = −0.77G · · · 0.98G with G = 2π×16.2 GHz/nm. At the point of
highest optomechanical coupling gmax

m , the finesse is also maximal (corresponding to a
minimal width of the transmission peak, see subsection 3.1). This behavior corresponds
to an effective cavity linewidth κm = ωFSR/Fm, which also depends on the membrane
position: κm = 2π×40 · · · 140 GHz. The FSR of the MiM cavity is ωFSR = 2π×c/2Lcav =
2π×6.33 THz for a cavity length Lcav = 23.7 µm, which was measured with white-light
spectroscopy (see section 2.3.3).
Mechanical oscillator. Our membrane oscillator is a commercially available high-
stress Si3N4 square membrane from Norcada with the dimensions 1.5 mm × 1.5 mm ×
50 nm and a ground mode frequency of the (1,1) mode of ωm = 2π × 263.9 kHz at
TMiM = 500 mK. At this temperature we also determined a Q-factor ofQ = 1.07579(15)·
107 through a ringdown measurement [85]. This corresponds to a natural mechanical
linewidth of Γm = ωm/Q = 2π × 24.5 mHz. This yields ωm/Γth ≈ 30 at the cryogenic

Optomechanical MiM parameters
ωm 2π × 263.9 kHz ωcav 2π × 384 THz
Q 1.07579(15) · 107 Lcav 23.7 µm
Γm 2π × 24.5 mHz κm 2π × 40 · · · 140 GHz
meff 76 ng F0 60
xzp 6.47× 10−16 m Fm 45 · · · 160
f1,1 ×Q 2.8× 1012 gm 2π ×−12.5 · · · 15.9 GHz/nm
ωm/Γth 30 g0 2π × 10.3 kHz
Sxn 8.5(15) · 10−33 m2

Hz G 2π × 16.2 GHz/nm

Table 3.1: Proporties of the MiM device at a cryogenic temperature of TMiM = 500 mK, which
was used for the measurements presented in this thesis. All the oscillator parameters corre-
spond to the (1,1) mode of the membrane. We work at the point of maximal optomechanical
coupling gmax

m = 15.9 GHz/nm and maximal finesse Fmax
m = 160, which corresponds to a mini-

mal linewidth κmin
m = 2π× 40 GHz. Fitting gm(xm) (see Figure 3.4) indicates a membrane field

reflectivity rm = 0.38. The detection noise floor Sxn corresponds to a homodyne LO power of
12 mW and a detection beam power of about 150 µW (see end of section 3.3).
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base temperature TMiM = 500 mK, which means that our system operates in the quan-
tum coherent oscillation regime (see equation 3.16). The achieved optomechanical cou-
pling in the MiM system indicates a membrane field reflectivity rm = 0.38 (see section
3.1). We estimate the effective massmeff of the (1,1) mode to bemeff = 1

4 mphys = 76 ng,
assuming ρ = 2700 kg

m3 [115, 120] for high stress Si3N4 films. The factor 1/4 corresponds
to a configuration with an infinitely small probe beam, which is exactly centered in the
middle of the membrane [115]. Due to the very small mode field diameter of the fiber
cavity mode and the precise centering of the fibers with respect to the membrane center
(indicated by the absence of the peak of the (2,2) mode in Figure 3.9), this is a good
approximation. For this effective mass, the zero-point fluctuation of the (1,1) mode is
xzp =

√
~/2meffωm = 6.47×10−16 m (see equation 3.13). This yields a maximum single

photon optomechanical coupling strength of g0 = gmax
m · xzp = 2π × 10.3 kHz.



Chapter 4

Feedback cooling

In the course of this thesis, feedback cooling of a mechanical oscillator to
a mode occupation of nm = 18.5 ± 3.3 was realized using optical homo-
dyne feedback. This chapter focuses on the principles of feedback cooling
and evaluates the experimental results in the context of fundamental limits
and future enhancements.

It was shown in section 3.2 that the mechanical oscillator temperature is proportional
to the mean square displacement 〈x2〉 of its random motion. If this quantity is reduced,
the oscillator gets cooled. The easiest way of achieving this is to reduce the thermal
noise force that drives the oscillator by placing it in a cryogenic environment. In the case
of high frequency oscillators with resonance frequencies ωm/2π > 1 GHz the oscillator
temperature of the quantum zero-point motion is Tmode > 1

2~ωm/kB ≈ 25 mK (see
equation 3.14) which is accessible with cryogenic cooling. For low frequency oscillators
this temperature is accordingly smaller and the only way of cooling below the thermal
bath temperature of the oscillator environment is applying an additional force that
reduces the motion of the oscillator. This force can be generated passively in cavity
optomechanical systems that operate in the so-called resolved sideband regime and is
often referred to as self-cooling. Several oscillators were cooled to the quantum ground
state using optomechanical self-cooling [38–44]. Due to the experimental demands in
building a hybrid quantum system, our optomechanical system is far away from the
resolved sideband regime (see table 3.1) and operates in the so-called bad cavity regime.
Nevertheless, even if passive self-cooling is not possible, the cooling force can also be
applied actively. This procedure is called active feedback cooling or cold damping and
it was shown theoretically that it also allows for ground state cooling [121, 122], even
though it is technically very challenging and has not been realized to date.
The basic principle of feedback cooling is to obtain the position x(t) of the oscillator (for
example by a phase-sensitive detection of the cavity output) and generate a negative
feedback force Ffb(t) = −mΓfbẋ(t) which is proportional to its velocity ẋ(t). This
increases the natural damping rate Γm of the oscillator to the new effective damping
rate Γeff = Γm + Γfb without changing the coupling rate to the thermal bath of the
environment. This feedback damping can be understood as cooling by coupling the
oscillator to a bath of near zero temperature (for example the laser field in case of
optical feedback). This reduction of entropy of the oscillator is finally limited by the
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entropy due to the imperfect estimation of the position x(t) of the oscillator [69].
The feedback cooling scheme was originally proposed in 1998 [123] and first realized in
1999 in Paris at LKB [68]. The mechanical oscillator was a compression mode of one
end mirror of a high finesse cavity and the feedback was applied by a 500 mW AOM-
modulated laser beam. This beam reduced the temperature of the mirror compression
mode by a factor of 40. In 2006, Kleckner and Bouwmeester actively cooled a fm =
12.5 kHz beam cantilever from room temperature to 135 mK [124]. A micro mirror
attached to the cantilever served as the end mirror of a cavity and a second laser was
used to apply a feedback force via radiation pressure. In the same year, Arcizet et al.
feedback cooled a millimetre-scale oscillator in an optical cavity to 5 K by applying an
electrostatic feedback force [125]. In 2007, Poggio et al. cooled a silicon cantilever with
resonance frequency ωm ≈ 2π× 4 kHz from 2.2 K to 5 mK by applying a feedback force
with a piezo element [126].
One main research goal of feedback cooling at that time was to cool the mirrors of
gravitational wave detectors in order to reduce their thermal noise and improve the
phase sensitivity of the measurements. In 2008, the ton-scale gravitational wave detector
AURIGA was feedback cooled from 4.2 K to 170 mK [127]. One year later the kilogram-
scale mirrors of the LIGO gravitational wave detector were cooled to a mode occupation
of nm ≈ 200 [128]. Since the effective resonance frequency of these mirrors is only
ωm ≈ 2π × 150 Hz, the corresponding temperature is only 1.4 µK which is the lowest
mechanical oscillator temperature reported to date. Recent achievements in the context
of feedback cooling are cooling of a microdisc whispering gallery mode oscillator to a
mode occupation of nm ≈ 5 in 2014 [69] and enhancement of feedback cooling by
squeezed light in 2016 [129].
To date, feedback cooling of a mechanical oscillator to the quantum ground state has
not been realized experimentally. However, a full quantum mechanical treatment reveals
that feedback cooling to the quantum ground state is possible [122]. A brief discussion
of the quantum mechanical description of feedback cooling and quantum noise contri-
butions will be presented at the end of section 4.1.

4.1 Principles of feedback cooling

Feedback cooling aims at the reduction of the motion of an oscillator by active feedback
control. This means that the motion is detected and the signal is fed back to the oscil-
lator as a damping force in a closed feedback loop. This is a classical problem of control
theory and has been intensively studied as a field of mathematics and engineering since
the beginning of the industrial revolution. In 1867, James Clerk Maxwell studied the
dynamical behavior of a centrifugal governor which controls the speed of a steam engine
[130], which is an early example of a technical feedback system.
Feedback systems are generally described by a linear system representation in frequency
space, as depicted in Figure 4.1. A thermal noise force Fth(ω) acts on the system and
is converted into oscillator displacement x(ω) by the intrinsic mechanical susceptibility
χm(ω) = x(ω)/Fth(ω). A detector adds noise xn(ω) to the displacement which adds up
to a detection signal y(ω) = x(ω) + xn(ω). This signal is the so-called in-loop detection
signal and it can be observed for example on a spectrum analyzer. This signal is fed



Principles of feedback cooling 67

back to the oscillator to generate a feedback force

Ffb(ω) = −χ−1
fb (ω) [x(ω) + xn(ω)] ≡ −χ−1

fb (ω) y(ω) (4.1)

which is linear in the measured displacement y(ω). The feedback force is the product
of the detection signal and the feedback filter function χ−1

fb (ω). Notably, stochastic
fluctuations of the feedback actuator (a thermal component Ffb,th) are neglected. This
feedback force then adds up to the thermal Langevin force Fth that acts on the oscillator.
The new effective susceptibility χeff(ω) of this closed loop system can be calculated
using the equation for the subsystem of the input and output of the oscillator (see
Figure 4.1):

x = χm [Fth + Ffb] . (4.2)

If the feedback force in this equation1 is expressed through the feedback filter function
this yields

χ−1
m x = Fth − χ−1

fb (x+ xn)

⇔
(
χ−1

m + χ−1
fb

)
x ≡ χ−1

eff x = Fth − χ−1
fb xn (4.3)

⇔
(
χ−1

m + χ−1
fb

)
(x+ xn) ≡ χ−1

eff y = Fth + χ−1
m xn. (4.4)

Hence, the inverse effective susceptibility is χ−1
eff = χ−1

m +χ−1
fb . Using the expression for

the susceptibility of a mechanical oscillator (see equation 3.7) one can obtain the closed
loop feedback transfer function

χeff(ω) = 1
χ−1

m (ω) + χ−1
fb (ω)

= 1
m (ω2

m − ω2 − iωΓm) + χ−1
fb (ω)

. (4.5)

Compared to the susceptibility χm of an unperturbed oscillator with spring constant
km = mω2

m, the new effective spring constant is altered by the real part of the feedback
filter function χfb(ω) to k′m = km (1 + Re[χ−1

fb ]/km). This shifts the resonance frequency
to ω′m = ωm

√
1 + Re[χ−1

fb ]/km. The real part of χ−1
fb generates a feedback force that is

purely proportional to the position x(t) of the oscillator.
1Equation 4.27 yields a more precise calculation including back-action and thermal feedback noise.

Figure 4.1: Linear system representation of the feedback cooling scheme. A thermal
noise force Fth drives an oscillator and is translated into displacement x by its mechanical
susceptibility χm. A detector adds noise to the signal that adds up to the detector output
y = x + xn which is monitored and also fed into the feedback cooling loop. The feedback
filter function χ−1

m converts y into a feedback force Ffb which adds up with the environmental,
thermal force Fth. Figure adapted from [7].
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Hence, one can define a displacement-proportional feedback gain gd such that

k′m = km (1 + gd) , gd ≡ Re[χ−1
fb ]/km. (4.6)

The effective susceptibility χeff (see equation 4.5) also shows that the imaginary part
of χfb(ω) changes the oscillator damping to Γ′m = Γm(1 − Im[χ−1

fb ]/mωΓm). It is pro-
portional to the velocity ẋ(t) of the oscillator. Therefore, we can define a velocity-
proportional feedback gain gv such that

Γ′m = Γm (1 + gv) , gv ≡ −Im[χ−1
fb ]/mωΓm. (4.7)

Equivalently, the feedback filter function can be expressed through these feedback gains:

χ−1
fb =

(
gd gv

)
·
(

km
− imωΓm

)
. (4.8)

Equations 4.3 and 4.4 define the real oscillator displacement x(ω) and the in-loop de-
tected displacement y(ω) by its susceptibilities and the forces acting on the oscillator.
Based on these results, the power spectral densities (PSDs) of these oscillator displace-
ments in the feedback loop can be calculated. The single-sided PSD for the real, physical
oscillator displacement x(ω) is

Sx(ω) = 〈x(ω)x∗(ω)〉
= |χeff |2 〈Fth(ω)F ∗th(ω)〉 + |χeff |2 |χfb|−2 〈xn(ω)x∗n(ω)〉
= |χeff |2 SFth(ω) + |χeff |2 |χfb|−2 Sxn(ω)

⇔ Sx(ω) = |χeff |2
[
SFth(ω) + |χfb|−2 Sxn(ω)

]
, (4.9)

where the frequency dependency of χeff and χfb was omitted for clarity. The cross terms
including Fth(ω) and xn(ω) drop out since the thermal noise and the detector noise are
uncorrelated. This equation shows that the PSD of the real oscillator displacement still
has its contribution from the thermal noise force but also contains a contribution from
the imprecision noise that is fed back to the oscillator.
The PSD of the measured oscillator displacement Sy(ω) can be calculated in the same
manner:

Sy(ω) = |χeff |2
[
SFth(ω) + |χm|−2 Sxn(ω)

]
. (4.10)

It becomes apparent that the measured PSD signal Sy(ω) is not just the sum of the
real oscillator displacement PSD Sx(ω) and the imprecision noise PSD Sxn(ω). This is
because the feedback loop creates correlations between the noise and the real oscillator
displacement.

Ideal feedback cooling

Feedback cooling aims at minimizing the temperature of the mechanical oscillator and
accordingly a minimization of the integrated PSD of the oscillator displacement (see
section 3.2). This minimization problem is a classical example of optimal control theory
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and the optimal filter function χfb,opt for such problems can be found [7, 131]. The
optimal control problem can be solved by the minimization of the cost function S̄xx(ω),
using the double sided PSD temporarily [69]:

min
χfb

∫ +∞

−∞
S̄xx(ω) dω

2π . (4.11)

The solution of this variational problem can be found by solving

D S̄xx
D χfb

= 0, (4.12)

where D stands for the variational (Gateaux) derivative [69]. This can be solved by
separating magnitude |χfb| and phase φ of the feedback filter function χfb = |χfb| eiφ.
After a simple calculation, by taking the derivative of S̄xx with respect to the phase
(2S̄xx = Sx, since Sx is real-valued), this yields [69]:

φopt ≡ arg (χfb) = arg (χm)

⇔ φopt = arctan
(

ωΓm
ω2

m − ω2

)
≈ ±π2 ∓ 2ω − ωm

Γm
. (4.13)

Hence, for this case of an ideal feedback loop the phase dependency of the feedback
filter function should be equal to the phase of the unperturbed mechanical oscillator
response function. The feedback phase arg (χm) is optimally ±π/2 on resonance and
drops quickly to zero on the order of the natural linewidth Γm. If the phase in equation
4.12 is replaced by this solution, the phase dependency drops out and the derivative
with respect to the magnitude |χfb| can be taken. An equally simple calculation yields

|χfb|opt = χ−1
m

Sxn

SFth

. (4.14)

This shows that for the ideal feedback not only the phase but also the magnitude of
the feedback filter function has a spectral shape related to the unperturbed mechanical
oscillator. That means maximum gain should be applied only for a very small region
around the peak of the mechanical resonance.
It is important to note that the above considerations are idealized in many respects.
The oscillator is assumed to be classical and the feedback loop is a perfect, infinite band
width position-to-feedback transducer without quantum uncertainties and back-action.
If these effects are taken into account the optimal control problem gets more difficult
but remains solvable. The optimal feedback filter function then becomes a rectangular
bandpass filter centered at ωm with a defined width and phase shift π/2 [132]. Notably,
the optimal width of the feedback filter gets larger if the back-action is taken into
account.

Practical feedback cooling

Due to technical limitations, the ideal feedback loop described above is hard to imple-
ment. Although an analog circuit could in principle realize the linear system of Figure
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4.1, analog electronic devices are strongly limited by their bandwidth even for low fre-
quency oscillators with resonance frequencies ωm < 2π × 1 MHz. Furthermore, analog
solutions are less versatile than digital implementations. On the other hand, digital
processing that would just mimic analog circuits is also strongly limited by the compu-
tational speed. Hence, the most effective solution is either a very simple analog circuit
that is just made out of analog filters and an adjustable delay [69, 127, 129, 133] or a
digital feedback loop that mixes the signal down to frequencies that can be processed
in real time [7, 133, 134].
As discussed above, most practical solutions of feedback cooling use a feedback filter χfb
that is broad across the oscillator resonance frequency, both with respect to phase and
magnitude. The phase φ is then adjusted by the feedback signal delay. Two character-
istic cases can be distinguished: φ = π/2 which creates a feedback force proportional to
the velocity of oscillator, and φ = 0 which creates a displacement-proportional feedback
force.

4.1.1 Classical limits of feedback cooling

In order to calculate the effect of the feedback loop on the displacement PSD, the
absolute values of the susceptibility χeff and the feedback filter function χfb can be
expressed through the gains gv and gd (see equations 4.5 and 4.8):

|χfb(ω)|−2 = (gdkm)2 + (gvmωΓm)2

|χeff(ω)|−2 = m2
(
ω2

m (1 + gd)− ω2
)2

+m2
(
ωΓm (1 + gv)

)2
. (4.15)

Using these expressions the real PSD Sx(ω) and the measured PSD Sy(ω) in equation
4.9 and 4.10 can be plotted for different feedback gains. The result is shown in Figure
4.2 for pure velocity-dependent feedback (gd = 0) and purely displacement-dependent
feedback (gv = 0).
In order to evaluate the feedback cooling efficiency in terms of optimal feedback gains
gv and gd, the oscillator mode temperature Tmode can be calculated as a function of
these feedback gains. According to the equipartition theorem the mode temperature is
given by (see equation 3.11):

Tmode = mω2
m

kB
· 1

2π

∫ ∞
0

Sx(ω) dω. (4.16)

Using expressions 4.9 for Sx(ω) and expression 4.15 for the susceptibilities this becomes:

Tmode = ω2
m

2πmkB
SFth

∫ ∞
0

1
(ω′2m − ω2)2 + (ωΓ′m)2 dω

+ ω2
m

2πmkB
Sxn

∫ ∞
0

g2
dk

2
m + g2

v (mωΓm)2

(ω′2m − ω2)2 + (ωΓ′m)2 dω, (4.17)

where SFth and Sxn are assumed to be constant (a very good approximation for rea-
sonable oscillator parameters) and ω′m = ωm

√
(1 + gd) and Γ′m = Γm (1 + gv). With
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π

2Γ =
∫ ∞

0

ω2 dω
(ω2

m − ω2)2 + (ωΓ)2 ,
π

2Γω2
m

=
∫ ∞

0

dω
(ω2

m − ω2)2 + (ωΓ)2 (4.18)

the mode temperature can be calculated as a function of the feedback gains gv and gd:

Tmode = Tbath
(1 + gd) (1 + gv) +

[
kmωmQ

4kB

g2
d

(1 + gd) (1 + gv) + kmωm
4kBQ

g2
v

1 + gv

]
Sxn (4.19)

︸ ︷︷ ︸
cold spring/damping

︸ ︷︷ ︸
T ∼ gd

︸ ︷︷ ︸
T ∼ gv

For pure velocity-proportional feedback gain (gd = 0) this expression is equal to the
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Figure 4.2: Feedback effects on the oscillator displacement PSD. Left column:
Measured in-loop displacement PSD Sy(ω) (top) and real PSD Sx(ω) (bottom) for different
velocity-proportional feedback gains gv. Right column: Sy(ω) (top) and Sx(ω) (bottom) for
different displacement-proportional gains gd. Inset figure: zoom into the relative change of
Sy(ω) for the optimal gain gv,rel = 1. The gains are scaled to gv,rel = gv/

√
SNR (see equa-

tion 4.20, 4.21) and gd,rel = gd · km. Parameters used: Q = 107, Tbath = 0.5 K, m = 97 ng,
Sxn = 1× 10−32 m2 Hz−1 ⇒ SNR = 6.3× 107.
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formula derived by Poggio et al. [126]. The first part of the expression shows that feed-
back cooling (Tmode < Tbath) with pure velocity-dependent feedback is only possible for
gv > 0 and in case of pure displacement-dependent feedback with gd > 0, respectively.
Hence, a stiffening of the spring constant km and increasing ωm can cool the oscillator
through displacement-proportional feedback. Velocity-dependent feedback cooling oc-
curs if Γ′m > Γm. The first term of Tmode is therefore denoted with cold spring and cold
damping. Even if this term goes to zero for large gains, the last two terms proportional
to g2

d and g2
v will lead to an increase of the temperature due to detection noise that is

fed back to the oscillator. Therefore, a global minimum of the temperature exists for
gd/gv ∈ (0,∞). The minimum achievable temperature and the corresponding gain can
be determined by taking the derivative of Tmode with respect to the gains. For this it is
useful to introduce the signal-to-noise-ratio SNR, which denotes the ratio between the
peak oscillator PSD Sx(ωm) and the detector noise level Sxn(ωm). Using equation 3.10
for the thermal force noise PSD SFth the SNR is given by [7]

SNR = Sx (ωm)
Sxn (ωm) = Q2

k2
m

SFth

Sxn(ωm) = 4kBTbath
kmΓmSxn

. (4.20)

For pure velocity-dependent gain gd = 0 this yields:

∂ Tmode
∂ gv

= 0 ⇒ gv,opt =
√

1 + 4kBQT

kmωmSxn
− 1 ≡

√
1 + SNR − 1

⇒ gv,opt
SNR�1≈

√
SNR (4.21)

⇒ Tmode (gv,opt) ≈
2Tbath√

SNR
= ωm

√
mΓmSxnTbath/kB. (4.22)

It becomes apparent that the lowest temperatures with velocity-dependent feedback
cooling can be achieved for a large SNR (at a given Tbath), which benefits from a large
Q-factor, low mass and a low detection noise floor Sxn .
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Figure 4.3: Mode temperature for pure velocity-dependent feedback. Left panel:
relative mode temperature Tmode/Tbath as a function of gain gv for different SNRs. Right panel:
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SNR. This shows that the optimal gain gv,opt is very well

approximated by gv,rel = 1 which corresponds to gv =
√

SNR.
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The same calculation as in 4.22 can be made for displacement-dependent feedback. The
main difference is that the gain for optimal cooling gets smaller for larger Q-factors:
gd,opt =

√
1 + 4kBT/(kmωmQSxn)− 1. Hence, the temperature decrease due to gd > 0

is very small and only significant for very small Q-factors (or small m, small ωm).
The mode temperature for velocity-dependent feedback cooling can be fully described
by the SNR (see Figure 4.3). However, for displacement-proportional feedback the cool-
ing occurs only for parameters that are very different from the parameters in our ex-
periment. This is shown exemplary for different Q-factors in Figure 4.4. The plot shows
that cooling occurs only for extremely small Q-factors for the parameters used and
for large Q-factors the feedback only leads to heating. This is also visible in the PSD
spectra of the right column in Figure 4.2, where the PSD only grows for gd 6= 0. The
effect of heating for parasitic displacement-proportional gains in feedback cooling will
be discussed in the following summary of the different types of feedback.

• Velocity-proportional feedback: For a purely imaginary feedback filter func-
tion χfb the displacement-proportional gain gd is zero (see equation 4.8). The
imaginary part of χfb is proportional to the velocity ẋ(t) of the oscillator and
can be expressed through the velocity-dependent gain gv (see equation 4.7) which
changes the damping of the oscillator to Γ′m = Γm (1 + gv). The resulting mea-
sured displacement PSD of the oscillator Sy and the real PSD Sx are shown in
the left column of Figure 4.2. For increasing gv the oscillator is cold-damped and
the PSD noise peak decreases. The optimal gain is very well approximated by the
square root of the signal-to-noise-ratio SNR (see equation 4.21 and Figure 4.3).
In the case of optimal gain and flat detection noise PSD [Sxn(ω ≈ ωm) = const]
the measured PSD Sy(ω) is also flat: Sy(ω) ≈ Sxn(ωm). The relative deviation
from a perfect flat line is very small and shown in the inset of Figure 4.2. If the gain
gv is further increased, the in-loop measured PSD signal Sy(ω) can even become
smaller than Sxn(ω) and a dip in the spectrum occurs. This phenomenon is known
as noise squashing and it indicates that the detector noise and the displacement
noise of the oscillator are correlated [8]. In this regime the corresponding real os-
cillator displacement Sx(ω) only gets broader, which indicates that for gv > gv,opt
the oscillator temperature increases again. The minimal achievable temperature
is very well approximated by Tmin

mode ≈ 2Tbath/
√

SNR. Hence, the minimum
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achievable temperature with velocity-dependent feedback scales as

Tmin
mode ∼

√
Q−1,

√
m,

√
Sxn ,

√
Tbath.

While the detection noise level Sxn and the cryogenic bath temperature Tbath
quickly run into fundamental and technical limitations, the oscillator mass m
and the Q-factor are promising optimization parameters to reach the quantum
ground state through velocity-dependent feedback cooling. The quantum limits
of feedback cooling will be discussed on the following pages.

• Displacement-proportional feedback: If the imaginary part of χfb is zero, the
feedback force is purely proportional to the displacement x(t) of the oscillator (see
equation 4.8). The real part of χfb is related to the displacement-dependent gain
gd (see equation 4.6) which changes the spring constant of the oscillator to k′m =
km (1 + gd). The resulting measured displacement PSD of the oscillator Sy and
the real PSD Sx is shown in the right column of Figure 4.2. For gd 6= 0 the peak of
the PSD is shifted to higher or lower frequencies. For the parameters used in the
simulation no cooling is visible and the oscillator PSD Sx only increases. Contrary
to velocity-dependent feedback, the PSD becomes asymmetric for gd 6= 0.
As calculated above, the optimal gain gd,opt for displacement-proportional feed-
back cooling gets smaller for larger Q-factors which leads to a negligible cooling
effect unless the oscillator has an extremely small resonance frequency where
large optimal gains are possible (since for large gain gd,opt ∼ ω

−3/2
m ). An example

of displacement-proportional feedback cooling is the gravitational wave detector
LIGO, where the resonance frequency of pendulum mirrors is shifted from sub-
hertz to ≈ 150 Hz. The stiffening of the oscillator spring constant km then leads
to a reduction of thermal motion, which is referred to as “cold spring” [128].

• Mixed feedback: Combinations of gd and gv: If the feedback filter function
χfb has both real and imaginary parts, velocity-dependent and displacement-
dependent feedback is applied at the same time. This was done for example
at the LIGO gravitational wave detector [128]. However, for our parameters a
displacement-proportional gain can only lead to heating and it can be regarded
as a parasitic effect that should be minimized. Figure 4.5 shows how the mea-
sured PSD signal Sy(ω) transforms for small parasitic contributions of gd near
the optimal gain gv. The most relevant configuration is for optimal gain gv,opt
where the coldest temperature is reached and the measured PSD Sy becomes flat
(see Figure 4.5 at top right). For finite gain gd 6= 0 this flat PSD is transformed
into an dispersive curve which has a shifted zero crossing at some ∆ωcross that
increases with larger gd. The new minimum of the PSD occurs at some ∆ωmin
which is largest for small gd. The larger the velocity-dependent gain gv the smaller
the parasitic effects related to finite gd. This can be explained by the fact that
the displacement-dependent temperature increase is also suppressed by gv (see
equation 4.19 for the mode temperature).
The relative increase of mode temperature for different gains gv as a function
of small parasitic gain gd is shown in the lower left panel of 4.5. Especially for



Principles of feedback cooling 75

the optimal gain gv,opt = SNR the relative temperature increase is small even
for a parasitic gd where the dispersive feature in the PSD is already quite signif-
icant. Notably, this result becomes important for the temperature evaluation of
experimental data that will be presented at the end of this chapter.

In the previous description of feedback cooling quantum effects were omitted. Never-
theless, in order to evaluate the possibilities of ground state cooling by feedback control
these effects need to be taken into account.
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Figure 4.5: Effects of parasitic displacement-proportional gain.Measured displacement
PSD Sy(ω) for large velocity-dependent gains gv = 0.3, 1, 4 · gv,opt and different displacement-
proportional gains gd, respectively (upper panels and lower left panel). Lower right panel:
Corresponding relative change in mode temperature for these values of gv as a function of gd.
The displacement-gain is scaled to gd,rel = gd · km. Parameters as in Figure 4.2.
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Time evolution during feedback cooling

So far, the steady state behavior of a feedback cooled mechanical oscillator was covered.
Analytically, this state is reached after an infinite feedback cooling time with fixed
parameters. However, in the experiment an effectively stable temperature is reached
rather quickly. Nevertheless, it is interesting to regard the transient behavior of the
oscillator during the cooldown process.
Suppose pure velocity-dependent feedback cooling is applied sharply at time t = 0.
Then the equation of motion for t > 0 is given by [135]

ẍ(t) + Γm ẋ(t) + ω2
m x(t) = m−1 Fth(t)− Γm gv ẋ(t). (4.23)

where Fth(t) is the time dependent, stochastic thermal Langevin force. It should be
noted that in this equation the detector noise xn(t) that is fed back to the oscillator
is neglected (compare equation 4.3). The equation of motion can be solved for 〈x2〉(t)
which is proportional to the mode temperature. This yields [135]

Tmode(t) = Tbath
1 + gv

(
1 + gv e

−Γm(1+gv) t
)
. (4.24)

It becomes apparent that for t→∞ the mode temperature reaches Tmode = Tbath/(1 +
gv) which corresponds to equation 4.19 for gd = 0 and gv � SNR (see also Figure 4.3).
Notably, the time scale in which the final temperature is reached is proportional to the
natural linewidth Γm of the oscillator.
The rethermalization of the cooled oscillator after the feedback is switched off can be
calculated in the same manner [135]

Tmode(t) = Tbath

(
1− gv

1 + gv
e−Γm t

)
. (4.25)
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Figure 4.6: Mode temperature for pure velocity-dependent feedback as a function
of time. The relative mode temperature Tmode/Tbath is plotted as a function of time for different
feedback gains gv. At t = 0 the feedback cooling is started. For t > 0 the temperature drops
and asymptotically reaches a steady state after a characteristic time τfb = Γ′−1

m with Γ′m =
Γm(1 + gv). This time scale depends linearly on gv (for gv � 1) and the natural linewidth
Γm of the oscillator, which can be seen in the right panel, where the x axis is given by the
dimensionless time t · Γm(1 + gv). The steady state is reached after tcool ≈ 10 · (Γmgv)−1.
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4.1.2 Quantum limits of feedback cooling

In 1999, the group of M. Pinard first realized feedback cooling and shortly afterwards
also evaluated the quantum limits of cold damping showing that ground state cooling
is in principle possible [121]. In the light of the fact that all optomechanical cooling
schemes can be classified into passive self-cooling mechanisms like resolved sideband
cooling and active feedback cooling, much theory work has been done on comparing
these two cooling approaches in terms of fundamental limits and potential advantages
of one method over the other. In [122] it was shown that sideband cooling is superior
in the good cavity regime while feedback cooling is superior in the bad cavity regime.
A quantitative comparison of both methods on equal footing revealed that generally
sideband cooling is superior to feedback cooling due to the projection noise of the
position measurement of the oscillator during feedback cooling [136] (the projection
noise is the measurement error due to the uncertainty of the oscillator position).
In order to reach the quantum ground state using feedback cooling, the measurement
precision and the complementary disturbance of the system in terms of back-action
noise must be carefully balanced. By choosing the right trade-off between these two
quantities the cooling performance can be further improved [137]. A comprehensible
quantum mechanical treatment of feedback cooling was given in the supplementary
material of [69] and will briefly be reviewed in the following.
In a fully quantum mechanical treatment the back-action of the cavity light field on
the oscillator and the stochastic fluctuations of the feedback actuator need to be taken
into account. As a very good approximation in the bad cavity regime, the dynamical
component of the back-action force that leads to self-cooling (also called dynamical
back-action cooling) is negligible [69]. Hence, the back-action force does not depend
on the oscillator position and can be modeled as a random thermal force Fba,th. Since
every physical actuator used to excite the oscillator will also contain small random
fluctuations, the feedback force in equation 4.1 must also be extended by an effective
thermal component Ffb,th:

Ffb(ω) = −χ−1
fb (ω) y(ω) + Ffb,th. (4.26)

This specification is widely neglected in most publications by assuming the feedback
actuator is a field of zero temperature. Taking into account these additional thermal
force terms, the oscillator environment now contains three different thermal forces: The
mechanical noise of the oscillator environment Fth, the back-action force Fba,th and the
fluctuations of the feedback actuator Ffb,th. Equation 4.2 now extends to:

χ−1
m x = Fth + Fba,th + Ffb,th + Ffb . (4.27)

For a high-Q oscillator, each reservoir can be assigned a thermal noise equivalent oc-
cupation nth, nba, nfb with nth = 1

2coth (~ωm/2kBTbath) [69]. Thus, the total effective
thermal noise PSD can be expressed by these occupations:

Stot
Fth(ω) =

(
nth + nba + nfb + 1

2

)
· |χm(ωm)|−2 · 2Szp

x (ωm), (4.28)

where the peak displacement PSD Szp
x (ωm) in the ground state is introduced. It can be
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calculated using the semi-classically Callen and Welton equation for the thermal force
noise PSD [7]:

SFth(ω) = 4mω
Q
· ~ω2 coth

( ~ω
2kBTbath

)
(4.29)

⇒ Szp
x (ωm) = |χm(ωm)|2 SFth(ωm) T→ 0−→

4x2
zp

Γm
(4.30)

with the quantum zero-point fluctuation x2
zp = ~/(2mωm) (see equation 3.13). The

quantity Szp
x (ωm) also defines the number of imprecision quanta as the apparent thermal

occupation associated with the measurement noise: nxn = Sxn/2Szp
x (ωm).

The mean phonon occupation nm of the oscillator can be expressed by the variance of
the displacement 〈x2〉 and the zero-point fluctuation:

2nm + 1 = 〈x2〉
x2

zp
= 1

2π

∫ ∞
0

Sx(ω)
x2

zp
dω . (4.31)

Assuming pure velocity-dependent feedback (gd = 0), this integral can be solved in
the same manner as for the mode temperature (see equation 4.17) using the new total
thermal noise PSD Stot

Fth
(ω) and the susceptibilities from equation 4.15 in expression 4.9

for Sx(ω):

nm =

(
nth + nba + nfb + 1

2

)
+ nxng

2
v

1 + gv
− 1

2 . (4.32)

Minimizing this expression with respect to the feedback gain gv yields the optimal gain
and the minimum phonon occupation:

∂nm
∂gv

= 0 ⇒ gv,opt
nth� 1

2≈
√

1 + nth + nba + nfb
nxn

− 1 (4.33)

nth�nxn≈
√
nth + nba + nfb

nxn
(4.34)

⇒ nm,min
nth�nxn≈ 2

√
(nth + nba + nfb)nxn −

1
2 (4.35)

It becomes apparent that the approximation of a zero temperature feedback actuator
stays valid even in the quantum regime, since in experimentally relevant situations
nth � nfb. The condition for ground state cooling then transforms into

nm < 1 ⇒ nxn <
9
16 (nth + nba)−1 . (4.36)

In [69] it is also shown that stochastic, thermal back-action for cavity optomechanical
position measurements is related to the detection noise level Sxn by the imprecision-
back-action product

~2SxnSba,th = 16nxnnba ≥ 1 . (4.37)
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This continuous-detector equivalent of the Heisenberg uncertainty principle can also be
found as equation (62) in the review paper by Poot and van der Zandt [7]. It is valid
for the case of vanishing dynamical back-action and is based on the work of Clerk et
al. [117, 138]. Using this relation the necessary condition for ground state cooling is

nxn < (2nth)−1 (4.38)

⇒ Sxn <
Szp

x
nth

=
4x2

zp
nthΓm

. (4.39)

4.2 Quantum feedback control

The feedback cooling mechanism presented in the previous section can be seen in the
wider context of quantum feedback control. After a brief overview of the significance of
feedback control in many fields of quantum physics, the applications in other optome-
chanical systems and experimental prospects for the optomechanical system presented
in this thesis will be discussed.
The concept of feedback control was introduced into quantum mechanics in the 1980’s
and has intensively been studied since the 1990’s. Important contributions to the the-
oretical framework were made by Milburn and Wiseman, of whom the latter published
the text book “Quantum Measurement and Control” which is often referred to in this
context [139]. Quantum control theory has contributed significantly to the understand-
ing of fundamental aspects of quantum theory such as the quantum zeno effect or
quantum nondemolition (QND) measurements. Driven by the advances of quantum
optics where it first became possible to detect and manipulate quantum systems with
the necessary precision, quantum feedback control has evolved into an important tool
with many applications in modern quantum technology and is part of ongoing funda-
mental research. A comprehensive theoretical and experimental overview of this topic
can be found in the review paper by Zhang et al (2014) [140].
Generally, the term “quantum feedback” refers to feedback loops that cannot be de-
scribed by a classical model. As depicted in Figure 4.7, one can distinguish two different
types of quantum feedback: measurement-based quantum feedback and coherent feed-
back [140]. Measurement-based quantum feedback works analog to classical feedback:
the feedback loop itself processes information classically (for example as part of a mea-
surement device) but the back-action of the measurement cannot be neglected. Hence,
the measurement perturbs the quantum state of the controlled system and changes its
temporal evolution. This is prevented in a coherent feedback loop where no classical in-
formation is extracted and the controller itself is a quantum system, just as the system
to be controlled (proposed by Lloyd in 2000 [141]). In this case the feedback control is
simply given by the interaction of the two quantum systems.

Coherent feedback

Hybrid quantum systems: Sympathetic cooling in a hybrid atomic-mechanical sys-
tem, which will be described later in chapter 5, can be regarded as a coherent feedback
process [34].
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Figure 4.7: Comparison of measurement-based quantum feedback and coherent
feedback. In measurement-based feedback (left) the system is controlled by a classical feedback
loop, while in coherent feedback (right) the system is controlled coherently by a fully quantum
mechanical feedback loop. Figure adapted from [140].

Self-Cooling: Another important example of coherent feedback control is optome-
chanical self-cooling in the resolved sideband regime [140, 142], where a cavity field
coherently exchanges energy with a mechanical oscillator that gets cooled. The detun-
ing of the cavity pump field then defines the sign and magnitude of the feedback gain.
This technique was applied in optical and microwave cavities to cool the oscillator into
the quantum ground state [38–43]. Since for the optomechanical system presented in
this thesis the resolved sideband regime is far out of reach, this cooling technique will
not be possible.
Noise reduction: The first realization of an all-optical coherent feedback loop in 2008
was performed by Mabuchi [143]. In this setup two coupled ring cavities formed the
primary system and the controller, reducing the laser noise in the primary cavity.
Feedback cooling: Improvement of feedback cooling using coherent controllers was
proposed by Hamerly and Mabuchi [144].
Squeezing enhancement: In 2012, Slida et al created a coherent feedback loop in
order to enhance the squeezing of an optical beam. Squeezing was initially generated
by a non-linear crystal and the coherent feedback was used to enhance its fidelity.
Squeezing of mechanical motion: Driving a cavity with two different lasers at fre-
quencies ωcav±ωm, namely the mechanical sideband frequencies, can lead to arbitrarily
large squeezing of the motional quadratures [145]. This technique also called reservoir
engineering (the cavity acts as an engineered reservoir) can be seen as a coherent feed-
back process and it was successfully used to squeeze mechanical motion [42, 43, 146].
Coherent feedback was also proposed as a tool for Quantum error correction in
quantum information processing [147, 148] and was sucessfully implemented for en-
tanglement preservation in superconducting circuits [149].

Measurement-based feedback

Homodyne detection enhancement: An adaptive homodyne phase measurement
based on quantum feedback was first realized in 2002 based on a proposal by Wiseman
[150]. Homodyne detection is a powerful technique for quadrature measurements of a
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laser beam if its phase is known roughly or can be locked with a classical feedback loop.
However, if the phase of a laser pulse is completely unknown this task gets more difficult
and the results become less accurate. Especially for quadrature measurements of low
photon number pulses with unknown phase the adaptive phase method is superior to
any other technique [151].
Quantum state preparation and stabilization: The first demonstration of quan-
tum feedback in an atomic system was performed in a cavity interacting with a beam of
atoms. A quantum feedback loop was used to freeze the Rabi oscillations of the cavity
field [152]. In 2011, the preparation of Fock states of a microwave field in a supercon-
ducting cavity was demonstrated [153]. The field was measured by the internal state of
Rydberg atoms flying through the cavity and fed back to the cavity field by changing
the amplitude of the coherent cavity driving field. This quantum feedback loop narrows
the photon distribution in the cavity towards a Fock state. Furthermore, measurement-
based feedback was used in superconducting circuits for turning the entanglement of
two qubits from probabilistic to full deterministic [154]. Also in the field of quantum
gases proposals exist for quantum feedback. Using QND measurements of the spatial
mode of a BEC the density distribution could be acitvely controlled, which could be
used for narrowing the linewidth of atom lasers [155, 156]. An example of quantum
feedback cooling is the cooling of the motional state of cold ions in a Paul trap to a
mean phonon occupation of nm = 12 [157].

Measurement-based feedback in optomechanics

Feedback cooling: In order to feedback cool a mechanical oscillator into its quantum
ground state, the back-action of the measurement must be taken into account [69, 137]
(see equation 4.36). In this regime one can speak of feedback cooling by measurement-
based quantum feedback, a regime that was recently reached by feedback cooling a
SiO2 microdisk whispering gallery mode resonantor to a mode occupation of nm ≈ 5
[69]. For the optomechanical system presented in this thesis, the usage of trampoline
oscillators would realistically enable feedback cooling into the quantum ground state,
as discussed in section 4.4.3. Apart from feedback cooling, many other applications of
quantum feedback control in optomechanics exist.
Squeezing of mechanical motion: Squeezing of mechanical fluctuations was first
demonstrated far outside the quantum regime by parametrically modulating the spring
constant of an oscillator [158] (parametric amplification). Although this method is lim-
ited to 3 dB of steady state squeezing, avoiding this limit using modified parametric
techniques and feedback were proposed [159, 160] and experimentally realized [161].
A related technique uses back-action evading QND measurements for squeezing. This
method was used in the context of sequeezing generation in many recent publications
of optomechanical [42, 43, 146] and atomic spin systems [162]. It was proposed already
decades ago by the pioneer work of Braginsky et al in the 1980’s in the context of
gravitaional wave detection [163]. The basic idea is a stroboscopic measurement of only
one quadrature of the oscillator motion by synchronizing the measurement to the mo-
tion. Each short measurement pulse yields some information about the x quadrature
and narrows the width of the density matrix in x-direction. Between the pulses the
oscillator undergoes free evolution and the density matrix returns to the same state
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one period later. In this way, many weak, imprecise measurements become equivalent
to one precise measurement [159]. In 2005, Ruskov et al showed that this modulated
measurement could in principle produce arbitrarily large squeezing for rectangular mea-
surement pulses combined with a quantum feedback loop to cool the oscillator [159].
Also based on the work of Braginsky et al, Clerk et al [164] studied the mechanical
squeezing in an optomechanical system driven by a laser modulated at the oscillator
frequency ωm, which creates two sidebands at ±ωm. This “two-tone-driving” leads to
back-action evading measurements and squeezing. The authors show that the gener-
ated conditional squeezing can be turned into “real”, unconditional squeezing of the
mechanical oscillator by applying a sinusoidal feedback force. Similarly, feedback can
also be used to generate unconditional entanglement in mechanical systems [165].
Although many of the squeezing schemes discussed above rely on the resolved sideband
regime, the stroboscopic QND measurement combined with feedback cooling proposed
by Ruskov et al is an interesting prospect for the system described in this thesis. As
feedback cooling was already implemented, only the measurement beam would need
to be modulated phase-synchronized. In order to distinguish noise squashing from real
squeezing, an additional homodyne detector would also be helpful [164].
Enhancements by feedback: Recently it was demonstrated experimentally that side-
band cooling of a mechanical oscillator can be improved significantly by adding a feed-
back loop that amplifies the amplitude fluctuations in the cavity. The feedback operates
in the unusual “positive feedback” regime, improving the cooling even more than us-
ing squeezed light [166, 167]. Recently, the group of T. Kippenberg reported enhanced
visibility of quantum correlations in their microdisc optomechanical system depending
on the applied feedback cooling [168].
Summarizing the prospects of quantum feedback control for the optomechanical sys-
tem presented in this thesis one can say that feedback cooling into the ground state is
a realistic future prospect, as further discussed in section 4.4.3. If back-action plays a
role in this regime, this could be avoided by stroboscopic, back-action evading measure-
ments, which would also produce squeezing of mechanical motion. If the generation of
non-classical states of motion would be possible in the future, feedback could be used
to turn conditional states into “real” non-classical states of the oscillator.

4.3 Experimental setup for feedback cooling

In the beginning of this section, the technical demands on feedback cooling of mechan-
ical motion will be discussed. Afterwards, the technical solutions implemented in the
experimental setup described in this thesis will be presented.
As shown in section 4.1, the theoretical feedback cooling limit for a given optomechan-
ical system is only defined by the detection noise level Sxn (which might be back-action
limited), see equation 4.39. Assuming this quantity is given by the detector specifica-
tions and the optomechanical system, the remaining part of the feedback loop is the
feedback filter function χ−1

fb and the feedback actuator that exerts the feedback force
Ffb on the oscillator, as depicted in Figure 4.1. Notably, the demands on these parts
of the feedback loop are purely of technical nature. Their theoretical performance as-
sumed in the calculation of the cooling limit is technically challenging, yet achievable.
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The following requirements need to be met in order to satisfy the theoretical “ideal”
feedback loop consisting of a bandpass filter centered at ωm, a feedback phase of φ = π

2
and a zero temperature, arbitrary gain actuator field to exert Ffb on the oscillator.
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Figure 4.8: Experimental setup for feedback cooling. Light from a Ti:sapph (green box)
is split into a feedback cooling beam (red) and a detection beam (blue), which is frequency-
shifted +70 MHz by an AOM. One part of this beam serves a local oscillator (LO) and the
other part is transmitted through a Faraday rotator (FR) and coupled through a glass fiber
into a cryogenic UHV chamber where it gets reflected by an optomechanical MiM system (see
chapter 2), now carrying phase information of the mechanical motion. This light is picked up
on its way back through the FR and superimposed with the LO beam in a polarizing beam
splitter cube (PBS). One of its outputs hits a photodiode, creating an interferometric error
signal for a phase lock loop (interference occurs because of impure polarization). The other
PBS output passes a wave plate creating interference between the two beams at another PBS
that is part of a balanced homodyne detection. Its two outputs are subtracted and amplified
by a customized photoreceiver from Femto (DC...1 MHz, gain 28.5 kV/W, NEP 1.1 pW/

√
Hz),

generating a voltage signal proportional to the mechanical oscillator motion x(ω). This signal
is filtered using an electrical bandpass (see appendix B.3) centered at ωm to protect the input
of a lock-in amplifier (HF2LI from Zurich Instruments) against possible DC voltages. It is then
monitored and processed by the feedback filter that amplifies the quadratures X and Y with
an adjustable gain after down-mixing with an LO at the mechanical oscillator frequency ωm.
The feedback phase is adjusted with a delay ∆Φ with a phase-shifted LO for down-mixing. X
and Y get mixed up again and the sum is fed out to a fiber EOM (AM785b from Jenoptik,
data sheet in appedix B.4) that modulates the amplitude of the feedback light which is coupled
into cryogenic MiM setup. Three wave plates in front of the cavity are used to separate the
feedback light that is transmitted through the MiM system from the detection beam. The sketch
schematically shows the planned setup using a FR in the detection beam, the realized setup is
shown in appendix B.1. Most of the used wave plates, mirrors and PBS are omitted.
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4.3.1 Technical requirements

• Detector: Homodyne detection is the quantum limited phase detection scheme
mostly used for measuring the oscillator motion in optomechanical systems (see
section 3). Phase fluctuations of the detection beam are translated into amplitude
fluctuations that can be recorded with a photodetector. The detection should be
shot noise limited, in order to enable quantum limited detection. The detector
output is an electrical noise equivalent Sel

xn of the mechanical noise floor PSD
Sxn , that should be well above the dark noise of the photodetector and possible
parasitic electrical noise from the environment. The bandwidth of the detector
should be much larger than the oscillator frequency ωm.

• Feedback filter: The electrical signal from the detector is processed by the
feedback filter function χ−1

fb . In order to create a bandpass filter function that
is centered at ωm and has a finite width, the filter can be either a customized
analog bandpass with sufficiently small and constant phase shift in the passband
or a very fast digital real-time application with a bandwidth much larger than
ωm. The corresponding electrical noise added by the filter must be well below the
noise equivalent displacement PSD Sel

xn of the detection noise level.

• Feedback actuator: The perfect feedback actuator is a field of zero temperature
which exerts a force Ffb(ω) = −χ−1

fb y(ω) on the oscillator that is purely linear in its
measured displacement y(ω). This means that the random, thermal component
Ffb,th of the feedback force in equation 4.26 can be neglected. As long as the
corresponding thermal occupation nfb of the “feedback field reservoir” is much
smaller than the thermal occupation of the oscillator from the environment, this
is a good approximation (see equation 4.28 for the total thermal noise force PSD).
Furthermore, the coupling mechanism of the feedback force to the oscillator should
allow for a sufficiently large regime of feedback gains (large |χ−1

fb |) where these
assumptions still hold.

• Feedback-detection cross-talk: Assuming all three technical requirements for
ideal feedback cooling mentioned above can be met, a remaining vital condition
for successful feedback cooling is a negligible cross-talk between all electrical and
optical signals involved in the feedback loop and the measured in-loop oscillator
signal y(ω). This cross-talk can be modeled as a detector noise xn(ω) that is
not fully random, but correlated with the detection signal y(ω), the feedback
filter χ−1

fb (ω), the feedback force Ffb(ω) or combinations of them. In this case
the performance of the feedback cooling is reduced and the measured signal y(ω)
can not be trusted. One possibility that is drastic but not far-fetched is a direct
negative electrical feedback of the measured signal y(ω) on the detector, which
cancels the measured signal. In this way, the detected oscillator signal is reduced
without any real physical cooling of the oscillator. A large variety of other, more
complex possible sources for cross-talk exists, which can never be fully prevented
(electrically induced phase modulation of detection laser, feedback light entering
the homodyne setup, etc.). Nevertheless, the sum of all cross-talk effects should
be below a certain threshold. One can define this limit as follows:



Experimental setup for feedback cooling 85

(4.40)

Cross-talk limit. In the limit of negligible cross-talk, the following
condition should be met: assuming the oscillator is kept at x(ω) = 0
and an artificial “test feedback” signal is applied at a frequency ωt, there
should be no effect on the measured in-loop homodyne signal y(ωt) - or
more precisely y(ωt) = Sxn(ωt) - even if the test signal is stronger than
feedback signals can become during feedback cooling.

The above technical requirements for an optimal feedback cooling were met in the
course of this thesis and the implemented solutions will be presented in the following.
Figure 4.8 shows a sketch of the electro-optical setup used for feedback cooling of a
membrane oscillator in a cryogenic fiber cavity (the actual realization of the optical
setup slightly differs and is shown in appendix B.1).

4.3.2 Technical implementations

• Detector: The mechanical oscillator motion is measured by balanced homodyne
detection in the shot noise limited regime (see section 3). The detector is a low
noise balanced silicon photoreceiver which was customized by Femto (data sheet
in appendix B.2). It has a specified bandwidth of 1 MHz which is well above
the ground mode frequency of ωm/2π ≈ 250 kHz of the used SiN membrane
oscillators. The noise equivalent power spectral density (NEP) is specified as
approximately SP

Det ≈ 1 pW/
√

Hz at 100 kHz. Also specified is a conversion gain
of cP = 28.5 kV/W, which yields in an electrical noise floor of SV

Det = SP
Det ×

cP = 2.85 × 10−8 V/
√

Hz. Using the current experimental homodyne calibration
cV ≈ 1×1010 V/m (see section 3) this can be converted into a displacement NEP
of the detector: Sx

Det = SV
Det × c

−1
V = 2.85 × 10−18 m/

√
Hz. For the MiM setup

described in this thesis the smallest achievable homodyning noise floor around the
oscillator frequency is Sxn ≈ 1 × 10−16 m/

√
Hz. Hence, in the relevant regime the

electrical detector noise floor is more than 30 times smaller than the homodyne
detection noise floor of the optomechanical system.
The photodetector is electrically isolated from the optical table where it is located
and connected via a low noise triaxial cable (G_02330_HT from Huber+Suhner
AG) to the measurement and processing unit, where the outer shield of the tri-
axial cable is grounded. Notably, this is the only electrical connection between
photodetector and measurement unit. The phase control of the homodyning is
generated by another error signal (not the homodyne signal itself) in order to
minimize the electrical noise in the homodyne signal path. This proved to be the
best way of minimizing electrical noise in the signal path, superior to all other
tested solutions.

• Feedback filter: The electrical signal from the photodetector that is proportional
to the oscillator displacement x(ω) is first filtered by an electrical bandpass filter
with a center frequency of fm = 245 kHz and a 3 dB width of 55 kHz (KR2994
from KR Electronics). Detailed information on the passband ripples, power loss
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at the oscillator frequency and phase shift can be found in appendix B.3. All those
effects are so small that the filter can still be regarded as ideal. Nevertheless, in
case the bandpass causes problems at some point, it can also be omitted regarding
the fact that its main purpose is to protect the input of the following lock-in
amplifier from possible DC voltages that might destroy the input stage.2

The homodyne signal is then fed into a digital lock-in amplifier (HF2LI from
Zurich Instruments, bandwidth 50 MHz, LabOne toolset) that is used for moni-
toring, data acquisition and processing of the homodyne signal for feedback cool-
ing. In order to generate the ideal feedback force that is proportional to the
velocity of the oscillator (see section 4.1) one needs to create an electrical out-
put signal that is proportional to the input signal and phase-shifted such that
finally the oscillator motion is phase-shifted π/2 against the feedback force (ad-
ditional delays in the feedback loop need to be compensated). Since the oscillator
frequency ωm/2π ≈ 250 kHz is too large for common real-time applications, the
signal is mixed down for processing. The schematic of the digital processing cir-
cuit is shown in Figure 4.8: the analog homodyne input signal is first digitized
and then mixed down with a local oscillator (LO) well centered at the mechani-
cal oscillator frequency ωm with a demodulator bandwidth much larger than Γm
(stable against small frequency drifts of ωm). The resulting quadrature signals are
then amplified by the same amount, which corresponds to the adjustable feedback
gain gv. After mixing the DC quadratures up again with the LO, the sine and
cosine components of the signal are recovered and the sum generates the output
of the feedback filter. The phase shift between input signal and output signal is
generated by mixing down with a phase-shifted LO. This phase shift ∆Φ was
adjusted manually regarding optimal feedback cooling performance (see Figure
4.11). Finally, the signal is converted to an analog signal again and fed out to the
fiber EOM that generates the feedback force acting on the oscillator.

• Feedback actuator: The choice of the right feedback actuator has proven to be a
crucial component for successful feedback cooling and is closely related to the issue
of feedback-detection cross-talk. Generating mechanical feedback through piezo
elements that are positioned close to the oscillator is prone to electrical noise,
even if great care of electrical shielding is taken. Therefore, the zero temperature
condition of the actuator force is very difficult to realize using piezo elements.

A feedback actuation force that meets all requirements of near zero temperature
and negligible feedback-detection cross-talk was implemented by using optical
feedback through radiation pressure. The force is generated by an amplitude-
modulated laser beam that is coupled into the cavity of the MiM system (see
Figure 4.8). Since the linewidth κcav of the fiber cavity is much larger than the
oscillator frequency ωm, the intracavity field adiabatically follows the modulation

2If the homodyne phase lock jumps out of lock, the homodyne signal can easily reach the maximum
output of the photodetector. Therefore, the measurements presented in this thesis were performed with
an additional 50 Ω resistor parallel to the input of the lock-in amplifier, which reduces the maximum
output voltage of the photodetector by 50% to ±5 V (it has 50 Ω output impedance) which is the
damage threshold of the lock-in amplifier input. Hence, the bandpass could in principle be omitted if
the 50 Ω resistor is always used or replaced by a slightly larger resistance.
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of the feedback beam. Accordingly, the membrane oscillator located at the point
of maximum optomechanical coupling experiences a radiation pressure force that
is proportional to the modulated intracavity power (see section 3). The ampli-
tude modulation is generated by a fiber coupled waveguide EOM (AM785b from
Jenoptik, data sheet in appedix B.4). Its main characteristics are an extremely
small half-wave voltage of Vπ < 3 V and an extremely large bandwidth in the
gigahertz range (τrise ≈ 500 ps). The small half-wave voltage is essential for small
electrical feedback-detection cross-talk. Specifically, the electrical peak-to-peak
output voltage of the lock-in amplifier must be smaller than 1 Vpp, otherwise the
output signal will couple into the input stage and will appear as a parasitic sig-
nal above the electrical noise floor that may distort the homodyne measurement.
Anyhow, 1 Vpp is the largest voltage that one can apply for an approximately
linear response of the fiber EOM. Hence, electrical cross-talk between output and
input of the lock-in amplifier is not an issue in this setup.
The working point of the fiber EOM is adjusted manually with a small battery-
driven bias voltage. After ramping up the bias voltage the output quickly stabilizes
at the desired 50% working point with a small creep effect that vanishes on the
time scale of one minute. The more severe creeping effects are thermal drifts due
to the optical power inside the EOM. Therefore, optical input powers larger than
≈ 5 mW should be avoided and thermal drifts need to be taken into account for
pulsed experiments. The EOM fibers are polarization maintaining fibers (PM) and
the output fiber was connected with a mating sleeve to the fiber that guides the
light to the experiment. The EOM transmission is strongly polarization dependent
and the input polarization was adjusted such that the EOM transmission was
maximized. The EOM including the bias voltage control were installed into a
closed metal box in order to reduce electrical noise that could couple into the
modulation input. The same triaxial low noise cable as in the photodetector
circuit was used to connect the EOM with the lock-in amplifier.

• Feedback-detection cross-talk: As described above, electrical cross-talk be-
tween the detection signal and the feedback output could be strongly reduced
by using a fiber EOM with a small half-wave voltage. The remaining cross-talk
sources are mainly of optical nature. The largest contribution is given by feedback
light with a wrong polarization that is transmitted through the MiM system and
enters the homodyne detection branch. If the homodyne detection is not perfectly
balanced (bad common-mode rejection), this amplitude modulated feedback light
has a contribution in the homodyne signal. Therefore, the polarization of the feed-
back light needs to be adjusted correctly and the common-mode rejection of the
homodyne setup should be optimized carefully (see section 3). This alignment
should be done on a daily basis if feedback cooling experiments are performed.
Figure 4.9 describes the procedure of reducing this optical cross-talk (including
all other possible contributions) to a negligible amount.
Although the condition for negligible feedback-detection cross-talk (see parenthe-
sis 4.40) can be clearly specified, its test is technically non-trivial, since x(ω) ≈ 0
can not be realized (especially if a near resonant signal is acting on the oscillator).
Even if the test frequency ωt is detuned several kilohertz from the oscillator fre-
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quency ωm, the mechanical susceptiblity χm(ωt) is still large enough to allow for
mechanical driving. This results in a peak in the measured homodyne signal at ωt,
which is actually no cross-talk but the natural, wanted form of optomechanical
coupling between feedback signal and oscillator motion. One way of circumvent-
ing this problem is to block the homodyne light so that the oscillator can not be
detected anymore. Then at least all remaining electronic and optical (feedback
light related) cross-talk contributions can be tested. Figure 4.9 shows how the po-
larization of the feedback light can be adjusted in order to minimize the light that
enters the homodyne detection branch. The total cross-talk including homodyne
light (the real experimental condition of feedback cooling) can at least be checked
for ωt � ωm, where χm is so small that mechanical driving of the oscillator is
negligible. We observe that if the procedure described in Figure 4.9 is done prop-
erly, the total cross-talk for the real experimental condition (with homodyne light,
checked at ωt � ωm) is also negligible. Notably, even if a small cross-talk effect
would be visible in this test, this cross-talk would only have a small contribution
in the beginning of the cooling process. Since the cross-talk signal will most likely
be proportional to the feedback signal, it is also proportional to the decreasing
PSD Sy of the cooled oscillator. Hence, for very low oscillator temperatures where
the feedback cooling performance is most important, the cross-talk effect would
still be negligible.
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Figure 4.9: Alignment process of the feedback-detection cross-talk. Zoom-FFT
spectra of the photodetector output for blocked homodyne light if feedback light modulated
at ωt/2π = 264.5 kHz is sent into the MiM system with a resonant cavity (light power
P0.5 = 426 µW in front of cavity fiber at 50% working point of EOM, modulation voltage
Vpp = 1 V, spectra averaged 20 times). (a) Before alignment. A small peak is visible at 264 kHz.
(b) Blocked one photodiode of the balanced photodetector - the signal gets larger due to pre-
vented common-mode rejection. (c) Adjusted polarization of feedback light using the wave plates
in front of cavity fiber (see Figure 4.8). (d) Unblocked the photodiode - the common-mode re-
jection fully removes the cross-talk signal. The sidebands at ωt/2π ± 250 Hz are an artifact of
the demodulator operating at 264 kHz (in this particular measurement). This is also the reason
why the signal at ωt/2π = 264.5 kHz occurs at 264 kHz. The dashed line indicates the noise
floor if homodyne detection is switched on.
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4.4 Experimental realization of feedback cooling

In this section, experimental results concerning feedback cooling of a SiN membrane
oscillator will be presented. They can be regarded as characterization measurements
of the feedback cooling setup described in section 4.3. Furthermore, the demonstration
of feedback cooling to very low occupation numbers of the fundamental mode ωm of
a mechanical oscillator constitutes an important milestone towards a hybrid quantum
system consisting of ultra-cold atoms and a quantum mechanical oscillator.
The following people contributed to these experimental results: the optical feedback
setup and the fiber cavity were built by the author, who also installed it into the
cryostat and aligned it together with H. Zhong. The homodyne setup was built and
characterized by T. Wagner, who also participated in the implementation of the digital
feedback loop together with H. Zhong. The feedback cooling measurements and data
analysis were done by the author and T. Wagner.

4.4.1 Feedback cooling in time domain

Zero-span measurements allow for monitoring the time evolution of the integrated PSD
in a certain frequency interval centered at f0 through demodulation with a local oscil-
lator at that frequency. This interval is given by the bandwidth Bd of the demodulator
filter. Assume an electrical PSD signal Sel

y (ω) originating from the displacement PSD
Sx(ω) of a mechanical mode centered at ωm is measured with zero-span. Then the de-
modulator output voltage Vd(t) is proportional to the integrated PSD 〈x2(t)〉 and hence
proportional to the mode temperature of the oscillator (see section 3). This holds as
long as Bd � Γm and Sy(ω) ≈ Sx(ω) (measured PSD corresponds to real displacement
PSD, see for example Figure 4.2) which is a good approximation if the thermal noise
peak Sx(ωm) is well above the noise floor Sxn .
Time domain acquisition of the mode temperature of the mechanical oscillator is helpful
for monitoring, parameter optimization and the understanding of transient processes
in the experiment. However, due to the constraints mentioned above, very small tem-
peratures need to be measured in frequency domain, as discussed later.
The transient mode temperature during feedback cooling was measured in zero-span
mode. As predicted by the model (see equation 4.24), the oscillator temperature expo-
nentially decreases after the feedback is switched on using a mechanical shutter in the
feedback beam. As shown in Figure 4.10, this model shows a very good agreement with
the data. The maximum gain is gv ≈ 3500 (with Tmin ≈ 1 mK, respectively). Larger
gains are possible but were not taken into account, since below 1 mK the in-loop signal
Sy(ω) starts to deviate significantly from the real oscillator displacement Sx(ω) and the
zero-span signal is not proportional to the mode temperature anymore. Furthermore,
for larger gains the cooldown happens so fast that the acquisition is limited by the
bandwidth Bd of the demodulator.
Due to the effectively broadened linewidth Γ′m = Γm(1 + gv) during feedback cooling
(see equation 4.7), the Brownian motion is less pronounced and the Tmode behaves very
predictable. Thus, the temperature during the cooldown process can be fitted very well.
However, if the feedback cooling is switched off the natural damping at rate Γm sets in
again and Brownian motion occurs on a time scale τth that is larger by a factor Γ′m/Γm.



90 Feedback cooling

Strictly speaking, the displacement autocorrelation function of the oscillator motion
decays on the time scale τth = 1/Γ [7]. Hence, the rethermalization process needs to
be averaged more often and must be monitored on longer time scales. Therefore, all
rethermalization temperature curves for gv > 400 (Tmin ≤ 10 mK ≈ 0 on a linear
temperature scale) were averaged to get a better estimate.
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Figure 4.10: Time domain measurement of feedback cooling. Upper left panel: Mode
temperature as a function of time for different feedback gains gv. Feedback cooling starts at t = 0
and is switched off at t = 2 s. For t > 2 s the oscillator rethermalizes and its mode temperature
slowly approaches the bath temperature again. Feedback gains in the legend were determined
by gv ≈ Tbath/Tmin− 1 where Tbath = 2.6(5) K is the average of all time-averaged temperatures
for t < 0. Data acquisition: zero-span traces from lock-in amplifier, demodulator bandwidth
(3 dB) Bd = 200 Hz, each trace averaged ten times, experiment cycle time 17 s. Parameters:
feedback light power P0.5 = 285 µW in front of cavity fiber at 50% working point of EOM,
optomechanical system and detection parameters summarized in table 3.1. Upper right panel:
log-log plot of the cooldown process and the fits according to equation 4.24 using Γm, gv, t0 as
free fit parameters and Tbath as a fixed parameter. Lower left panel: rethermalization process
of the oscillator for t > 2 s and fit according to equation 4.25 using the same fit parameters.
The single time trace is the average of 80 time traces (8 × 10 traces with gain gv > 400,
Tmin ≤ 10 mK). Lower right panel: fit results for the natural linewidth Γm. The blue dots are
the results from the cooldown fits (blue solid line indicates mean value, Γcool

m = 0.145(8) Hz).
The red line indicates the result from the rethermalization fit: Γheat

m = 0.1501(2) Hz.
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The lower left panel of Figure 4.10 shows the average of 80 time traces of the tempera-
ture during rethermalization and a fit to the data. Even for this large number of averages
the random walk of the temperature curve is still visible. Nevertheless, the curve can
be fitted very well with a precise fit result Γm = 0.1501(2) Hz for the natural linewidth
of the oscillator. This yields a mechanical Q-factor Q = ωm/Γm = 1.100(2) × 107,
which is slightly larger than the value Q = 1.0758(2) × 107 determined by the ring-
down method (see table 3.1). Due to the fact that the whole cooldown process (from
start until the steady state Tmin is reached) happens on time scale that is much shorter
than the rethermalization process (tcool ≈ 10 · (Γmgv)−1, see Figure 4.6), the fit of the
cooldown curves yields a larger error for Γm. However, the value of Γm determined by
the rethermalization fit lies in the standard deviation of the values determined by the
cooldown fits.

4.4.2 Feedback phase adjustment

As discussed in section 4.1, the optimal feedback phase is obtained for a purely imag-
inary feedback filter function with φ = arg(χ−1

fb ) = π/2, which corresponds to pure
velocity-dependent feedback (gd = 0), see equation 4.8. Since many parts in the feed-
back loop cause an unknown delay, the total phase of the feedback loop can be adjusted
by adding an additional known delay such that the total phase between oscillator and
feedback force matches π/2. This known phase delay ∆Φ is added in the digital feedback
filter by mixing down with a phase-shifted local oscillator (see Figure 4.8).
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Figure 4.11: Adjustment of the feedback cooling delay ∆Φ. Left panel: Mode temper-
ature as a function of time for different feedback delays ∆Φ and a fixed absolute value |χ−1

fb |
of the feedback filter function. Heating instead of cooling occurs if ∆Φ exceeds a critical value
(see trace for ∆Φ = −57◦). Data acquisition: zero-span traces from lock-in amplifier, demod-
ulator bandwidth (3 dB) Bd = 200 Hz, each trace averaged ten times, experiment cycle time
17 s. Parameters: feedback light power P0.5 = 285 µW in front of cavity fiber at 50% working
point of EOM, optomechanical system and detection parameters summarized in table 3.1. Right
panel: Minimum temperature obtained by time-averaging of traces on the left for t > 1.4 s as
a function of feedback delay ∆Φ. Fit function (red solid line) according to equation 4.41 yields
a minimum temperature at ∆Φopt = 33.2(1)◦ and a gain gv = 1375(50). The fixed parameter
Tbath = 2.7(8) K is the average of the time-averages of all traces for t < 0.



92 Feedback cooling

Figure 4.11 shows time traces of the oscillator temperature for a fixed absolute value
|χ−1

fb | of the feedback filter function (set by a fixed amplification gain of the quadratures
X and Y, see Figure 4.8) and different feedback delays ∆Φ. At time t = 0 the feedback
cooling beam is switched on with a mechanical shutter, which leads to cooling of the
oscillator. At time tcool ≈ 10 · (Γmgv)−1 (see Figure 4.6) the oscillator has reached
thermal equilibrium and the new steady state temperature Tmin can be obtained from
the traces by time-averaging the mode temperature for t > tcool.
The steady state temperature Tmin for different phase delays ∆Φ is shown in the right
panel of Figure 4.11. Changing ∆Φ and accordingly the feedback phase arg(χ−1

fb ) for a
fixed |χ−1

fb | corresponds to different combinations of velocity-proportional gain gv and
displacement-proportional gain gd (see equation 4.8). Hence, the mode temperature in
the steady state is given by equation 4.19. However, the measurement was performed
with a rather small maximal velocity-proportional gain gmax

v ≈ 1400 at arg(χ−1
fb ) = π/2,

which means that the maximal gd can be gmax
d = gmax

v mωmΓm/km = gmax
v /Q ≈ 10−4.

Therefore, the displacement gain gd can be neglected in equation 4.19 and the minimum
temperature is well approximated by

Tmin(∆Φ) = Tbath
1 + gmax

v sin(φ0 + ∆Φ) , (4.41)

where φ0 denotes the sum of all unknown phase delays in the feedback loop. This model
shows a very good agreement with the measured data, as can be seen in Figure 4.11.
The fit yields an optimal feedback delay ∆Φopt = 33.2(1)◦, which was adjusted in all
other feedback related measurements in this thesis. It should be noted that the plot
has a logarithmic scale. On a linear scale the temperature has a very broad and flat
minimum, which means that the feedback cooling performance is very insensitive to
small drifts of ∆Φ.

4.4.3 Feedback cooling performance

The minimum feedback cooling temperature is achieved with a velocity-dependent gain
gv,opt ≈

√
SNR, gv,rel = 1 (see equation 4.21), where the in-loop PSD Sy(ω) becomes

flat. This is shown in the upper left panel of Figure 4.2. In this regime of large gains,
zero-span temperature measurements as described in section 4.4.1 are unsuitable, since
the measured PSD Sy(ω) and the real PSD Sx(ω) differ significantly. Hence, feedback
cooling for large gains must be regarded in frequency domain.
In order to investigate the feedback cooling performance for a large span of feedback
gains, spectra of the cooled oscillator PSD Sy(ω) were acquired with the so-called Zoom-
FFT function3 of the used lock-in amplifier. The spectra were acquired for each gain
after the steady state temperature was reached (t� tcool). Since the real displacement
PSD Sx(ω) can not be measured (a second out-of-loop homodyne detector would be

3In normal FFT, the frequency resolution of the resulting spectrum is determined by the acquisition
time and a frequency span is determined by the sampling rate of the data acquisition. In Zoom-
FFT, the signal is first mixed down and the Fourier transform is performed with the demodulated
quadratures X and Y . This allows for using a much lower sampling rate and sample number to achieve
the same frequency resolution as in the normal FFT case. Thus, a very high frequency resolution can
be achieved with Zoom-FFT, with a resolution given by the sampling rate divided by the number of
recorded samples. The span is twice the demodulator sampling rate.
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necessary), it must be calculated from the measured in-loop PSD Sy(ω). This can be
done by fitting the spectra with expression 4.10 for Sy(ω). Due to the fact that the
spectral shape qualitatively changes from an extremely narrow peak for gv = 0 to a
flat line for gv,opt ≈

√
SNR, this fitting is not a trivial task. For example, the PSD at

gv,opt is always the same flat line for all kinds of initial bath temperatures. Hence, this
quantity can not be determined by a fit in this case. However, using a two-step fitting
routine the mode temperature can be determined for all different feedback gains in a
robust manner. This procedure will be described in the following.

Step 1: Determination of the bath temperature

As presented in section 4.1.1, the mode temperature Tmode of the oscillator can be ob-
tained by integrating the oscillator displacement PSD Sx(ω), which yields expression
4.19. In this equation, the relevant unknowns are the feedback gain gv and the bath
temperature Tbath (the displacement-proportional gain gd is assumed to be zero, which
will be discussed later). These quantities can be obtained by fitting the measured spec-
trum with expression 4.10 for Sy(ω) with gv and Tbath as free fit parameters. The noise
floor Sxn and the oscillator frequency ωm can be read off directly from the spectrum.
It is not meaningful to include the Q-factor as an additional fit parameter, since Q
mainly contributes to the spectrum through the product gvΓm = gvωm/Q in the effec-
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Figure 4.12: Spectral determination of the bath temperature Tbath. Left panel: In-
loop displacement PSD Sy(f) for different feedback gains gv (blue) and fits to the spectra (red)
using expression 4.10 with gv and Tbath as free fit parameters. Inset figure: zoom into the peak
area. Right panel: bath temperatures and feedback gains obtained by the fits in the left panel
for the different amplification gains P used in the feedback loop (set by the amplification of the
quadratures X and Y , see Figure 4.8). Mean of bath temperatures is Tbath = 2.76(12) K (blue
dashed line). Data acquisition: Zoom-FFT spectra from lock-in amplifier, resolution 220 mHz,
each spectrum averaged ten times. Parameters: feedback light power P0.5 = 462 µW in front of
cavity fiber at 50% working point of EOM, optomechanical system and detection parameters
summarized in table 3.1.
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tive susceptibility χeff (see equation 4.8) and through the product TbathΓm = Tbath/Q

in the thermal force noise PSD SFth (see equation 3.10). Hence, the Q-factor could be
absorbed in the fit parameters gv and Tbath and the fit would not be sensitive to Q.
Nevertheless, the mechanical Q-factor (and the natural linewidth Γm, respectively) is a
fixed quantity that does not change during feedback cooling. It can be determined by
ringdown measurements or the rethermalization after feedback cooling is switched off
(see Figure 4.10).
Figure 4.12 shows the measured spectra for feedback gains between gv ≈ 50 and gv ≈
2000. In this regime, the spectra can be fitted very well with free fit parameters gv
and Tbath. The fits were performed using the logarithm of the spectral data, which
yields a good fitting of the whole spectrum without the need of any additional weight
functions. Nevertheless, for smaller and larger gains it is not possible to obtain accurate
fit results. In the limit of very small gains this is caused by technical difficulties. On the
one hand, the Brownian motion happens on a much larger time scale, which results in a
larger scatter of the measured bath temperature for a given number of spectral averages
(as already discussed in section 4.4.1). On the other hand, the peak for small gains is
extremely narrow and requires extremely stable conditions, otherwise the measured
peak can shift caused by various reasons and effectively gets broadened during the long
acquisition time. However, for larger gains the SNR becomes smaller and the fits become
less accurate, respectively (finally the spectrum becomes a flat line which makes the fit
impossible, as mentioned in the beginning of this section). The right panel of Figure 4.12
shows the resulting bath temperatures for the intermediate gain regime where the fit
works reliably. The resulting mean value Tbath = 2.82(12) K is in good agreement with
the bath temperatures determined by the zero-span measurements presented above (see
Figure 4.10, 4.11). The fact that the scatter is larger than the confidence interval of
the individual data points could be explained by the finite number of spectral averages
or small drifts of the bath temperature due to heating of the feedback beam. The
right panel also shows the fit results for the feedback gains gv as a function of the
set amplification gain P in the feedback loop. It shows that gv is highly linear in P .
Particularly, this shows that the fiber EOM operates well in the linear regime.

Step 2: Determination of the mode temperature

After the bath temperature was extracted from the spectra in the intermediate regime in
step 1, the spectra can be fitted for all possible gains using Tbath as a fixed parameter
and gv as the only free fitting parameter. The left panel of Figure 4.13 shows the
acquired spectra for feedback gains between gv = 0 and gv ≈ 105 and the fits to the
data. Similar to step 1, the fits were performed with the logarithm of the PSD Sy(f).
In this way, all spectra can be fitted accurately with a usual least-square fitting and
without any additional weight functions. For large gains the PSD peak turns into a
dip, which is known as noise-squashing [8]. In this regime, the detector noise around
the oscillator frequency ωm gets canceled by the feedback loop. The right panel of the
figure shows that even for very large amplification gains P of the feedback loop the
resulting feedback gain gv is linear in P . This curve is the main result of the spectral
fitting and can be used to calculate the mode temperature of the oscillator.
It should be noted that the fits were performed in the approximation of negligible
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Figure 4.13: Spectral analysis of feedback cooling. Left panel: In-loop displacement
PSD Sy(f) for different feedback gains gv (blue) and fits to the spectra (red) using expression
4.10 with gv as the only free fit parameter. Inset figure: zoom into the peak area. Right panel:
feedback gains obtained by the fits in the left panel for the different amplification gains P used
in the feedback loop (set by the amplification of the quadratures X and Y , see Figure 4.8).
Tbath determined previously by fits to the spectra with intermediate gain (see Figure 4.12).
Data acquisition: Zoom-FFT spectra from lock-in amplifier, resolution between 100 mHz (small
gains) and 440 mHz (large gains), each spectrum averaged ten times. Parameters: feedback light
power P0.5 = 462 µW in front of cavity fiber at 50% working point of EOM, optomechanical
system and detection parameters summarized in table 3.1.

displacement gain gd. This is a good approximation, since even for a very pessimistic
estimation of a feedback phase mismatch ∆Φ−∆Φopt = 10◦ the resulting relative gain
would be gd,rel = gdkm ≈ 0.1 at the optimal velocity-gain gv ≈ 2.5 · 104 (see equation
4.8). As shown in the lower right panel of Figure 4.5, this would only lead to a very small
change in mode temperature. Furthermore, the effect of a non-negligible displacement
gain would lead to a significant asymmetry in the measured spectra (see Figure 4.5).
Although the noise-squashing dips in the spectra show a slight asymmetry, this could
not be clearly related to the expected shape of the spectra for finite gd. Therefore,
it does not make sense to include gd in the fitting. Probably the slight asymmetry
originates from a noise floor Sxn that is not perfectly flat round ωm, which leads to a
noise squashing dip that is not perfectly symmetric.
Using the fitted gains from Figure 4.13 the mode temperatures for the different spectra
can be calculated using expression 4.19 for Tmode. The minimum temperature Tmin =
234(42) µK is achieved for a gain gv = 2.36 · 104. This is in good agreement with the
theoretical value gv,opt =

√
SNR = 2.42 · 104 using expression 4.20 for the SNR and

the same values for Tbath, Sxn and Q as in the fit in Figure 4.13. The minimum mode
occupation of the oscillator is nm = 18.5 ± 3.3 (see equation 3.14). The errors of Tmin
and nm are mainly the systematic error of the homodyne calibration (equation 3.20).
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Figure 4.14: Observation of the feed-
back cooling limit. Mode temperatures
of the oscillator as a function of the feed-
back gain gv and a least-square fit to
the data using expression 4.19. The mode
temperatures were obtained by fits to the
spectra in Figure 4.13. The error bars are
mostly hidden by the data points (cal-
culated using the confidence intervals of
Tbath, gv and Sxn). The minimum temper-
ature of the fit curve is Tmin = 234(42) µK
at a gain gv = 2.36 · 104. The error comes
from the systematic error of 18% of the
homodyne calibration (see equation 3.20)
and is indicated by the gray area.
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Future enhancements

The presented measurements show that the experimental results for feedback cooling
into the quantum regime of tens of phonons is in very good accordance with the theory.
This suggests that improved feedback cooling into the quantum ground state is possible
if condition 4.39 is met. In the current setup, Sxn ≈ 300× 4x2

sp/nthΓm. Assuming that
the noise floor Sxn can not be significantly improved, the factor 4x2

sp/nthΓm would have
to be reduced by a factor of 300 to enable ground state cooling. For example, this
would be possible by reducing the thermal occupation nth by a factor of 3 (through
improvements of the cryogenic cooling), reducing the oscillator mass m by a factor of
10 and increasing the Q-factor by a factor of 10. A lower oscillator mass and a higher
Q-factor could be achieved by using trampoline oscillators [73, 74].
Trampoline oscillators have been produced for our experiment and are currently tested.
Implementing these oscillators will facilitate ground state cooling of the mechanical
motion. Furthermore, larger Q-factors lead to longer mechanical coherence times, which
relaxes the technical requirements for the preparation and detection of non-classical
states of the oscillator (as discussed in the following section 4.5). This paves the way
for the observation of macroscopic mechanical quantum states and exciting quantum
dynamics in the hybrid quantum system.
Another possible upgrade of the setup is the improvement of the homodyne noise floor
with squeezed light. This was first demonstrated in 2016 with a microtoroid oscillator
using squeezed detection light and an electrical feedback actuator [129].

4.5 Further technical applications

The experimental setup presented in this section (see Figure 4.8) was built for effi-
cient feedback cooling of a mechanical oscillator. Nevertheless, many other promising
optomechanical applications apart from feedback cooling are conceivable. In the follow-
ing paragraph, some of these possible experimental schemes related to the subject of
so-called pulsed quantum optomechanics will be reviewed.
An exceptional property of the MiM system (see section 3) with an extremely large
cavity linewidth κ in combination with an ultra-fast fiber EOM is the possibility to
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Figure 4.15: Schematic of a setup for
pulsed optomechanics from [169]. An
incident pulse (in) drives an optomechani-
cal cavity, where the intracavity field a accu-
mulates phase in proportion to the position
quadrature of a mechanical oscillator. The
pulse leaves the cavity (out) and balanced
homodyne detection is used to measure the
optical phase with a local oscillator pulse
(LO). (B) Scaled envelopes of the optimal in-
put pulse, its corresponding intracavity field
and the optimal local oscillator pulse to max-
imize the measurement of the mechanical po-
sition. Figure adapted from [169].

modulate the intracavity field at a rate τ much faster than the oscillation frequency
ωm of the oscillator. In the following, experimental schemes that can be implemented
under these conditions will be discussed.
In 2011, the group of M. Aspelmeyer in collaboration with Hammerer and Milburn
proposed a scheme for quantum state tomography, squeezing and state purification of
a mechanical oscillator using short optical pulses [169]. In the light of the fact that the
majority of all optomechanical schemes rely on (dynamical) passive or active cooling
mechanisms, the authors claim to provide a third method for quantum optomechanics,
which can generate high purity mechanical quantum states. The proposed experimental
setup is shown in Figure 4.15. A pulse of duration much shorter than the mechanical
period is coupled into a single-sided optomechanical system and accumulates phase in
proportion to the current displacement of the mechanical oscillator. The reflected pulse
is then superimposed with a local oscillator pulse and time domain homodyne detection
is used to determine the phase of the field emerging from the cavity. Since the temporal
evolution of the oscillator during the pulse is negligible, the pulsed measurement allows
for back-action evading QND measurements of the position quadrature. If the pulsed
measurement is synchronized to the mechanical oscillation, many of these weak mea-
surements can be used for a quantum state tomography to reconstruct the mechanical
quantum state.
For a large measurement strength, however, the pulsed QND measurement leads to
strong conditional squeezing of the position quadrature. The authors show that a single
pulse can be used for squeezing well below the variance of the ground state, indepen-
dent of the initial thermal occupation of the oscillator. Furthermore, the uncertainty
of the momentum quadrature remains unchanged, which leads to a reduction of the
phase space envelope and a lower effective thermal occupation of the oscillator. With
a second pulse the thermal occupation can be reduced even further: after a free tem-
poral evolution of duration T/4 = π

2 ω
−1
m the position-squeezed state has evolved into a

momentum-squeezed state with large position uncertainty. A second pulse then reduces
the remaining position uncertainty below the ground state value, in the same manner
as the initial pulse. In this way, the effective thermal occupation can be reduced to ar-
bitrarily small values in the deep ground state regime, only limited by the measurement
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strength. The optimal pulse shape for a maximal measurement strength was calculated
to have a Lorentzian spectrum in frequency space and a duration on the order of the
inverse cavity linewidth κ−1 (see Figure 4.15 B). This cooling-by-measurement was ex-
perimentally realized in a simplified setup without a cavity and a small measurement
strength. Nevertheless, significant cooling and full mechanical state tomography was
achieved in the classical regime [170]. The pulses were created using a fiber EOM and
the mechanical oscillator was a cantilever at room temperature with a fundamental
mode of ωm/2π = 984 Hz.
The protocol presented above works independent from the initial thermal occupation
of the oscillator. Nevertheless, it requires small thermal decoherence during the free
temporal evolution of the oscillator. The requirement for the oscillator state to remain
coherent during a full mechanical period is that the mechanical Q-factor is larger than
its thermal occupation at temperature Tbath. This can be expressed through the Qf
product [73, 83]: Q × fm > kBTbath/h (see equation 3.16). Recently, a scheme for
ground state cooling and state preparation similar to [169] was proposed, which does
not rely on this quantum coherent oscillation (QCO) regime [171]. It is based on a single
pulse that interacts twice with the mechanical oscillator. In this way, the necessary time
delay T/4 in the protocol above can be reduced to arbitrarily small values. Hence, the
thermal decoherence during the time of the protocol can be neglected.
In 2012, another pulsed experimental protocol for ground state cooling was proposed
[172]. The protocol is based on a sequence of pulses much shorter than the mechanical
oscillation frequency, which lead to an interaction that approximates the Hamiltonian
for resolved-sideband cooling. In this way, cooling in the resolved-sideband regime much
faster than conventional resolved-sideband cooling is possible. The protocol also works
in the unresolved-sideband regime and its performance can be further improved using
optimal control theory to find the best pulse sequence for maximal cooling.
In 2013, the cooling-by-measurement scheme reviewed above was proposed as the start-
ing point in a protocol of four pulsed optomechanical interactions which are capable
of preparing non-classical states of motion in a mechanical oscillator [173]. The pulses
are created by a single pulse that is recycled four times in an auxiliary ring cavity and
interacts with an optomechanical device in each round trip. After each interaction, the
pulse is displaced in optical phase space, finally performing a closed loop. In this way,
the mechanical oscillator obtains a phase proportional to the area enclosed within the
loop, a geometrical phase also called Berry phase. This phase generates an effective
nonlinear potential for the oscillator which leads to squeezing of mechanical motion.
Recently, a bidirectional optomechanical interface was proposed which can perform an
optical-to-mechanical state swap in the unresolved-sideband regime [174]. The deter-
ministic interface is based on three pulsed QND interactions and classical open-loop
feedback. Since a coherent optical pulse carries only vacuum noise and has zero tem-
perature, a state swap allows for ground state cooling of the mechanical oscillator (in
case the optomechanical cooperativity is larger than its thermal occupation).
Summarizing the applications of pulsed optomechanics for our experiment one can say
that the creation of non-classical mechanical states is a realistic prospect. Feedback
could be used for deterministic generation of unconditional states. Since Q × fm ≈
30 × kBTbath/h, our system operates in the QCO regime. Hence, in our MiM system
non-classical states could survive for τ = ~Q/kBTbath ≈ 20 µs (see equation 3.16).



Chapter 5

Sympathetic cooling

This chapter presents the sympathetic cooling measurements we have per-
formed in our hybrid system. They allow for a characterization of the cou-
pling mechanism and the hybrid cooperativity. Finally, we demonstrate the
combination of feedback cooling with sympathetic cooling, which represents
an important step towards a hybrid atomic-mechanical quantum system.
Specifically, the dependency of the sympathetic cooling performance on es-
sential parameters was investigated. This includes measurements on the
number of involved atoms or atomic laser cooling parameters like the in-
tensity, detuning and magnetic field gradients. We observe optimal cooling
rates of Γsym = 23.3(14) Hz, minimum mode temperatures of Tmin ≈ 20 mK
and a hybrid cooperativity of Chybrid = 151 ± 9 for sympathetic cooling
with an optical molasses using coupling lattice beam powers Plat around
0.5 − 1mW with red detunings of ∆2,1 ≈ −2π × 2 GHz. Similar cooling re-
sults were achieved for sympathetic cooling with a MOT using blue lattice
detunings of ∆2,3 ≈ 2π × 1 GHz. Furthermore, the resonance condition of
the hybrid coupling mechanism was investigated by sweeping the atomic
trapping frequency ωa in the coupling lattice, which allows for the deter-
mination of the number of resonantly coupled atoms Nres and the atomic
cooling rate Γa.

The realization of a hybrid quantum system consisting of ultra-cold atoms and a mi-
cromechanical oscillator offers exciting prospects for fundamental research and novel
quantum technologies. A wide variety of possible applications has been proposed, rang-
ing from ground state cooling of mechanical motion [27, 29, 31, 33–35, 57], coherent
quantum state transfer, teleportation and entanglement [24, 25, 29] to quantum state
preparation and protocols for quantum information processing [24, 33, 35], as well as
quantum enhanced sensing [36]. Recently, quantum back-action evading measurements
of mechanical motion have been realized in a hybrid system consisting of an atomic
spin ensemble and an optomechanical MiM device [59].
We have realized a hybrid system consisting of cold 87Rb atoms in an optical lattice and
a mechanical membrane oscillator in a cryogenic MiM system (see chapter 2). In order
to characterize the hybrid coupling scheme, we performed sympathetic cooling mea-
surements where the mechanical oscillator was cooled far below its thermal equilibrium
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temperature (Tmin ≈ 20 mK) through coupling to laser cooled 87Rb atoms. Recently,
this sympathetic cooling scheme has been demonstrated for the first time by the group
of P. Treutlein in an experiment similar to our setup [57].
Besides the possibility of characterizing the hybrid coupling mechanism through sym-
pathetic cooling, this cooling mechanism has its own significance in many fields of
research. For the field of optomechanics, it represents a cooling mechanism which is
in principle capable of ground state cooling far in the bad cavity regime (κ � ωm)
[31, 34, 57], although we observe that it would require further improvements in our
system. Furthermore, using mechanical oscillators and atomic ensembles radically ex-
tends the mass ratio of sympathetic cooling to a factor of 1010 [57], as compared to
approximately 100 in all previous experiments. Specifically, in all previous applications
microscopic particles were sympathetically cooled by other microscopic particles. For
example, sympathetic cooling was first demonstrated in the 1980s with different atomic
species bound in an ion trap [175, 176]. In the field of ultra-cold quantum gases, sym-
pathetic cooling is a widely used tool for cooling atomic species that are not well suited
for laser cooling or evaporative cooling. For this, these atoms are cooled sympatheti-
cally through direct interactions with another atomic species that can be cooled using
standard techniques [177–180]. Sympathetic cooling is also used for cooling molecules
with atoms [181–183] or even antiprotons in particle accelerators [184].
After a brief review of the theoretical principles of sympathetic cooling, the experi-
mental results will be presented in the following. Finally, the combination of feedback
cooling with sympathetic cooling will be discussed. Through this coupling of cold atoms
to a feedback cooled mechanical oscillator, the potential of our system to become a true
hybrid quantum system consisting of ultra-cold atoms and a ground state mechanical
oscillator is demonstrated.

5.1 Principles of sympathetic cooling

In this section, the hybrid coupling mechanism between the atomic motion in the optical
lattice and the motion of the mechanical oscillator will be described. A fully quantized
model of this coupling scheme has been published in [31]. After a brief review of the
classical equations of motion and the resulting quantities like the sympathetic cooling
rate, this quantized model and the quantum limits of sympathetic cooling will be out-
lined. Subsequently, modifications of this model including the atomic back-action on
the coupling light will be discussed. The section concludes with a classical treatment
of combined sympathetic and feedback cooling.

5.1.1 Classical description of the hybrid coupling mechanism

The hybrid coupling scheme for long-distance coupling of a mechanical oscillator in
a MiM system to the motion of atoms in an optical lattice is depicted in Figure 5.1.
Both the atoms and the mechanical oscillator can be treated as two harmonic oscil-
lators that are coupled by a spring, which is given by the coupling light field. This
bi-directional coupling can be understood as follows. A displacement of the mechani-
cal oscillator changes the resonance frequency ωcav of the MiM cavity (see section 3.1)
and correspondingly the phase of the reflected light that creates the optical lattice.
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Figure 5.1: Scheme for long-distance coupling of a MiM system to the atomic
motion in an optical lattice. The mechanical oscillator in the MiM system (see section 2.3)
is coupled to 87Rb atoms in an optical lattice with frequency ωlat (see 2.4.1), which is created
by the reflected light from the MiM cavity. The motion of the oscillator with frequency ωm
periodically shifts the optical lattice potential of the atoms, while the motion of the atoms with
frequency ωa modulates the radiation pressure on the oscillator. Figure taken from [31].

Hence, the position of the lattice potential wells for the atoms is shifted by δxlat and
the ensemble of N atoms experience a force Fa = Nmaω

2
aδxlat. Conversely, an atom

displaced by xa from the center of a potential well experiences a restoring force which
is given by the optical dipole force Fd = −maω

2
axa. Microscopically, this force can be

understood as a momentum transfer from photons of the optical lattice through ab-
sorption and stimulated emission. This leads to a redistribution of photons between
the right- and left-propagating lattice beams [31] and changes the radiation pressure
on the mechanical oscillator in the MiM system, which experiences a force δFrad.
In order to obtain the classical coupled equations of motion for the hybrid system, the
two forces Fa and δFrad need to be calculated. Following [118], the force acting on the
atomic ensemble Fa can be calculated by assuming a phase shift δφ ≈ (4/κ)gmxm, which
induces a displacement δxlat = −δφ/(2klat) = −2gmxm/(κklat) of the lattice potential
wells. This yields the interaction force on the center-of-mass of the atomic ensemble of
N atoms

Fa = Nmaω
2
aδxlat = − 2gm

klatκ
Nmaω

2
axm = −Kxm , (5.1)

with the coupling spring constant K.
The radiation pressure force δFrad on the oscillator induced by a displacement xa
of the atomic ensemble can be calculated using the photon redistribution rate ṅp =
NFd/(2~klat) [118]. This leads to a variation of the power of the lattice incident
beam δPlat = ṅp~ωlat which generates a variation of the intra-cavity photon num-
ber δn̄cav ≈ βt2(4/κ)δPlat/~ωcav. The quantity β accounts for the incoupling power
efficiency of the cavity due to imperfect mode match and t2 is the power transmittance
of the optical path from the atoms to the cavity (one way). Assuming Frad = ~gmn̄cav,
the radiation pressure variation on the oscillator through a displacement of the atomic
ensemble can be expressed as:

δFrad = −βt2 2gm
klatκ

Nmaω
2
axa = −βt2Kxa . (5.2)

Hence, the force on the mechanical oscillator δFrad has an effectively reduced spring
constant, which is smaller by a factor of βt2. This asymmetry in the coupling com-
plicates the description of the effective Hamiltonian in the quantized model [27, 34].
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Furthermore, the optical losses lead to a power imbalance of the counterpropagating
lattice beams which can cause collective atomic oscillations [103] which lead to instabil-
ities in the hybrid system [104], as discussed later in section 5.1.3. In our current system
the incoupling efficiency β of the fiber MiM cavity can be estimated to be β > 0.951

and the transmittance of the optical path between the atoms and the MiM system is
t2 = 0.72 (see appendix A.1).

Coupled equations of motion in the hybrid system

Using equations 5.1 and 5.2, the coupled equations of motion for the mechanical oscil-
lator and the laser cooled, oscillating atomic ensemble can be written as [34, 118]:

Nmaẍa = −ΓaNmaẋa −Nmaω
2
axa −Kxm (5.3)

mẍm = −Γmmẋm −mω2
mxm − βt2Kxa + Fth ,

where the term −ΓaNmẋa accounts for the damped atomic motion in the harmonic
potential of the lattice through laser cooling at rate Γa. The atomic bath is assumed
to be at zero temperature and the corresponding noise term is omitted, as well as the
optical back-action force acting on the mechanical oscillator. A calculation including
these quantities is given in [34].
The sympathetic cooling rate Γsym corresponds to the new effective damping rate of the
mechanical oscillator and can be calculated by solving the equations of motion. This
can be done by Fourier transforming the equations, which results in

xa(ω)χ−1
a (ω) = −Kxm(ω) (5.4)

xm(ω)χ−1
m (ω) = Fth − βt2Kxa(ω) , (5.5)

with the mechanical susceptibilities

χ−1
a (ω) = Nma

(
ω2

a − ω2 − iωΓa
)
≈ 2Nmaωa (ωa − ω − iΓa/2)

χ−1
m (ω) = m

(
ω2

m − ω2 − iωΓm
)
≈ 2mωm (ωm − ω − iΓm/2) , (5.6)

using the Taylor approximation ω2
m−ω2 ≈ 2ωm(ωm−ω) around ωm. Inserting equation

5.4 into equation 5.5 yields

xm(ω)
[
χ−1

m (ω)− βt2K2χa(ω)
]
≡ xm(ω)χ−1

eff,s(ω) = Fth (5.7)︸ ︷︷ ︸
χ−1

sym(ω)

1The measured finesse is F0 = 60 (see Table 3.1) and the upper bound on the mirror reflectivity
on resonance is ρ < 0.92, corresponding to the limited reflectivity R2 < 0.998 of our in-house coating
machine (see Figure 2.8). Due to the steepness of σref(β) (see Figure 2.10), this indicates that β > 0.95,
since the measured reflectivity on resonance is σref = 0.73 (see Figure 2.15).
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with the new effective susceptibility χeff,s of the mechanical oscillator. Similar to the
formalism of active feedback cooling (see section 4.1.1), the sympathetic cooling mech-
anism leads to cold damping due to the effectively increased damping rate of the me-
chanical oscillator. This process is equivalent to the velocity dependent feedback cooling
and originates from the imaginary part of χ−1

sym (compare equation 4.8). In fact, the
sympathetic cooling scheme can be regarded as a coherent feedback process [34].
The real part and imaginary part of χ−1

sym are given by

χ−1
sym(ω) = −βt2K2χa(ω) = −βt2K2 (ωa − ω) + iΓa/2

2Nmaωa [(ωa − ω)2 + (Γa/2)2] . (5.8)

Using this equation and assuming ω ≈ ωm [118], the new effective susceptibility χeff,s
of the sympathetically cooled mechanical oscillator can be written as

χ−1
eff,s(ω) = 2mωm

(
ω′m − ω − iΓ′m/2

)
(5.9)

with ω′m = ωm + (ωm − ωa) Γsym
Γa

(5.10)

and Γ′m = Γm

(
1 + Γsym

Γm

)
≡ Γm (1 + gsym) , (5.11)

where the sympathetic cooling rate Γsym was introduced. It is often expressed through
the single-phonon coupling constant gN [34, 57]:

gN = Kxm
zpx

a
zp/~ = |rm|ωa

√
Nmaωa
mωm

2F
π
, (5.12)

with the quantum zero-point fluctuations xm
zp =

√
~/2mωm and xa

zp =
√
~/2maωa and

the field reflectivity rm of the membrane oscillator (see Table 3.1). Using this relation
5.12 and equation 5.8, the sympathetic cooling rate for N atoms can be written as:

Γsym [N,ωa] = g2
Nβt

2 Γa

(ωa − ωm)2 + (Γa/2)2 . (5.13)

Equation 5.10 shows that the sympathetic cooling leads to shifted frequency ω′m of the
mechanical oscillator, which is equivalent to displacement-dependent feedback. How-
ever, this effect is negligible in our experiment since Γa � Γsym. The cold damping is
generated by the effectively increased damping rate Γ′m of the oscillator, which can be
described by the gain gsym similar to velocity-dependent feedback (see equation 4.7).
Also similar to active feedback cooling this leads to a reduced mode temperature Tmode
of the mechanical oscillator [57]:

Tmode = Tbath
1

1 + gsym
= Tbath

Γm
Γsym + Γm

. (5.14)

Ensemble-integrated sympathetic cooling rate

In the experiment the cold atomic cloud used for sympathetic cooling has a radius Ra
which is much larger than the waist wlat of the coupling lattice. Hence, it is reasonable
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to assume a constant atomic number density na in the lattice volume (neglecting the at-
tractive or repulsive potential of the near-resonant lattice beam). However, the Gaussian
intensity distribution of the beam leads to a radial dependency of the atomic trapping
frequency ωa(r) = ωa,0 e

−r2/w2
lat (note that outside this context, ωa,0 will simply be de-

noted by ωa). Therefore, Γsym in equation 5.13 must be integrated over the radial beam
profile in order to describe the experimental conditions. The axial dependency ωa(z) of
the atomic trapping frequency is omitted, since the Rayleigh range zr ≈ 2.5 cm � Ra
in our experiment. Following [118], the integral over the radial coordinate

Γint
sym = 2Rana

∫ Ra

0
Γsym [N = 1, ωa(r)] 2πr dr (5.15)

can be converted into an integral over the frequency

Γint
sym(ωa,0) = Nlat

∫ ωa,0

ωa(Ra)

Γsym [N = 1, ωa]
ωa

dωa

= maNlat
m

|rm|2βt2
Γa
ωm

(2F
π

)2 ∫ ωa,0

ωa(Ra)

ω2
a

(ωa − ωm)2 + (Γa/2)2 dωa ,

where Nlat = 2Raπw
2
latna is the number of atoms in the lattice volume. Solving this

integral yields:

Γint
sym(ωa,0) = 2maNlat

m
|rm|2βt2

(2F
π

)2
ωm · Sres (ωa,0) , (5.16)

with the step-like function Sres(ωa,0), which describes the transient behavior of the
sympathetic cooling rate as a function of the maximal atomic trapping frequency ωa,0
in the center of the coupling beam:

Sres(ωa,0) :=
(

1− Γ2
a

4ω2
m

)(
arctan

[2ωm
Γa

]
+ arctan

[2 (ωa,0 − ωm)
Γa

])

+ Γa
2ω2

m

(
ωa,0 + ωm ln

[
Γ2

a + 4 (ωa,0 − ωm)2

Γ2
a + 4ω2

m

])
. (5.17)

Figure 5.2: Ensemble-integrated sym-
pathetic cooling rate Γint

sym for different
Γa. Γint

sym is proportional to the function Sres
(see equation 5.17), which is plotted here for
different atomic cooling rates Γa as a func-
tion of the atomic trapping frequency ωa,0 on
the beam axis of the coupling lattice. Both
Γa and ωa,0 are in units of the oscillator fre-
quency ωm. Note that the model assumes a
constant atomic density in the lattice vol-
ume.
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Figure 5.2 shows the behavior of the function Sres(ωa,0). For a small atomic cooling rate
Γa � ωm, the width Sres becomes smaller and the diverging part becomes negligible
(second line in equation 5.17). In this case, the sympathetic cooling rate can be regarded
as a step function with width Γa. However, this is not a good approximation in our
system, as shown later.
The function Sres can be absorbed into the effective atom number Nres, which account
for the number of atoms that participates in the cooling process. Using equation 5.16
this yields:

Nres := NlatSres (ωa,0) =
mΓint

sym (ωa,0)

2βt2ωmma|rm|2
(

2F
π

)2 . (5.18)

5.1.2 Quantum description and hybrid cooperativity

In a fully quantized model of the hybrid coupling mechanism depicted in Figure 5.1, the
light field can be eliminated in the effective dynamics assuming the bad cavity regime
κcav � ωm [31]. This yields the effective interaction Hamiltonian [31, 57]:

Hint = ~gN
(
b̂m + b̂†m

) (
b̂a + b̂†a

)
, (5.19)

where b̂m (b̂a) and b̂†m (b̂†a) are the annihilation and creation operators of the mechanical
mode (atomic mode) and gN is the single-phonon coupling constant (see equation 5.12)
which generates coherent exchange of mechanical and atomic quanta.
In the classical model described in the previous subsection, sympathetic cooling can lead
to arbitrarily small mode temperatures of the mechanical oscillator (see equation 5.14).
However, in a fully quantized model [31] the minimal temperature of the mechanical
oscillator is limited by different decoherence mechanisms. This can be expressed through
the steady state phonon occupation n̄ss of the mechanical oscillator:

n̄ss = Γmn̄th
Γm + Γsym

+ Γdiff
m

Γm + Γsym
+
( Γa

4ωa

)2
+ Γdiff

a
Γa

= n̄1 + n̄2 + n̄3 + n̄4 . (5.20)

The first term originates from the coupling to the thermal bath with the mode occu-
pation n̄th ≈ kBTbath/~ωm (see equation 3.14), similar to equation 5.14. The second
term describes the radiation pressure noise of the coupling beam in the MiM cavity,
which generates a momentum diffusion rate Γdiff

m of the mechanical oscillator. The third
term plays a role for strong atomic damping and a correspondingly large cooling rate
Γa where the counter-rotating terms in the rotating wave approximation in the Hamil-
tonian start to become important. The fourth term describes the atomic momentum
diffusion due to photon scattering.
The first two terms in equation 5.20 can be summarized to

n̄1 + n̄2 = Γmn̄th + Γdiff
m

Γm + Γsym
≡ Γdec

m
Γm + Γsym

Γsym�Γm
≈ Γdec

m
Γsym

= n̄th
Chybrid

, (5.21)
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Figure 5.3: Calculation of the strong coupling condition in the hybrid system.
According to the model in [31], the total decoherence rate Γ = Γmn̄th + Γdiff

m + Γdiff
a relative

to the coupling rate gN was calculated as a function of the cavity finesse F . The laser-induced
heating of the membrane was modeled by a Gaussian temperature distribution with average
temperature Tavg around the cavity mode with waist wm for a temperature dependent thermal
conductivity κ. The strong coupling condition Γ/gN < 1 is fulfilled for an optimal finesse
Fopt = 870 and the steady state phonon occupation is n̄ss < 1. Figure taken from [86].

introducing the total mechanical decoherence rate Γdec
m = Γmn̄th + Γdiff

m which is the
sum of the thermal decoherence rate Γmn̄th (see equation 3.15) and the momentum
diffusion rate Γdiff

m due to radiation pressure noise in the cavity. Furthermore, equation
5.21 introduces the cooperativity of the hybrid system Chybrid. Using equation 5.13 and
assuming resonant coupling ωa ≈ ωm (and Γmn̄th � Γdiff

m ), the hybrid cooperativity
can be written as [34, 102]:

Chybrid ≈
4βt2g2

N
ΓaΓm

. (5.22)

Regarding equations 5.20 and 5.21 the hybrid cooperativity must be large (Chybrid �
n̄th) in order to cool the mechanical oscillator into the ground state (n̄ss < 1).
A large hybrid cooperativity is closely related to the strong coupling condition gN �
Γdiff

a , Γdec
m , which means that the hybrid coupling rate has to exceed all relevant deco-

herence rates in the system [31]. In the PhD thesis of A. Bick [86] a simulation of this
strong coupling condition according to the model in [31] was performed for parame-
ters that are experimentally accessible with our current setup. The calculation shown
in Figure 5.3 yields an optimal cavity finesse of F = 870, where the strong coupling
condition is fulfilled and ground state cooling is achieved. As long as both parts of
the hybrid system are in a quantum state, the hybrid system would evolve coherently
when the laser cooling at rate Γa is switched off. Furthermore, if the coupling constant
exceeds a certain critical value, N. Mann et al theoretically predicted a quantum phase
transition between the initial phase of the ground state of the atom-membrane system
and states of collective quantum many-body motion [185].
However, in our current setup the cryogenic bath temperature Tbath ≈ 3 K is much
larger than assumed in the simulation, the finesse is about five times smaller and the Q-
factor is smaller by a factor of two (see Table 3.1). Furthermore, the simulation assumes
an optimal lattice alignment and neglects optical losses (see section 2.4.2). As shown
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later, the lattice power for optimal sympathetic cooling in our current setup should be
at least a factor of two larger, since otherwise the near-resonant lattice detuning (which
is necessary to fulfill the resonance condition ωa = ωm) leads to additional parasitic
effects that lower the coupling constant.

5.1.3 Instability in the hybrid system

The hybrid coupling experiments in the group of P. Treulein have shown that the sym-
pathetic cooling can turn into heating and limit-cycle oscillations of the mechanical
oscillator, which occurs for small lattice detunings and large atom numbers. This be-
havior was investigated in detail by A. Vochezer et al (neé Faber) [104] and was also
observed in our experiment, as presented later. This subsection briefly outlines the
mechanism of this hybrid instability.
The underlying mechanism of the hybrid instability is light-mediated collective atomic
motion in the optical lattice, generated by back-action of the atoms onto the light
field. This phenomenon was predicted theoretically by J.K. Asbóth et al [103, 186] and
is related to a pump-asymmetry of the optical lattice, which naturally occurs in our
system as the back reflected lattice beam from the MiM system has only 35% of the
incident lattice beam power Plat (see section 2.4.1).
In order to describe the back-action of the atoms onto the light field, the disk-shaped
clouds of atoms can be modeled as beam splitters with certain reflection and trans-
mission coefficients. This explains why the instabilities only occur for large atomic
densities. If these atomic beam splitters are included as individual atomic oscillators
into the equations of motion of the hybrid system, the instability of the hybrid system
can be understood in a feedback picture [104]. If the sympathetic cooling turns into
heating and limit-cycle oscillations, there must be some kind of phase delay between
the atoms and the mechanical oscillator which exceeds a critical value. If the atomic
ensemble is modeled as only one beam splitter, its phase delay to the membrane is too
small to explain the instability. However, as soon as two or more beam splitters are
taken into account, the model quickly converges to a regime where the delay can become
more than 180◦ [104]. In this way, the collective motion of the atoms gets amplified by
positive feedback and drives the system into limit-cycle oscillations.
We only observe this instability for red lattice detuning, which can be explained by the
fact that the effect of the lattice pump-asymmetry gets worse for red lattice detuning
compared to blue detuning [186]. Furthermore, the red detuned lattice attracts more
atoms from the MOT or molasses cloud used for sympathetic cooling which leads to
larger atomic densities in the lattice which also increases the instability.

5.1.4 Combined sympathetic and feedback cooling

In this subsection, a classical model for the combination of feedback cooling with sym-
pathetic cooling will be presented. This model neglects the back-action noise on the
mechanical oscillator from the cavity light field, as well as the noise induced by a finite
temperature of the atomic ensemble. A semi-classical model including these additional
noise terms was published in [34].
In order to calculate the effective susceptibility χeff,sf of the mechanical oscillator for
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combined sympathetic and feedback cooling, the sympathetic cooling force Fsym must
be added in equation 4.2:

x = χm [Fth + Ffb + Fsym] . (5.23)

Note that the oscillator displacement refers to the coordinate x(ω) in frequency space
and the frequency dependency is omitted for clarity. Substituting Ffb = −χ−1

fb (x+ xn)
from equation 4.1 and Fsym = −χ−1

symx from equation 5.7 into equation 5.23 yields:

(
χ−1

m + χ−1
fb + χ−1

sym

)
x ≡ χ−1

eff,sf x = Fth − χ−1
fb xn (5.24)

⇔
(
χ−1

m + χ−1
fb + χ−1

sym

)
(x+ xn) ≡ χ−1

eff,sf y = Fth +
(
χ−1

m + χ−1
sym

)
xn , (5.25)︸ ︷︷ ︸

χ−1
eff,s(ω)

with the effective susceptibility χ−1
eff,s(ω) from equation 5.7. Equation 5.24 will be used

in the following to calculate the displacement PSD Ssf
x (ω) and the mode temperature

T sf
mode of the oscillator for combined feedback and sympathetic cooling. Nevertheless,

the measured PSD in the experiment is the in-loop PSD Ssf
y (ω) which corresponds to

the measured signal y = x + xn. This in-loop PSD can be calculated from equation
5.25.
Similar to the calculation of Sx(ω) (see equation 4.9), the displacement PSDs Ssf

x (ω)
and Ssf

y (ω) can be calculated using equations 5.24 and 5.25 under the assumption that
the feedback detector noise xn and the thermal noise force Fth are uncorrelated:

Ssf
x (ω) = 〈 |x(ω)|2〉 = |χeff,sf |2

[
SFth(ω) + |χfb|−2Sxn(ω)

]
(5.26)

Ssf
y (ω) = 〈 |y(ω)|2〉 = |χeff,sf |2

[
SFth(ω) + |χeff,s|−2Sxn(ω)

]
. (5.27)

In order to obtain the mode temperature from the displacement PSD Ssf
x (ω), the ef-

fective susceptibility χeff,sf needs to be calculated. For this, we treat the sympathetic
cooling as purely velocity-dependent, which corresponds to a purely imaginary χsym.
This is a very good approximation as long as Γsym � Γa (see equation 5.10), as in our
case. Assuming also purely velocity-dependent feedback cooling (gd = 0), the purely
imaginary functions χ−1

fb and χ−1
sym can both be absorbed into the effective mechanical

damping rate Γ′m = Γm(1 + gv + gsym):

χ−1
eff,sf =

(
χ−1

m + χ−1
fb + χ−1

sym

)
= 2mωm

[
ωm − ω − i

Γm
2 (1 + gv + gsym)

]
, (5.28)

With this result, the mode temperature of the mechanical oscillator for combined feed-
back and sympathetic cooling can be obtained by integrating the displacement PSD
Ssf

x (ω). A similar calculation as shown in equation 4.17 yields:

T sf
mode = Tbath

(1 + gv + gsym) + kmωm
4kBQ

g2
v

(1 + gv + gsym) Sxn . (5.29)
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5.2 Experimental realization of sympathetic cooling

In this section, the performed sympathetic cooling experiments will be presented, which
can be used to characterize the sympathetic cooling performance and its dependency
on important experimental parameters. Furthermore, the demonstration of combined
feedback cooling and sympathetic cooling represents an important milestone towards
a hybrid quantum system consisting of ultra-cold atoms and a quantum mechanical
oscillator.
The measurements were prepared and performed by the following people: the optical
coupling lattice was set up and aligned by the author together with T. Wagner. The
software for triggered data acquisition of the homodyne signal in cycled experiments
was programmed by H. Zhong. The experiments and data analysis were performed by
the author together with T. Wagner.

5.2.1 Parameter optimization and experimental sequences

As shown in section 5.1.1, the sympathetic cooling rate Γsym (see equation 5.16) depends
on parameters of the atomic ensemble (Γa, Nlat), the coupling lattice (ωa) and the MiM
system (m, ωm, rm, F). For a given experimental realization of the MiM system, the
main parameters that can be changed in a systematic manner are the the atomic cooling
rate Γa, the atom number Nlat in the lattice volume and the trapping frequency ωa of
the coupling lattice.
Finding the optimal parameter set of values for Γa, Nlat and ωa is complicated for
several reasons, which will be listed in the following:

Large parameter space
The three parameters Γa, Nlat and ωa also depend on many other parameters that
increase the dimension of the parameter space. For example, the atomic trapping
frequency ωa can be generated by different combinations of the lattice power Plat
and the lattice detuning ∆. Also Γa depends on many other parameters of the
used laser cooling method for the atomic cloud (like the laser detuning, laser
power or the magnetic field gradient).

Complex interplay of parameters
Changing laser cooling parameters also changes the atomic density and overall
atom number of the cloud. Hence, the quantities Γa and Nlat are directly con-
nected, which makes the parameter optimization a highly iterative process.

Parameters difficult to measure
The quantity Γa and the atom number Nlat are difficult to measure independently.
For example, even though a lot of effort was spent measuring Nlat with an ad-
ditional detection beam, the indirect measurement of the atom number through
measuring Γsym still remains the most reliable method we have found.

Dynamical processes
The method for generating very dense MOTs, as well as generating an optical
molasses used for sympathetic cooling are dynamical processes. This allows for a
large variety of possible timing configurations as an extra parameter.
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The sympathetic cooling measurements were performed with three different laser cool-
ing configurations of the atomic cloud. All three configurations were optimized for a
maximum sympathetic cooling rate of the mechanical oscillator. Due to the difficulties
listed above, each optimization was performed with an individual strategy. The laser
cooling configurations are:

• Steady state sympathetic cooling with a continuously loaded MOT

• Pulsed sympathetic cooling with an optical molasses

• Pulsed sympathetic cooling with a MOT

In the following, these experimental configurations and the specific optimization for a
maximum sympathetic cooling rate Γsym will be discussed in more detail.

Steady state sympathetic cooling: MOT configuration A

If the coupling lattice is guided through a continuously loaded MOT and the lattice
trapping frequency is ωa ≈ ωm, the mechanical oscillator is sympathetically cooled and
quickly reaches a steady state with a mode temperature Tmode < Tbath. In this steady
state, the floating average peak PSD of the oscillator was monitored using a spectrum
analyzer connected to the homodyne detector. In this way, the MOT parameters could
be changed iteratively, until the lowest mode temperature of the oscillator was reached.
Our measurements show that the optimal cooling could be achieved for a large mag-
netic field gradient of 25 G/cm using a current of 50 A and the maximum available
laser intensity of Imax = 75 mW/cm2 = 45 Isat with a detuning of δMOT = −6.2 ΓD2 =
−2π × 37.8 MHz.2 The optimization procedure yields a relatively dense MOT as com-
pared to the normal MOT used in our BEC cycle. This makes sense, as a large atom
number in the lattice volume is beneficial for the sympathetic cooling. The dense MOT
has a temperature of T = 170(15) µK, which was determined by ballistic expansion
measurements (see appendix C.1). The optimization was performed with a blue lattice
detuning of ∆2,3 = 2π × 224 MHz,3 which results in a (calibrated) trapping frequency
of ωa ≈ 2.5ωm for the used lattice power of Plat = 250 µW.
As shown later in Figure 5.16, these parameters (called MOT configuration A) allow
for steady state sympathetic cooling with Γsym ≈ 8 Hz down to mode temperatures of
Tmode ≈ 25 mK for the corresponding Tbath ≈ 1 K.

Pulsed sympathetic cooling with an optical molasses

As the atoms in an optical molasses are not spatially confined, they have a finite lifetime
on the order of 1 s. Therefore, the sympathetic cooling with an optical molasses must
be performed in a cycled experiment in order to average the mode temperature during
the cooldown over many experimental runs. For this, the homodyne signal from the

2I define the maximum intensity Imax for the MOT and the optical molasses as the summed intensity
of all six beam, which was measured with a power meter

3The Ti:sapph frequency was locked at nFSR = 0 FSR with the transfer lock (see equation 2.8)
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density lattice

Molasses phase

0.5 mW

time5 s 0.2 ms 1 s 1 ms

MOT phase

Figure 5.4: Experimental sequence for sympathetic cooling with an optical mo-
lasses. After loading the 3D MOT for 5 s (dark blue shading), the current through the magnetic
coils and the 3D MOT light are switched off for a short period of 200 µs (light blue shading).
After this, the magnetic fields have decayed and allow creating an optical molasses by switching
on the cooling lasers again. Simultaneously, the coupling lattice is switched on with the intensity
control (bandwidth ≈ 50 kHz) until it is ramped down again after a coupling period of 1 s. Blue
line: atomic density, green line: lattice power, shaded blue area: MOT phase. Time axis not to
scale.

mechanical oscillator was measured using zero-span traces from the lock-in amplifier4

(see Figure 4.8), as described in section 4.4.1.
In order to find the optimal molasses parameters for sympathetic cooling, the detuning
δMol and the intensity I0 of the molasses light were varied systematically. Figure 5.5
exemplarily shows the time traces of the oscillator temperature for one specific I0 and
ten different detunings. After the cooldown during 0 < t < 0.5 s, the mode temperature
starts to increase again due to the finite lifetime of the atoms in the molasses. The

4The data acquisition and storage of the zero-span traces is triggered by the experimental control,
which allows for extracting the parameters of each cycle from the experimental protocol files.
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Figure 5.5: Sympathetic cooling for different molasses detunings. Left: time traces
of the oscillator temperature Tmode during sympathetic cooling with an optical molasses for a
fixed molasses intensity I = 0.43 · Imax = 32.3 mW/cm2 and different molasses detunings. The
molasses phase starts at t = 0, where the coupling lattice is also quickly switched on (τrise <
1 ms). Right: minimum temperature in the time interval indicated by the red dashed lines in
the left figure and a parabolic fit to the data. Parameters: lattice power Plat = 0.5 mW, blue
lattice detuning ∆2,3 = 2π × 224 MHz (nFSR = 0) ⇒ ωa = 3.5ωm (calibrated), optomechanical
parameters summarized in Table 3.1, each zero-span trace averaged 20 times, demodulator
bandwidth Bd = 300 Hz, total cycle time 13 s.
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lowest mode temperature Tmin for each parameter set was extracted by averaging within
a meaningful time interval before this increase occurs at t ≈ 0.75 s. We found that for
large data sets this method is more reliable and robust than individual fits to the
cooldown curves, as presented later in subsection 5.2.2.
For each I0 we find a clear minimum of the achieved minimum temperatures Tmin at
one specific optimal molasses detuning δopt

Mol, which can be extracted by a fit to the
Tmin (see Figure 5.5 at right). The minimum achievable temperature at these optimal
detunings are shown in Figure 5.6 (a) and the corresponding sympathetic cooling rates
Γsym according to equation 5.14 are shown in Figure 5.6 (b). The measurements were
performed for two different coupling lattice configurations with red and blue detuning.
One can see that for the blue lattice detuning ∆2,3 = 2π × 224 MHz with the large
atomic trapping frequency ωa = 3.5ωm, the sympathetic cooling rate slightly increases
for larger I0. In contrast, the red lattice detuning with ωa = 1.65ωm leads to a rather
constant Γsym for a large range of molasses light intensities I0 and the corresponding

(a) (b)

(c) (d)

Figure 5.6: Parameter optimization for sympathetic cooling with an optical mo-
lasses. (a): Minimum mode temperature during sympathetic cooling with an optical molasses
for different molasses light intensities I0. Each data point corresponds to the optimal molasses
detuning δopt

Mol obtained by a molasses detuning sweep shown in Figure 5.5. (b): Corresponding
sympathetic cooling rate according to equation 5.14 with Tbath extracted by averaging the time
traces for t < 0 (see Figure 5.5). (c): Combinations of I0 and δopt

Mol that corresponds to the
optimal cooling points in Figure (a). (d): Theoretically expected Γtheo

a for the combinations of
I0 and δopt

Mol from Figure (c) (see equation 5.30). Inset figure: model for Γint
sym (see equation 5.16)

for Γa = 0.1ωm (black solid line) and Γa = ωm (black dashed line). The blue and red dashed
lines indicate the (calibrated) trapping frequencies ωa = 1.65ωm for the red detuned lattice and
ωa = 3.5ωm for the blue detuned lattice. Parameters as described in the caption of Figure 5.5
and Plat = 0.7 mW for the red detuned lattice.
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optimal molasses detunings δopt
Mol. The fact that Γsym is always smaller than for the red

lattice detuning could be explained by the fact that the repulsive potential of the blue
lattice beam leads to a smaller atom number Nlat in the lattice volume.
The combinations of I0 and δopt

Mol at the points of optimal cooling are shown in Fig-
ure 5.6 (c). Interestingly, δopt

Mol for the blue lattice detuning is constant at δopt
Mol ≈

−2π × 50 MHz = −8.2 ΓD2 , while for the red lattice detuning the optimal molasses
detuning δopt

Mol changes with I0. It is unclear what leads to these combinations of I0
and δopt

Mol. However, the measurement shows that for a wide parameter range the max-
imum available intensity I0 = Imax = 75 mW/cm2 = 45 Isat and a molasses detuning
around −2π × 50 MHz = 8.2 ΓD2 leads to a large sympathetic cooling rate. Hence, we
performed all our sympathetic cooling measurements presented in the following with
these parameters.
Nevertheless, even though the origin of the optimal combinations of I0 and δopt

Mol remains
unclear, one can try to compare them with the theoretical prediction of the sympathetic
cooling rate Γint

sym in equation 5.16. For this, the atomic damping rate Γtheo
a can be

calculated from the measured I0 and δopt
Mol, which allows for comparing the measured

Γsym with the theoretical prediction of Γint
sym[Γtheo

a , ωa], using the well-known expression
for the atomic damping rate in an optical molasses [187]

Γtheo
a = −~k2

ma

4s0 (δMol/ΓD2)(
1 + s0 + (2δMol/ΓD2)2

)2 , s0 ≡ I0/Isat . (5.30)

As shown Figure 5.6 (d), the calculated Γtheo
a for the blue lattice detuning with ωa =

3.5ωm is constantly increasing. This corresponds very well with the slight increase of
the measured Γsym, as the model of Γint

sym predicts an increasing sympathetic cooling rate
at ωa = 3.5ωm. The calculated Γtheo

a for the red lattice detuning are rather constant,
which also agrees well with the measured Γsym, which is also constant within error
bars. Even the one data point with a significantly larger calculated Γtheo

a fits well to the
theory, as the measured Γsym is significantly smaller, which is expected for the lattice
depth ωa = 1.65ωm.

Pulsed sympathetic cooling: MOT configuration B

Compared to the steady state sympathetic cooling with a MOT, a cycled experiment
with pulsed sympathetic cooling allows for much larger densities in the MOT and as-
sumingly larger sympathetic cooling rates. This can be achieved by dynamical processes
in the MOT which generate a collapse of the atomic cloud into a very dense state. For
example, the group of P. Treutlein reports the use of a dark MOT for sympathetic cool-
ing, which is generated by reducing the repumping laser power until the MOT collapses
into a very dense cloud. These experiments were discussed in detail in the PhD thesis
of A. Vochezer et al (neé Faber) [102].
Since the collapse of the MOT is a very time critical process, the density can not be
measured with TOF absorption images and must be measured time resolved. For this,
an additional detection beam, mode matched with the coupling lattice was installed. It
passes the atomic cloud and allows for measuring its optical density (OD). For several
reasons, this OD measurement is technically extremely challenging:
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• Dynamic range: In order to achieve a reasonable dynamic range and a large
SNR of the OD measurement, the detection beam should be not too far-detuned
from the atomic resonance. Hence, the detection beam power Pdet must be very
small to keep the intensity Idet � Isat, which is necessary for the measurement
(see appendix C.2). For example, we typically work at detunings of δdet ≈ 2π ×
30 MHz = 5 ΓD2 and powers of Pdet ≈ 100 nW5. To resolve a large dynamic
range of a beam with maximum power of 100 nW, a photo detector with very low
noise at DC frequencies is required. Furthermore, the fluorescence light of the
atomic cloud creates a typically much larger signal than the small signal from the
detection beam. We solve these two problems by a lock-in measurement of the
detection beam, which enables a very large SNR around the modulation frequency
and which filters out the DC signal from the fluorescence.

• Parasitic quantum optical effects: Since the OD must be measured during
the MOT or molasses phase, the atomic transitions are continuously driven by
the cooling lasers. Hence, the additional near-resonant driving of the detection
beam can lead to quantum interference caused by the interplay of the detection
light with the cooling light. For example, we observe clear indications for elec-
tromagnetically induced transparency (EIT) in the MOT and in the molasses, as
discussed in appendix C.2. This leads to an effectively broadened linewidth of the
atomic transition and a sensitive dependence of the measured OD on the relative
detunings of cooling and detection light.

• Parasitic effects caused by the coupling lattice: Due to the fact that the
near-resonant coupling lattice creates an attractive or repulsive potential for the
atoms, it is important to measure the OD inside the lattice volume with a detec-
tion beam that is mode-matched with the lattice. An additional complication is
that the coupling beam could in principle be involved into the EIT effect.
Furthermore, the periodic atomic density pattern of the atoms in the lattice can
lead to a photonic band gap for the detection light [188]. This leads to a reduced
transmission of the detection light and an apparently larger OD.

The mentioned parasitic effects and the performance of the lock-in based OD measure-
ments were investigated in detail. However, this topic is of very technical nature and
will therefore only be discussed in appendix C.2. As shown there, the absolute value
of the OD measurements has a systematic error between 200% and 300%. Yet, the
parasitic effects described above can be regarded as constant in time for one specific
experimental run and the relative behavior of the OD can be determined quite accu-
rately. Nevertheless, the OD inside the lattice beam also behaves predictable according
to the repulsive and attractive potential of the lattice beam. Hence, OD measurements
inside the lattice volume also give reliable qualitative information on the atom number
in the coupling lattice.
Using the OD detection beam (see appendix C.2), we could perform sweeps of the MOT
parameters in order to generate a collapse of the atomic cloud into a very dense state.
Although some effort was spent, we could not reproduce the generation of a dark MOT

5The small saturation power originates from the small detection beam waist wdet = wlat = 78 µm.
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Figure 5.7: Generation of a MOT with very high OD for pulsed sympathetic cooling.
Zero-span lock-in measurement of the OD during the collapse of the normal MOT into a high-
density MOT state. ODres was calculated as described in appendix C.2 using the reference
signal without atoms at t2 < t < t3, which corresponds to OD = ODres = 0. At t = t0 the
normal MOT parameters are ramped linearly to the optimized values (intensity I0 = 0.7Imax =
52.2 mW/cm2 ⇒ 0.05Imax, gradient 5 G/cm ⇒ 45 G/cm with current Igc = 10 A ⇒ 90 A,
detuning δMOT = −2π × 17.8 MHz(2.9 ΓD2) ⇒ −2π × 37.8 MHz(6.2 ΓD2)). As described in the
legend, either all or only one parameter is changed. The dark blue curve corresponds to a hard
switching to the final parameters at t = t1. At t > t3 the detection light is switched off, which
shows the maximum detectable OD. Detection parameters: OD beam modulation at 50 kHz,
demodulator bandwidth Bd = 100 Hz, detection beam power Pdet ≈ 100 nW with red detuning
δdet = −2π × 25.8 MHz = −4.3 ΓD2 , each zero-span trace averaged ten times.

by sweeping the repumping laser power as described in [102]. However, we have found
an optimized parameter set which allows for a collapse of the MOT without changing
the repumping power. For this, the MOT light intensity I0, the detuning δMOT and
the current Igc for the magnetic field gradient are rapidly switched to a new parameter
set, which is quoted in the caption of Figure 5.7. Interestingly, this rapid switching
leads to the same final OD as a linear ramp of all three parameters. Hence, we only
used the linear ramps for finding the optimal parameters with the largest final OD,
while in the experiment we just perform a hard switching of the parameters. It is worth
noting that the linear sweep of δMOT (see the orange curve in Figure 5.7) leads to a
measured ODres with a dispersive feature which is centered exactly at t ≈ 0.1 s where
the MOT frequency equals the detection beam frequency. This is another indication of
EIT, as discussed further in appendix C.2. The high-density MOT state is an emergent
phenomenon which can only be generated by changing all three parameters together:
changing only one parameter at a time leads to final ODs that do not add up to the
final value obtained by changing all three parameters. Furthermore, the final state can
only be generated dynamically: if the final MOT parameters are adjusted from the
beginning of the MOT loading cycle, no atoms can be trapped at all.
MOT configuration B. The high-density MOT, called MOT configuration B in the
following, has a ten times larger OD than the normal MOT and a lifetime on the
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Figure 5.8: Experimental sequence for pulsed sympathetic cooling with a MOT.
After loading the 3D MOT for about 5 s, the MOT parameters are switched to the optimized
values for a high OD MOT, as described in Figure 5.7. After this, the MOT (MOT configu-
ration B) is slowly decaying and the coupling lattice is quickly ramped up. Depending on the
lattice detuning, the measured OD in the lattice volume is increased or decreased by the lattice
potential. Ramping down the lattice after a sympathetic cooling period on the order of 1 s leads
to the same OD that would be measured without the coupling lattice, as long as the lattice is
sufficiently far-detuned so that the atom loss due to the lattice can be neglected.

order of 10 s (which reduces if a near-resonant coupling beam is switched on). The
temperature of this MOT is TMOT = 390(46) µK, which is about two times larger than
in a normal MOT (see appendix C.1). Even though we do not fully understand the
nature of the high-density MOT state, we find that it is an emergent, dynamical state
which possesses a larger OD and larger sympathetic cooling rates, which are about two
times larger than with a normal MOT in steady state sympathetic cooling.
A typical experimental sequence for pulsed sympathetic cooling with this MOT config-
uration B is shown in Figure 5.8. Due to the long lifetime of the MOT, the process is
not as time critical as for the cooling with an optical molasses. The lattice is ramped up
in 2 ms, which is also not very critical. We observe the same sympathetic cooling effect
for faster switching or much slower ramping of the lattice power (as discussed more
detailed in the next subsection). During the sympathetic cooling slot with a duration
on the order of 1 s, the measured OD in the lattice volume is altered by the lattice
beam, depending on the lattice detuning (further details in appendix C.2).

The influence of timing and experimental sequences

In contrast to the results published in [102], we do not observe any significant depen-
dency of the sympathetic cooling performance on timing-related issues in the experi-
mental sequences. For example, the compression of the atomic cloud before sympathetic
cooling with an optical molasses did not improve Γsym (contrary to the results in [102]).
Also for sympathetic cooling with a MOT, the state of the atomic cloud before the cou-
pling slot does not seem to play a role. Furthermore, many different time sequences for
the coupling lattice were tried without any improvement of Γsym. An overview of the
tried sequences is shown in Figure 5.9.
As compared to [102], our maximum sympathetic cooling rate Γsym is about 15 times
smaller [57]. This means that in our case, any effect of compressing the atomic cloud
before the sympathetic cooling has already completely vanished before the coldest quasi
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Figure 5.9: Different experimental sequences for sympathetic cooling. Sketch of the
different experimental sequences that were tried for improving the performance of sympathetic
cooling. None of them resulted in a significant increase of Γsym. 1: three-step MOT sequence
where the parameters of the second and third slot were changed systematically. 2: MOT config-
uration B with subsequent sympathetic cooling with a molasses. 3: quick cycle time Tcycle < 4 s,
which is much faster than the rethermalization time of the oscillator. 4: ramping up the lattice
before the MOT density is increased in MOT configuration B. 5: pulsed ramping of the lattice
in MOT configuration B. 6: different ramping speed of the lattice during molasses. All axes are
not to scale. The blue line indicates the atomic density and the green line indicates the coupling
lattice power.

steady state temperature is reached. Therefore, even though a compression might be
relevant for the very beginning of the cooldown process, it has no influence on the final
temperature.

5.2.2 Sympathetic cooling in time domain

As described in section 5.1.1, the sympathetic cooling process can be treated as velocity-
dependent feedback cooling. Hence, the time-dependent model in equation 4.24 can also
be used for sympathetic cooling, by replacing the velocity-dependent feedback gain gv
with the sympathetic cooling gain gs (see equation 5.11). Due to the fact that in our
current system gs � gv,opt, the sympathetic cooldown process happens on a much
longer time scale than the optimal feedback cooling. Therefore, our typical zero-span
demodulator bandwidth Bd ≈ 200 Hz is sufficient to resolve the time evolution during
sympathetic cooling without bandwidth limitations.

MOT cooling in time domain

The time evolution of the oscillator temperature Tmode(t) for pulsed sympathetic cool-
ing with the MOT configuration B (see subsection 5.2.1) was compared to the time
dependent model in equation 4.24. Figure 5.10 shows the fit result for the cooldown
process and the rethermalization after the sympathetic cooling is switched off at t = 1 s
(by switching off the repumping laser for the atoms). All fits were performed with a
simple least-square algorithm to the logarithmic data. At t = 0 the coupling lattice
is quickly ramped up within 1 ms. The cooldown process for t > 0 can be fitted very
well, which results in a sympathetic cooling gain of gs = 75.7±0.5 and a corresponding
sympathetic cooling rate of Γsym = 11.6(2) Hz (see equation 5.11). The final steady
state temperature of the fit yields Tmin = 24 mK.
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Figure 5.10: Sympathetic MOT cool-
ing in time domain. Oscillator mode tem-
perature Tmode during sympathetic cooling
with MOT configuration B. The cooldown
was fitted with equation 4.24, which yields
Γsym = 11.6(2) Hz and Tmin = 24 mK. The
rethermalization was fitted using equation
4.25, which yields Γheat

m = 0.204(2) Hz. The
solid lines indicate the fitted intervals, the
dashed lines indicate the extension of the
fit function. Parameters: blue lattice detun-
ing ∆2,3 = 2π × 0.507 GHz, Plat = 0.5 mW,
ωa ≈ 2.5ωm (calibrated), optomechanical
parameters shown in Table 3.1, each zero-
span trace averaged 30 times, demodulator
bandwidth Bd = 200 Hz, total cycle time
8 s.
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After the cooldown, the oscillator temperature is approximately constant, which shows
that the MOT has a lifetime which is much longer than the time scale of the cooldown
process. The rethermalization can also be fitted very well starting approximately 40 ms
after the sympathetic cooling ends at t = 1.04 s. The faster increase of Tmode dur-
ing these 40 ms could be explained by the fact that the coupling lattice was ramped
down over 10 ms within this time interval. The fitted oscillator damping rate Γheat

m =
0.204(2) Hz is slightly larger than the value Γm = 0.154 13(9) Hz measured with ring-
down measurements (see Table 3.1) and also as the value obtained by the rethermal-
ization after feedback cooling (see Figure 4.10). The reason for this could be that the
rethermalization in this experimental sequence was distorted by additional noise. For
example, if the cavity was slightly blue detuned, which can be caused by a thermal drift
induced by the lattice beam, there might have been a small optomechanical heating
rate Γopt < 0 and a slightly increased rethermalization rate with a larger effective Γm
(see Figure 3.5).

Molasses cooling in time domain

Contrary to the sympathetic cooling with a MOT, the atomic density in a molasses
can not be regarded as constant during the sympathetic cooldown process. However,
we observe that the atom number that participates in the sympathetic cooling changes
only by a factor of 20% until the coldest temperature is reached, as discussed in the
following.
Figure 5.11 shows the cooldown process during sympathetic cooling with an optical
molasses. All fits were performed with a simple least-square algorithm to the logarithmic
data. The initial cooldown slope can be fitted well with the model in equation 4.24,
which yields gs = 167 ± 3 and Γsym = 25.6(4) Hz. Shortly before this fit function
reaches its coldest temperature, the temperature starts to increase again, which can be
well modeled by assuming a time dependent sympathetic cooling rate Γsym(t) and the
corresponding temperature evolution according to the steady state equation 5.14. Even
though the temperature changes during this interval 0.15 s < t < 1 s is not constant,
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Figure 5.11: Sympathetic molasses cooling in time domain. Left: oscillator mode tem-
perature Tmode during sympathetic cooling with an optical molasses. At t = 0 the coupling
lattice is ramped up within 200 µs before the molasses starts (unlike shown in Figure 5.4), at
t = 1 s the molasses light is quickly switched off and the lattice is kept on. Cooldown and
rethermalization fits as described in Figure 5.10 yield gs = 167 ± 3 and Γsym = 25.6(4) Hz.
The interval 0.15 s < t < 1 s was fitted assuming a time dependent Γsym(t) in equation 5.14.
The minimum temperature is Tmin = 20 mK. Right: fitted exponential decay of Γsym(t) in the
interval 0.15 s < t < 1 s with a time constant τsym = 1.04(2) s. Parameters: red lattice detuning
∆2,1 = −2π × 1.35 GHz (locked at nFSR = −2), Plat = 0.56 mW, ωa = 1.48ωm (calibrated),
optomechanical parameters shown in Table 3.1, each zero-span trace averaged 25 times, demod-
ulator bandwidth Bd = 300 Hz, total cycle time 8.8 s.

this steady state model is a good approximation, since the time scale of the temperature
change is much slower than the ringdown time Γ−1

m . Assuming that the change of Γsym(t)
is related to atom loss in the coupling lattice due to the decay of the molasses, this
change can be approximated as Γsym(t) ∼ Nlat(t) ∼ e−t/τsym (see equation 5.16). The
fit with this model yields a time constant τsym = 1.04(2) s, which agrees well to the
typical life time of the optical molasses.
The rethermalization of the oscillator temperature can also be fitted very well start-
ing approximately 100 ms after the sympathetic cooling ends at t = 1.1 s. Similar to
the MOT measurement presented above, the fitted oscillator damping rate Γheat

m =
0.211(2) Hz is slightly larger than the value measured with ringdown measurements
(see Table 3.1) and also as the value obtained by the rethermalization after feedback
cooling (see Figure 4.10). The reason for this could be that the rethermalization in this
experimental sequence was distorted by the additional noise of the coupling laser or
optomechanical heating as described above.

5.2.3 Resonant hybrid coupling

As described in section 5.1.1, the sympathetic cooling mechanism is based on the res-
onance between the atomic oscillations in the coupling lattice with frequency ωa and
the oscillations of the mechanical oscillator with frequency ωm. Due to the fact that
the atomic cloud has a diameter much larger than the size of the coupling beam and
ωa(r) depends on the radial distance r from the beam axis, the predicted sympathetic
cooling rate Γint

sym(ωa) has a specific resonance behavior depending on the maximum
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trapping frequency ωa
6 on the beam axis (see Figure 5.2). This resonance behavior of

Γsym(ωa) was investigated in detail by sweeping the atomic trapping frequency ωa.
The measurements were performed by sweeping either the lattice power Plat or the
lattice detuning ∆. Both methods are equivalent for the coupling mechanism, but they
lead to different parasitic effects. For example, a large Plat leads to heating of the MiM
system and thermal drifts of the cavity length which can distort the measurement. On
the other hand, sweeping ∆ leads to large atomic scattering for small detunings, which

6Note that in the calculation of Γint
sym, ωa is denoted by ωa,0. Furthermore, the expression Γint

sym for
the sympathetic cooling rate will only be used for an explicit reference to this theoretical prediction.

Figure 5.12: Resonance behavior of sympathetic molasses cooling.Minimum oscillator
mode temperature Tmin during sympathetic cooling with an optical molasses for different blue
(top line) and red (bottom line) lattice detunings and for different lattice powers Plat. The right
column shows Tmin as a function of the corresponding (calibrated) atomic trapping frequency
ωa in units of the oscillator frequency ωm. Note that in all four figures ωa increases from left to
right. The dashed lines indicate the measured bath temperatures Tbath, determined by averaging
Tmode(t) before the cooldown. The blue detunings ∆2,3 are with respect to the F = 3 level of
the D2 line, red detunings ∆2,1 with respect to F = 1. However, ωa was calculated including all
hyperfine levels. Molasses parameters: see subsection 5.2.1. Optomechanical system parameters
summarized in Table 3.1. Sequence parameters, data acquisition and determination of Tmin
similar as described in Figure 5.5.
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can drastically reduce Γsym. Furthermore, some optical elements in the beam path of
the lattice are strongly frequency dependent and must be adjusted for different lattice
frequencies (for example the thermal polarization control described in appendix A.1).
In order to minimize these parasitic effects in the specific experiment configuration, the
sweeps of the trapping frequency ωa presented in this subsection were performed either
by sweeping ∆ or by sweeping Plat.

Resonance behavior of molasses cooling

In order to measure the sympathetic cooling rate Γsym as a function of the atomic
trapping frequency ωa for cooling with an optical molasses, different lattice detunings
were adjusted within a range of several gigahertz around the atomic transition7. For
each lattice detuning the oscillator mode temperature Tmode(t) was measured in zero-
span mode (as described in section 4.4.1) and the minimum temperature Tmin during
the sympathetic cooldown was determined as shown in Figure 5.5. This measurement
was performed for three different lattice powers Plat for each value of the detuning.
Figure 5.12 shows the minimum temperatures during sympathetic molasses cooling for
red and blue lattice detunings. It shows that the coldest temperatures are reached for
red lattice detunings. This is most likely related to the attractive lattice potential for
red detunings, which leads to larger atom numbers and accordingly a larger sympathetic

7The lattice frequencies were adjusted manually with a precision of ≈ 10 MHz relative to a start
frequency f0, which was known with an absolute accuracy of 3 MHz, as described in section 2.4.1.
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Figure 5.13: Resonance behavior of Γsym for molasses cooling. Sympathetic cooling
rate Γsym calculated with equation 5.14 using the temperatures Tmin and Tbath from Figure
5.12 (using the data for Plat = 1 mW from the blue detunings and the data from Plat = 0.5 mW
from the red detunings). The data points for large ωa with decreasing Γsym were omitted because
the effect of light scattering is not included into the model. The resonant atom number Nres
was calculated from Γsym according to equation 5.18. The fits according to equation 5.16 (red
lines) yield an atomic cooling rate Γa, which is displayed above. The x axis was rescaled using
the fit function, yielding the correction factors 0.81±0.02 (left) and 0.903±0.007 (right), which
represents the deviation from the lattice calibration (see section 2.4.2). Parameters as described
in Figure 5.12.
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cooling rate. This dependency of the atom number in the lattice volume on the lattice
detuning was also confirmed by OD measurements, as discussed in appendix C.2.
Figure 5.12 also shows that for each lattice power Plat, there exists an optimal detuning
∆ where the lowest temperatures Tmin are achieved. This means that unlike expected
by the theoretical prediction of Γint

sym (see Figure 5.2), the sympathetic cooling rate
decreases again for small detunings and large atomic trapping frequencies ωa. This
effect clearly gets worse for small lattice powers, as can be seen in the right column
of Figure 5.12. This indicates that increased light scattering is causing the increase of
Tmin for large ωa, because it is proportional to ∆2 and a small Plat corresponds to a
small detuning ∆, as described in section 2.4.1. Most likely, the small detunings lead
to an increased atomic light scattering, which causes atom loss in the coupling beam
and a reduced sympathetic cooling rate. However, this assumption could not be proven
independently, especially not by a corresponding OD measurement of the atom number.
Nevertheless, the measurement in Figure 5.12 also allows for the verification of the
resonance behavior of the sympathetic cooling rate Γsym, as shown in Figure 5.13. It
shows that the measured data can be fitted very well with the theoretical prediction of
the ensemble-integrated sympathetic cooling rate Γint

sym in equation 5.16. The fit allows
for a determination of the atomic cooling rate Γa, which yields the same result for blue
and red lattice detuning, as it is expected since it should only depend on the molasses
parameters, which were the same for both measurements. In contrast to the results
published in [102], Γsym can not be regarded as a step function, as it is diverging for
large ωa. This is because in our case Γa is not much smaller than ωm.

Figure 5.14: Resonance behavior of sympathetic MOT cooling for a blue detuned
lattice. Minimum oscillator mode temperature Tmin during sympathetic cooling with MOT
configuration B for different blue lattice detunings and for different lattice powers Plat. The right
figure shows Tmin as a function of the corresponding (calibrated) atomic trapping frequency ωa in
units of the oscillator frequency ωm. Note that in both figures ωa increases from left to right. The
dashed lines indicate the measured bath temperatures Tbath, determined by averaging Tmode(t)
before the cooldown. The blue detunings ∆2,3 are with respect to the F = 3 level of the D2
line. However, ωa was calculated including all hyperfine levels. MOT sequence parameters: see
subsection 5.2.1. Optomechanical system parameters summarized in Table 3.1. Data acquisition
and determination of Tmin similar as described in Figure 5.5.
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Resonance behavior of MOT cooling

The same measurement as described above was performed for sympathetic cooling with
MOT configuration B (see subsection 5.2.1). In contrast to sympathetic cooling with a
molasses, cooling with this MOT configuration only works with blue lattice detunings,
because for red lattice detunings we observe heating instead of cooling. As discussed in
subsection 5.1.3, this heating effect for red lattice detunings and large atomic densities
is predicted by the theoretical model of atomic back-action and the resulting phase
lag of the coupling laser light [103, 104, 186]. For MOT configuration A, which has a
smaller atomic density, this heating effect could be investigated more systematically, as
presented at the end of this subsection.
Nevertheless, the sympathetic MOT cooling with blue lattice detunings yields similar
results as the molasses cooling, as shown in Figure 5.14. Similar to molasses cooling
with a red detuned lattice, the lowest achievable oscillator temperature here is also
Tmin ≈ 20 mK. As discussed above, the vanishing sympathetic cooling for large ωa is
most likely related to atomic light scattering, which could not be proven by a separate
measurement.
The main difference between this measurement and sympathetic molasses cooling is a
significant difference in the lowest achievable temperature for different lattice powers
Plat in the regime of ωm < ωa < 3ωm. Fits to the theoretical model of Γint

sym (see equation
5.16) suggest that the extracted atomic cooling rates Γa differ for the different lattice
depths, as shown in Figure 5.15. However, the confidence interval of the fit for Γa is
very large, so that this assumption remains unproven. Furthermore, it is unclear which
mechanism should lead to a deviation of the atomic cooling rate depending on the lat-
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Figure 5.15: Resonance behavior of Γsym for MOT cooling. Sympathetic cooling rate
Γsym calculated with equation 5.14 using the temperatures Tmin and Tbath from Figure 5.14 for
Plat = 0.5 mW (left) and for Plat = 1 mW (right). The data points for large ωa with decreasing
Γsym were omitted. The resonant atom number Nres was calculated from Γsym according to
equation 5.18. The fits according to equation 5.16 (red lines) yield an atomic cooling rate Γa,
which is displayed above. The x axis was rescaled using the fit function, yielding the correction
factors 0.73± 0.02 (left) and 0.65± 0.04 (right), which represents the deviation from the lattice
calibration (see section 2.4.2). Parameters as described in Figure 5.14.
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tice power. Another possibility is that the particular measurement for Plat = 1000 µW,
which differs from the measurements for the two smaller powers, was somehow cor-
rupted. An indication for this assumption is that the lattice alignment was significantly
worse for the measurement with Plat = 1000 µW (see caption of Figure 5.15). This
could lead to a larger beam imbalance between the two lattice beams, which causes an
instability in the hybrid system, as discussed in subsection 5.1.3.
The most remarkable result from this measurement is that the sympathetic cooling
rates Γsym and the calculated number of resonantly coupled atoms Nres ∼ Nlat (see
equation 5.18) are only about three times larger than the values obtained for sym-
pathetic molasses cooling for blue lattice detunings (see Figure 5.13). However, the
atom number Nlat in MOT configuration B, which was optimized for a maximal atomic
density, should be much larger than in an optical molasses. Since Γsym is expected to
be proportional to Nlat (see equations 5.17) and should therefore be much larger in a
MOT, these measurements indicate that additional effects in the coupling lattice play
a role that were not included into the model. As presented later in subsection 5.2.4,
further measurements have proven that this is not related to a non-linear dependency
of Γsym on the atom number Nlat, which would be the case for the hybrid instability
discussed in subsection 5.1.3.
A possible explanation for the mentioned discrepancy could be that Γsym for MOT
configuration B is somehow limited by additional parasitic effects that counteract the
cooling mechanism. This could mean that without these parasitic effects, Γsym would
be much larger for MOT cooling than for molasses cooling, as it would be expected by
the model. For example, the classical model for Γsym assumes that the atomic ensemble
is at zero temperature and neglects the noise on the coupling beam which is related to
a finite temperature of the atoms. The optical molasses is about 40 times colder than
the cloud in MOT configuration B (see section 2.2 and appendix C.1), which could
possibly explain why molasses cooling leads to comparable sympathetic cooling rates
as achieved by MOT cooling with much larger atomic densities.

Heating and instability of MOT cooling

For sympathetic cooling with a MOT, we observe that the cooling can turn into heating
if the lattice is red detuned. As described above, the MOT configuration B with a large
atomic density always shows this behavior for red lattice detunings, which agrees well
with the theoretical model of atomic back-action discussed in subsection 5.1.3. However,
for steady state sympathetic cooling with MOT configuration A (see subsection 5.2.1)
the heating only occurs above a critical value of ωa, which allows for a more systematic
investigation of the hybrid instability.
As shown in Figure 5.16, the oscillator mode temperature Tmode(ωa) behaves similar for
the red and blue lattice detunings, until the system is abruptly driven into limit-cycle
oscillations above a critical value of ωa ≈ 1.25ωm for the red detuning. By contrast,
sympathetic cooling for the blue detuning is also possible for much larger values of ωa.
This could be explained by the smaller effects of atomic back-action as compared to
red lattice detunings, which are the origin of the hybrid instability [103, 104, 186].
The resonance behavior of Γsym for the blue lattice detuning is similar to the measure-
ments presented above and can be evaluated in the same manner as described above.
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Figure 5.16: Instability in the hybrid coupling mechanism. Oscillator mode temperature
Tmode for coupling to the continuously loaded MOT configuration A (see subsection 5.2.1) using
different coupling lattice powers Plat and two different lattice detunings ∆. The blue detuning
refers to the F = 3 level of the D2 line, the red detuning to the F = 1 level. The right figure
shows Tmin as a function of the corresponding (calibrated) atomic trapping frequency ωa in
units of the oscillator frequency ωm, which was calculated including all hyperfine levels and
the lattice calibration (see Table 2.4.2). For both detunings sympathetic cooling is visible, until
the cooling with the red lattice detuning abruptly turns into heating at ωa ≈ 1.25ωm. The
dashed lines indicate the measured bath temperatures Tbath = Tmode(Plat = 0). Note that in
the case of heating, the oscillator performs limit-cycle oscillations and Tmode is not well defined.
MOT parameters and data acquisition as described in subsection 5.2.1. Optomechanical system
parameters summarized in Table 3.1.
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Figure 5.17: Resonance behavior of Γsym
for steady state MOT cooling. Sympa-
thetic cooling rate Γsym calculated with equa-
tion 5.14 using the temperatures Tmin and
Tbath from Figure 5.16 for the blue lattice de-
tuning. The resonant atom number Nres was
calculated from Γsym according to equation
5.18. The fit according to equation 5.16 (red
line) yields the atomic cooling rate Γa dis-
played in the figure. The x axis was rescaled us-
ing the fit function, yielding the correction fac-
tor 0.69±0.02, which represents deviation from
the optimal lattice alignment for this particu-
lar measurement (see section 2.4.2). Parame-
ters as described in Figure 5.16.

The result is shown in Figure 5.17. One can see that the maximal sympathetic cooling
rate Γsym is about a factor of two times smaller than the maximum value for MOT
configuration B, which is most likely related to the different atomic densities of the two
MOT configurations. Furthermore, the atomic cooling rate Γa obtained by the fit to
Γsym lies within error bounds of the values obtained for MOT configuration B, which
is about two times larger than Γa for molasses cooling (see Figure 5.13).
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5.2.4 Influence of the atom number

In order to investigate the dependency of the sympathetic cooling rate Γsym on the num-
ber of atoms that participate in the sympathetic cooling process, the size of the atomic
cloud was varied by systematical changes of the MOT loading time. Furthermore, the
OD detection beam described in appendix C.2 was used to obtain quantitative results
for the atom number Nlat in the lattice volume. Since this beam is mode matched with
the coupling lattice, the effect of the repulsive or attractive potential for the atoms
generated by the near-resonant lattice can be taken into account. Moreover, the de-
tection beam allows for evaluating the OD at different times during the sympathetic
cooling process. These measurements were performed for sympathetic MOT cooling
and molasses cooling, which will be discussed in the following.

OD measurement for sympathetic MOT cooling

The MOT loading time tMOT in the sequence for MOT configuration B (see Figure
5.8) was systematically altered in a cycled sympathetic cooling experiment. Figure 5.18

Figure 5.18: Sympathetic MOT cooling for different MOT lading times. Left: os-
cillator mode temperature Tmode(t) for sympathetic cooling with MOT configuration B and
different loading times tMOT in the beginning of the sequence (see Figure 5.8). Also shown is
the optical density ODres in the lattice volume, measured with a mode matched detection beam
(see appendix C.2). At t = −0.1 s the initial MOT parameters are quickly changed to the high
density MOT parameters and at t = 0 the lattice is ramped up within 2 ms. At t = 2 s the
repumping laser for the atoms and the lattice are quickly switched off. Right: Sympathetic
cooling rate Γsym as a function of ODres, which was averaged during the sympathetic cooling
phase 0 < t < 2 s. The red solid line is a linear fit to Γsym, which was calculated with equation
5.14 using the temperatures Tmin and Tbath that were obtained as described in Figure 5.5. The
resonant atom number Nres was calculated from Γsym according to equation 5.18. Parameters:
blue lattice detuning ∆2,3 = 2π× 0.48 GHz, Plat = 0.35 mW, ωa = 2.1ωm (calibrated), optome-
chanical parameters shown in Table 3.1, each zero-span trace averaged 20 times, demodulator
bandwidths Bd,T = 300 Hz (temperature) and Bd,O = 3 kHz (OD), OD beam blue detuned at
δdet = 2π × 24.2 MHz = 4 ΓD2 with Pdet ≈ 350 nW, total cycle time 21.5 s.
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(a) shows the mode temperature of the oscillator Tmode(t) and the OD in the lattice
volume during sympathetic cooling, which were acquired simultaneously.8
The measurement shows that when the MOT parameters are changed for creating the
high density MOT at t = −0.1 s, the desired compression only works for large loading
times tMOT. By contrast, for a small tMOT the OD actually gets smaller when the MOT
parameters are changed. This non-linear dependency of the final OD on the initial OD
in the normal MOT is related to the complex behavior of this MOT configuration B,
as discussed in subsection 5.2.1.
When the coupling lattice is quickly ramped up at t = 0, the OD in the lattice volume
is reduced by a factor of three, which holds for all initial ODs and is related to the
repulsive potential of the blue detuned lattice beam, as shown in appendix C.2. After
this, the lattice power Plat is kept constant for 2 s and the mechanical oscillator is
sympathetically cooled with a constant cooling rate Γsym, as the measured OD indicates
a quite constant atom number in this time interval.
Figure 5.18 (b) shows that Γsym depends linearly on the OD, which is proportional to
the atom number Nlat in the lattice volume. Hence, Γsym is proportional to Nlat as
predicted by the model in equation 5.16. As already mentioned above, this agreement
with the model indicates that non-linear effects in the sympathetic cooling process like
the hybrid instability discussed in subsection 5.1.3 do not play a role in this parameter
regime. If the atom number in the lattice volume is calculated from the measured OD
(see equation C.2), the result is in good qualitative agreement with the resonant atom
number Nres, which was calculated from Γsym (see equation 5.18).

OD measurement for sympathetic molasses cooling

A similar measurement as described above was performed for sympathetic cooling with
an optical molasses. However, in this measurement the atom number in the molasses was
altered by a combination of MOT loading time and power of the resonant beam which
transfers the atoms from the 2D MOT into the 3D MOT (see Figure 2.3). Therefore, no
single parameter can be used as a legend for the time traces in Figure 5.19. However, the
increasing MOT size is indicated by the color code, which depicts large MOT samples
in dark colors and small samples in light colors.
We observe that within the first 100 ms of the molasses phase, the measured OD decays
much faster than Γsym, which can be seen in a comparable measurement in Figure 5.11.
This is an indication for a distorted OD measurement during the change of the laser
cooling parameters from the MOT to the molasses at t = 0, where also the coupling
lattice is switched on. Details on the various parasitic effects of this parameter change
on the OD measurement can be found in appendix C.2.
Nevertheless, the OD before the molasses phase is measured with constant laser cooling
parameters and without the coupling lattice. Hence, this OD value is a good qualitative
measure of the number of atoms that participate in the sympathetic cooling process and
was therefore used in the analysis, similar as in [102]. Plotting these OD values against
the measured sympathetic cooling rate yields the same linearity Γsym ∼ OD ∼ Nlat as
for MOT cooling, which is shown on the right side of Figure 5.19.

8Our lock-in amplifier has six demodulators for simultaneous data acquisition, see Figure 4.8.
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Figure 5.19: Sympathetic molasses cooling for different MOT lading times. Left:
oscillator mode temperature Tmode(t) for sympathetic cooling with an optical molasses and
different loading times tMOT in the beginning of the sequence (see Figure 5.4). Also shown is the
optical density ODres in the lattice volume, measured with a mode matched detection beam (see
appendix C.2). At t = 0 the lattice is ramped up within 200 µs before the molasses starts (unlike
depicted in Figure 5.4). At t = 2 s the repumping laser for the atoms and the lattice are quickly
switched off. Right: Sympathetic cooling rate Γsym as a function of ODres, which was averaged
within a short interval t0 < t < 0 before the molasses phase. The red solid line is a linear fit
to Γsym, which was calculated with equation 5.14 using the temperatures Tmin and Tbath that
were obtained as described in Figure 5.5. The resonant atom number Nres was calculated from
Γsym according to equation 5.18. Parameters: red lattice detuning ∆2,1 = −2π × 1.56 GHz,
Plat = 0.5 mW, ωa = 1.3ωm (calibrated), optomechanical parameters shown in Table 3.1, each
zero-span trace averaged 25 times, demodulator bandwidths Bd,T = 200 Hz (temperature) and
Bd,O ≈ 200 Hz (OD), OD beam red detuned at δdet = −2π × 5.8 MHz = 0.95 ΓD2 , total cycle
time 20.9 s.

In this measurement our maximum value of the sympathetic cooling rate Γsym =
23.3(14) Hz was achieved, which was obtained by the linear fit to the measured Γsym.
The corresponding hybrid cooperativity according to equation 5.21 is Chybrid = 151±9.
The minimum mode temperature of the mechanical oscillator is Tmin = 21(4) mK (the
statistical error is quoted, not the systematic error of the homodyne calibration).

5.2.5 Feedback-assisted sympathetic cooling

The experimental results in the previous subsections can be regarded as a characteriza-
tion of the hybrid coupling mechanism, which shows that for our system 1� Chybrid �
n̄th. This means that we operate far outside the strong coupling regime and ground
state cooling of the mechanical oscillator by sympathetic cooling or coherent dynamics
of the hybrid system are not possible [31]. However, the combination of feedback cooling
with sympathetic cooling may relax the conditions for quantum mechanical state swaps
between the two parts of the hybrid system [34]. In this way, it might be possible to
create an atomic-mechanical quantum hybrid system through feedback cooling of the
mechanical oscillator.
In view of these exciting prospects, we tested the experimental feasibility of combining



Experimental realization of sympathetic cooling 129

the hybrid coupling mechanism with feedback cooling of the mechanical oscillator. For
this, the oscillator was first feedback cooled into a steady state with a reduced mode
temperature, as described in section 4.4. Subsequently, sympathetic cooling with a
MOT was additionally switched on.
The main difficulty of the experimental sequence for combined feedback cooling is the
data acquisition of the oscillator mode temperature Tmode. This is because zero-span
measurements are not suitable to resolve very low mode temperatures, as described in
subsection 4.4.1. Therefore, the zero-span function was only used for monitoring the
time evolution Tmode(t) during the experimental sequence, while the final minimum
temperatures were calculated from the displacement PSD spectra Sy(ω), which were
acquired with the Zoom-FFT function of the used lock-in amplifier (as described in
subsection 4.4.3). During the acquisition of the spectra, the oscillator needs to be in a
steady state, which is easy to achieve with feedback cooling. By contrast, reaching a
quasi steady state with sympathetic cooling is only possible with a MOT instead of an
optical molasses, as shown in subsection 5.2.2.
Figure 5.20 shows the time evolution of Tmode(t) during the experimental sequence for
combined cooling of the oscillator for different feedback gains P (set in the feedback
loop, see Figure 4.8). The time trace for P = 0 (dark blue) corresponds to pure sympa-
thetic MOT cooling. One can see that Tmode(t) reaches a steady state of 20 mK after a
cooldown time tcool ≈ 250 ms. If a finite feedback gain P > 0 is adjusted, the oscillator
gets feedback cooled in the first cooling interval 0 < t < 3 s. This leads to a reduced
mode temperature Tmode < 20 mK in the combined cooling interval for t > 3 s. One can
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Figure 5.20: Time evolution of the oscillator temperature during the combined
cooling sequence. Oscillator mode temperature Tmode(t) for different feedback gains P (gain
set in the feedback loop, see Figure 4.8) and constant sympathetic MOT cooling parameters.
At t = 0 the feedback cooling is started by opening the feedback beam shutter. At t = 3 s
the sympathetic cooling is switched on by quickly changing the MOT parameters to MOT
configuration B (see subsection 5.2.1) and simultaneously ramping up the coupling lattice within
1 ms. For P = 0 the cooling is purely sympathetic, which allows for calculating the sympathetic
cooling gain gs = 170, according to equations 5.11 and 5.14 using Tbath = 3.8(12) K obtained
by averaging Tmode(t < 0). Parameters: feedback light power P0.5 = 425 µW in front of cavity
fiber at 50% working point of EOM, blue lattice detuning ∆2,3 = 2π×160 MHz, Plat = 150 µW,
ωa = 2.2ωm (calibrated), zero-span traces averaged 30 times, demodulator BW Bd = 400 Hz,
sequence cycle time 20.0 s, optomechanical system and detection parameters: see Table 3.1.
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clearly see that the temperature during the combined cooling gets smaller with increas-
ing feedback gain. Nevertheless, the additional cooling effect from sympathetic cooling
also gets smaller with increasing feedback gain. For the gain P = 5 the temperature
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Figure 5.21: Spectral analysis of combined sympathetic and feedback cooling. Left
column: In-loop displacement PSD Sy(f) for different feedback gains gv (blue) and fits to
the spectra (red). The fits are simple least-square fits to the logarithmic data. Both cooling
configurations were fitted with expression 5.27 using gv as the only free fit parameter and the
fixed value Tbath = 3.8(12) K. For this, gsym was set to zero for pure feedback cooling and set
to gsym = 170 for combined cooling (Tbath and gsym taken from the traces in Figure 5.20). Inset
figure: zoom into the peak area. Right column: feedback gains gv obtained by the fits in the
left column as a function of the adjusted amplification gains P in the feedback loop (see Figure
4.8). Data acquisition: Zoom-FFT spectra from the lock-in amplifier, demodulator bandwidth
Bd = 1.5 kHz, sampling rate 7.2 kSa/s, resolution 880 mHz, each spectrum averaged over ten
cycles. Sequence parameters: see Figure 5.20.
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reduction during combined cooling is barely visible. However, when Tmode approaches
1 mK, the result from the zero-span traces can not be trusted anymore.
In order to determine Tmode also for large feedback gains, the in-loop displacement
PSD Sy(ω) (see section 4.1) was acquired using Zoom-FFT spectra. These spectra
were precisely triggered by the experimental control and in both cooling intervals a
PSD spectrum of the oscillator was acquired within a time interval of 2 s. The measured
spectra are shown in Figure 5.21. Contrary to the measurement presented in subsection
4.4.3, the bath temperature Tbath in this measurement was simply obtained by averaging
the data for Tmode(t < 0) from the zero-span measurement (see Figure 5.20). In this way,
the spectra Sy(ω) for pure feedback cooling (see equation 4.10) in the first cooling time
slot can be fitted using the feedback gain gv as the only free fit parameter, as described
in subsection 4.4.3. However, the equation for the PSD Ssf

x (ω) during combined cooling
also includes the sympathetic cooling gain gsym (see equation 5.27). Therefore, gsym was
calculated from the pure sympathetic cooling process for P = 0, as described in Figure
5.20. Using this value for gsym in the expression for Ssf

x (ω), the spectra for combined
cooling can also be fitted with gv as the only free fit parameter, which is shown in
Figure 5.21 (bottom left).
The right column in Figure 5.21 shows the fitted feedback gains gv as a function of the
adjusted gain P in the feedback loop (see Figure 4.8). A linear fit shows that gv ∼ P ,
which means that the feedback cooling is performed in the linear regime of all involved
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Figure 5.22: Cooling limit of feedback-assisted sympathetic cooling. Mode tempera-
tures of the oscillator Tmode as a function of the feedback gain gv and a least-square fit to the
data using expression 5.29. For this, gsym was set to zero for pure feedback cooling and set to
gsym = 170 for combined cooling (see Figure 5.20). The mode temperatures were obtained by
fits to the spectra in Figure 5.21. The error bars include the statistical error of gv. The mini-
mum temperatures Tmin displayed above have a very small statistical error and the difference
between them is significant. Note that both values still have the same systematic error from
the error of Tbath = 3.8(12) K used for the calculation of Tmode and the usual systematic error
of 18% from the homodyne calibration (see equation 3.20).
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parts in the feedback loop. Furthermore, the fact that this linearity also holds for the
combined cooling is a validation of the model for the combined cooling displacement
PSD Ssf

x (ω).
Moreover, the fitted feedback gains gv allow for calculating the mode temperatures
Tmode of the oscillator for pure feedback cooling and for combined cooling. Both tem-
peratures can be calculated from equation 5.29 by setting gsym = 0 for pure feedback
cooling. The resulting temperatures are shown in Figure 5.22 together with a fit using
the same expression 5.29. In this way, the minimum achievable mode temperature Tmin
can be determined very precisely, which shows that the combined cooling leads to a
slightly lower minimum temperature. The fact that the additional cooling effect is so
small originates from the small sympathetic cooling gain gsym compared to the much
larger feedback cooling gain gv,opt � gsym at the point of optimal cooling. However, in
the regime where both gains are comparable the combined cooling leads to significantly
lower mode temperatures of the oscillator.
Nevertheless, the very small temperature reduction of less than 5% for combined cool-
ing is completely compensated by the additional heating effects of the experimental
sequence. In fact, pure feedback cooling in the steady state leads to a significantly
lower temperature of Tmin = 234 µK, as described in subsection 4.4.3. Further measure-
ments revealed that the larger temperature in the combined cooling experiment can be
explained by heating of the coupling lattice beam, as discussed in appendix C.3.
Finally it can be said that the combined cooling process in our parameter regime
can be described very well with the classical model described in subsection 5.1.4. The
measurements demonstrate the technical feasibility of creating and detecting a quasi
steady state of a feedback cooled mechanical oscillator coupled to a laser cooled atomic
cloud. Possible improvements and future prospects of this experimental configuration
will be discussed in the following section.

5.3 Conclusion

We have demonstrated sympathetic cooling of a membrane oscillator in a cryogenic MiM
system through coupling to a laser cooled atomic cloud. The setup allows for a robust
operation in cycled experiments, which exhibit very small cycle-to-cycle parameter
fluctuations and long-term stability. This proves the robustness of the cavity-enhanced
long-distance coupling mechanism based on an optical 1D lattice, which couples the
atomic motion to the mechanical oscillator [31].
Sympathetic cooling in our parameter regime can be regarded as a robust phenomenon
that works in a wide parameter range of the coupling lattice and the laser cooling of
the atomic cloud. We observe the largest sympathetic cooling rates for cooling with an
optical molasses with a large number of atoms. Starting from cryogenic bath tempera-
tures around Tbath ≈ 3 K of the mechanical oscillator, this enables sympathetic cooling
down to minimum temperatures of Tmin ≈ 20 mK, which corresponds to a measured
cooling rate of Γsym = 23.3(14) Hz and a hybrid cooperativity of Chybrid = 151 ± 9.
Sympathetic cooling with a MOT leads to comparable cooling rates, but also allows
for reaching a quasi steady state of the oscillator, as the atom number of the used
MOT configuration can be regarded as being constant on the timescale of 1 s. More-
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over, the sympathetic cooling mechanism also works in a real steady sate, by coupling
the mechanical oscillator to a continuously loaded MOT, which leads to slightly smaller
cooling rates in our setup.
As the hybrid coupling mechanism can become instable for very large atom numbers
in the coupling lattice [104], the maximum sympathetic cooling rate is limited on the
atomic side. However, we only observe this effect for red coupling lattice detunings,
which shows that for blue lattice detunings the hybrid coupling mechanism might be
stable even for larger atom numbers than in our setup. This asymmetry is also pre-
dicted by the theory [103, 104, 186]. Moreover, the sympathetic cooling rate Γsym can
also be enhanced without changing the atomic side of the hybrid system. For exam-
ple, the mass of the mechanical oscillator could be reduced and the Q-factor could be
further increased, which both contribute linearly to Γsym (see equations 5.12, 5.13).
Nevertheless, the MiM system could be further optimized in terms of the cavity finesse
F , which has on optimal value that follows from the quantum mechanical noise con-
tributions (see Figure 5.3). Assuming the mechanical oscillator in our system would be
replaced by a trampoline oscillator [73, 74], which has a ten times lower mass and a
ten times larger Q-factor, this would increase Chybrid by a factor of 100. Choosing the
optimal value F ≈ 850 for the finesse in our system (see Figure 5.3) would increase
the hybrid cooperativity by another factor of 30, as Chybrid ∼ Γsym ∼ F2 (the current
value is F ≈ 160). With these technical improvements we would already enter the
strong coupling regime Chybrid > n̄th, even for our current thermal phonon occupation
n̄th ≈ kBT/~ωm ≈ 2.4× 105. We are also confident that the thermal occupation of the
oscillator n̄ can be significantly reduced by improvements of the cryogenic MiM system.
This would even relax the conditions for the strong coupling regime.
Hence, our hybrid system offers exciting prospects for reaching the strong coupling con-
dition, which may enable ground state cooling of the mechanical oscillator even in the
bad cavity regime [31, 34, 57] which has not been demonstrated to date. Furthermore,
reaching the strong coupling regime in the hybrid system offers the possibilities for
coherent quantum state transfer, teleportation and entanglement [24, 25, 29].
In addition to the hybrid coupling experiments, we have demonstrated for the first time
the combination of feedback cooling with sympathetic cooling. Through this combined
cooling, ground state cooling is facilitated in our system [34]. Another important result
of these measurements is that we can couple a feedback cooled mechanical oscillator
to a cold atomic ensemble that is not laser cooled. Hence, our system enables coupling
a BEC to a feedback cooled mechanical oscillator. As described in subsection 4.4.3,
feedback cooling into the quantum ground state is technically feasible in our setup if
trampoline oscillators are used. In this way, the creation of a true hybrid quantum
system consisting of two quantum systems of a very different nature might be achieved
in the near future.



Appendix A

Details of the coupling lattice

A.1 Optical losses

In the following, the most relevant optical loss mechanisms in the coupling lattice will
be listed, which are also sketched in Figure A.1 for clarity. The transmittance of the
glass cell Tgc = 0.9 was measured with the lattice beam (same polarization, same angle),
which leads to

√
Tgc ≈ 0.95 for the passage of only one glass plate. The losses for the

first passage of the lattice telescope are given by the transmittance TT,1 = 0.965 of the
lens and the PBS, as well as the fiber coupling with transmittance TFC = 0.85 (the
loss at the PBS due to impure polarization is only 0.33%). The losses of the fiber MiM
device can be divided into losses in the fiber itself and the finite reflectivity on resonance
σref = 0.61 of the MiM system (see equation 2.6), which is slightly lower than the empty
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Figure A.1: Optical losses of the lattice beam. Sketch of the most relevant optical losses
measured in the lattice beam setup depicted in Figure 2.22, showing also the two fiber splices
in the MiM fiber. From the lattice incident beam power of 100% at the position of the atoms,
35% comes back to the atoms from the MiM device (cavity on resonance). The measured power
transmittances for the incident beam (upper line, right to left) are:

√
Tgc (single wall of glass

cell), TT,1 (cube and lens of telescope, first passage), TFC (fiber coupling into PM fiber) and
TPM,1 (losses of two splices and unknown losses in PM fiber). The lower line describes the losses
of the back reflected light: σref (reflectivity on resonance of the MiM device), TPM,2 (losses of
two splices and unknown losses in PM fiber), TT,2 (cube and lens of telescope, second passage)
and Tgc of the second passage through the glass cell. The dashed blue arrows at the PBS indicate
reflected light due to impure polarization. The transmittance of the two splices (and possible
additional losses) in the fiber could only be measured in sum for light that passed the fiber two
times.
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cavity value of 0.73 (see Figure 2.15). The reason might by a small tilt between the
fibers and the membrane or the fact that the wave vectors of the intra-cavity field
are not perfectly perpendicular to the membrane, due to the planar-concave cavity
geometry. The fiber losses (including two splices) were measured by tuning the cavity
off resonance and measuring the reflected power of the fiber MiM system relative to the
incoupling power (assuming TFC = 0.85, σref = 1). The measured total transmittance
of the light that travels to the MiM device and back is TPM,1 × TPM,2 = 0.81 (we
assume two different transmittances for the two directions because the losses might also
be polarization dependent). This was confirmed in two different ways (reflection and
transmission of PBS in telescope). Since this would correspond to a transmittance of
only (0.81)1/4 ≈ 0.95 of a single splice, the transmittance of the first splice was measured
separately by breaking the fiber after this splice. In this way, the transmittance of
the first splice was measured to be larger than 0.95, whereas the second splicing was
repeated four times, each time leading to the same result of the total fiber loss. The
large total loss indicates that the used PM fiber has additional losses apart from the
splices. However, these losses could not be determined separately. They might be related
to the fact that the used PM fiber (planar cavity fiber) does not properly maintain the
polarization. Possible explanations could be the Swagelock fiber feedthrough into the
cryostat or the asymmetric pressure on the cavity fibers in the MiM ferrules (two
125 µm fibers were glued into a 250 µm ferrule). It should be noted that the loss can
not be explained by losses at the PBS in the telescope due to impure polarization.
We control the polarization of the back reflected light via a ≈ 5 cm large piece of
fiber which is temperature controlled. In this way, we achieve a 99% transmittance of
the back reflected light at the PBS in the telescope. This slightly larger polarization
dependent loss on the way back is the reason why TT,2 = 0.96 is slightly smaller than
TT,1 = 0.965. The thermal polarization control is not active and must be adjusted by
hand a few times a day.
Future enhancements of the optical setup could be a larger reflectivity on resonance
of the fiber cavity (σref ≈ 0.9) and the usage of a normal single mode fiber with
only one splice (total round trip fiber transmittance ≈ 0.95). We measured that two
perpendicular polarizations can be coupled into the cryogenic non-PM fiber in the
cryostat and then be perfectly separated again in the reflected beam using mechanical
polarization controllers [91]. The usage of such a fiber and the enhanced MiM device
would lead to a total reflected power of 60% instead of 35% at the position of the atoms.

A.2 Theory of Kapitza-Dirac diffraction

If the optical lattice is switched on abruptly at t = 0, the wave function |Ψ(t = 0)〉 =
|φq〉 of the BEC can be written as a superposition of Bloch states |n, q〉 = ψn,q(x).
Following [189] and [190] this can be expanded into:

|Ψ(t = 0)〉 =
∞∑
n=0
|Ψn(t = 0)〉 =

∞∑
n=0
|n, q〉 〈n, q|φq〉 . (A.1)

Using equation 2.10 one can find
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〈n, q|φq〉 =
∞∑

l=−∞
c∗l,n,q 〈φ2l~k+q|φq〉 = c∗0,n,q . (A.2)

With this one can write down the time evolution of the BEC-wavepacket in the nth
band:

|Ψn(t)〉 = |Ψn(t = 0)〉 e−i(En,q ·Er/~)t = c∗0,n,q |n, q〉 e−i(En,q ·Er/~)t . (A.3)

If the lattice is kept on for a time ∆t and then abruptly turned off again, we project
the wave function onto the plane wave basis |φ2l~k+q〉. Using equation 2.10 this can be
written as:

|Ψn(∆t)〉 =
∞∑

l=−∞
bl,n,q |Φ2l~k+q〉 , (A.4)

where the coefficients bl,n,q are given by

bl,n,q = c∗0,n,qcl,n,qe
−i(En,q ·Er/~)∆t . (A.5)

In the lattice calibration based on Kapitza-Dirac diffraction we measure the population
Nl/Ntot of different momentum orders l as a function of lattice pulse time ∆t. This
quantity corresponds to the sum over all bands of the bl,n,q coefficients:

Nl(∆t)
Ntot

= |
∞∑
n=0

bl,n,q|2 . (A.6)

The bl,n,q coefficients oscillate in time, each with a different frequency depending on
the different bands. Hence, the temporal behavior of the different momentum orders
Nl gets more complicated the more bands are involved. The functions Nl/Ntot are
the entries of our solution vector |ψ(t)〉 in the time dependent Schrödinger equation
(SDG). The fit is a simple least-square algorithm which minimizes the residual between
the numerical parametric solution of the SDG and the measured data points Nl(ti)/Ntot
for the individual order l.
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Details of the feedback setup

B.1 Experimental setup for feedback cooling
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Figure B.1: Experimentally realized setup for feedback cooling. Figure 4.8 in section
4.3 shows schematically the planned setup for feedback cooling. A detailed description of the
setup can be found in the caption of Figure 4.8. This figure shows the slightly different setup that
was realized in the experiment. The detection beam is guided into the cryostat without using a
Faraday rotator and is reflected by the last PBS in front of the cryostat. Still, it is possible to
separate the back reflected light: A λ/2 wave plate in front of the last PBS is adjusted such that
90% of the detection light is transmitted and used for intensity control of the detection beam.
10% of the light gets reflected into the cryostat. On its way back all the light gets reflected by
the PBS (adjusted by a temperature polarization controller, not shown) and passes the wave
plate again. Now 90% of the light gets reflected at the next cube (10% loss) that can be used
for homodyning. The following Faraday rotator is only used as an optical isolator, since any
parasitic back reflected light from the homodyning setup can drive the membrane. The reason
for this realization is of purely technical nature: A Faraday rotator close to the last PBS in
front of the cryostat is located too close to the BEC chamber (large magnetic fields).
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B.2 Data sheet of homodyne photodetector

Datasheet HCA-S  Ser.Nr.: 02-99-406 

Low Noise Balanced Photoreceiver with 

Integrated Si PIN Photodiodes  

(Customized Version) 

S O P H I S T I C A T E D  T O O L S  F O R  S I G N A L  R E C O V E R Y  

DB-E-0299406-10/R1/MS/25Okt2011/ Pages 1 of 3 

  

 

Features ���� Two Si PIN Photodiodes with 0.8 mm Active Diameter 

���� Bandwidth DC ... 1 MHz 

���� Amplifier Transimpedance (Gain) 50 x 10
3
 V/A 

���� Conversion-Gain 28.5 x 10
3
 V/W (@ 800 nm) 

���� Spectral Range 320 ... 1000 nm  

Applications ���� Spectroscopy 

���� Fast Pulse and Transient Measurements 

���� Optical Triggering 

���� Optical Front-End for Oscilloscopes, A/D Converters and Fast Lock-In Amplifiers 

Specifications Test Conditions Vs = ± 15 V, Ta = 25°C 

Gain Transimpedance 20 x 10
3
 V/A  (@ > 10 kΩ load)  

Conversion Gain 28.5 x 10
3
 V/W  (@ 800 nm, > 10 kΩ load) 

Common Mode Rejection > 90 dB typ.  (f < 1 kHz) 
 > 79 dB typ.  (f < 10 kHz) 

 > 61 dB typ.  (f < 100 kHz) 
 > 50 dB typ.  (f < 1 MHz) 

Frequency Response Lower Cut-Off Frequency DC  

Upper Cut-Off Frequency (-3 dB) 1 MHz  (± 10%) 

Rise- / Fall-Time 350 ns  (10% - 90%) 

Detectors Detector Material Two Si PIN photodiodes 
Active Diameter 0.8 mm 

Spectral Response 320 ... 1000 nm 
Peak Sensitivity 0.57 A/W  (@ 800 nm) 

Input Max. Optical Input Power 350 µW  (differential, for linear amplification, 
  @ 800 nm) 

Noise NEP 1.1 pW/√Hz  (@ 800 nm, 100 kHz, > 10 kΩ load) 

 1.4 pW/√Hz  (@ 800 nm, 1 MHz, > 10 kΩ load) 

Equivalent input noise 1.9 nW rms (@ 800 nm, > 10 kΩ load) 

Equivalent input noise 11.4 µW peak-peak (@ 800 nm, > 10 kΩ load) 

Output Output Voltage Range ± 10 V  (@ > 10 kΩ load) 

Output Impedance 50 Ω  (terminate with > 10 kΩ load for 

  best performance) 

Output Offset Compensation ± 200 mV  (adjustable by offset trimpot) 

Output Noise  54 µV rms (@ > 10 kΩ load, no signal on  

  photodiode) 

Power Supply Supply Voltage ± 15 V 

Supply Current ± 40 mA typ.  (depends on operating conditions, 

  recommended power supply  

  capability minimum ± 150 mA) 

Case Weight 210 g (0.5 lb.) 

Material AlMg4.5Mn, nickel-plated 
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Datasheet HCA-S  Ser.Nr.: 02-99-406 

Low Noise Balanced Photoreceiver with 

Integrated Si PIN Photodiodes  

(Customized Version) 

S O P H I S T I C A T E D  T O O L S  F O R  S I G N A L  R E C O V E R Y  

Page 2 

  

 

Temperature Range Storage Temperature – 40 ... + 100 °C 
Operating Temperature 0 ... + 60 °C 

Absolute Maximum Ratings Optical Input Power 10 mW 

Power Supply Voltage ± 22 V 

Spectral Response 
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Connectors Input optical, 2x Si PIN photodiode in free space flange 

Output BNC 

Power Supply LEMO series 1S, 3-pin fixed socket 

 Pin 1: + 15V 
 Pin 2: – 15V 

 Pin 3: GND 
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B.3 Transfer function of electrical bandpass
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Figure B.2: Measured power transfer function |F(ω)| of bandpass in front of lock-in
amplifier. The bandpass filter KR 2994 from KR Electronics was measured with a spectrum
analyzer in network mode. The bandpass has a 3 dB width of the passband of 55 kHz and an
extinction outside the passband of 80 dB. The ripples in the passband are below 0.5 dB with a
maximum slope of 0.07 dB/kHz (corresponding to maximum voltage transfer function ripples
of approximately 5% with a slope of less than 1% per kilohertz). The phase shift between
two consecutive ripple peaks was determined separately to be π, which corresponds to a phase
change of roughly π/13 kHz. At 247 kHz the transfer loss is practically zero (|F (ω)| = 0 dB)
and the phase shift is also zero. The membrane oscillator used in this thesis has a resonance
frequency of ωm/2π = 263.9 kHz at 500 mK cryostat temperature, where the bandpass has a
power transmission loss of 0.43 dB (field transmission 10−0.43/20 = 95%) and a phase shift of
roughly π.
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B.4 Data sheet of fiber EOM

Integrated Optical Amplitude Modulator (AMXXXXb)
Waveguide-based electro-optical light modulator 

Specifications
Type AM 532b AM 635b AM 830b AM 1064b AM 1550b

Wavelength [nm] 
Other wavelengths on request (AMXXXXb)

532 635 830 1064 1550

Spectral bandwidth [nm] ± 10 ± 20 ± 40 ± 60 ± 100

Insertion loss, typical [dB] 7 7 6 5 5

Extinction, typical 200 : 1 500 : 1 800 : 1 1000 : 1 1000 : 1

Optical connection, input                                    Standard
Fibre connector

Polarisation maintaining single mode fibre
Without / FC/PC / FC/APC

Optical connection, output                                  Standard
Optional

Fibre connector

Polarisation maintaining single mode fibre
Single mode fibre

Without / FC/PC / FC/APC

Half wave voltage RF / bias [V] 2 / 2 3 / 3 3 / 3 3 / 3 5 / 5

Minimum optical rise time RF 10/90, typical 1 ns 500 ps 500 ps 500 ps 500 ps

Maximum bias modulation frequency (sine) [kHz] 1 1 1 1 1

Maximum optical input power (cw) [mW] 10 20 50 300 300

Dimensions L x W x H [mm]
(housing, without fibre feed-through)

96 x 31 x 10
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It is our policy to constantly improve the design and specifications. Accordingly, the details represented herein cannot be regarded as final and binding.

  Dimensions Amplitude Modulator 
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JENOPTIK  I  Healthcare & Industry
Healthcare Business Unit
JENOPTIK Optical Systems GmbH
Goeschwitzer Strasse 25  I  07745 Jena  I  Germany
Phone +49 3641 65-4530  I  Fax -3807
lightmodulators@jenoptik.com  I  www.jenoptik.com/light-modulators



Appendix C

Details of the sympathetic
cooling measurements

C.1 Measurement of the MOT temperature

Figure C.1: Determination of
the temperature in MOT con-
figuration A. The ballistic expan-
sion of the MOT that was opti-
mized for steady state sympathetic
cooling (see section 5.2.1) was ana-
lyzed with TOF absorption images
and 2D Gaussian fits to the cloud
images. 0 5 10 15 20
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Figure C.2: Determination of
the temperature in MOT con-
figuration B. The ballistic expan-
sion of the MOT that was opti-
mized for pulsed sympathetic cool-
ing was analyzed with TOF ab-
sorption images and 2D Gaussian
fits to the cloud images. 0 2 4 6 8 10
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C.2 OD measurements of the atom number

We measure the atom number in the coupling lattice volume during sympathetic cooling
with an OD detection setup with a beam that is very well mode matched with the
coupling lattice. This section outlines the principles of OD measurements, the technical
details of the setup and the technical difficulties that occur.

Principles of OD measurements

In the low saturation regime with s0 ≡ Idet/Isat � 1 the intensity of the detection laser
beam which has passed the atomic cloud is given by:

Iabs = Idet e
−OD . (C.1)

OD denotes the optical depth

OD = ODres

1 + (2δdet/Γ)2 with ODres = σ0

∫
ρdx , (C.2)

which depends on the detuning δdet of the beam with respect to the FWHM linewidth
Γ of the atomic transition. The quantity ODres denotes the resonant optical depth
(for zero detuning) and represents the scattering cross-section of the atomic transition,
integrated over the atomic density ρ along the beam propagation axis x.
Hence, for every atomic sample the detuning δdet can in principle be adjusted such that
the optical density is OD = 1, which corresponds to an attenuation of the beam that is
easy to measure. The resonant optical density ODres and accordingly the atom number
can then be calculated according to equation C.2.

Technical setup

To achieve a very good mode match with the coupling lattice, a similar fiber colli-
mator as in telescope T1 is used for the detection beam (see Figure 2.22). The beam
is superimposed with the lattice in the PBS cube of T1 and has linear polarization,
perpendicular to the lattice. Hence, after passing the atoms, it gets reflected at the
cube in T2 and can be picked up with a photodiode. A measurement of the detection
beam showed that its waist size differs only by 5% from the lattice waist. The axial
alignment of both beams at the waist position is checked on a daily basis before each
OD measurement using a flip mirror and a beam view (accuracy better than 10 µm).
In order to ensure a large SNR and to suppress the background from the fluorescence of
the laser cooled atomic cloud, we modulate the detection beam at 50 kHz and measure
its signal with the same lock-in amplifier which is used for the measurement of the
oscillator temperature. The advantage is that the zero-span traces from the OD mea-
surement can be acquired and saved simultaneously with the oscillator temperature.
For small bandwidths Bd ≈ 100 Hz of the demodulator we achieve a very large SNR
for accurate OD measurements. For time-critical OD measurements the bandwidth can
be increased up to Bd ≈ 10 kHz, at the cost of a smaller SNR. The modulation of the
detection beam is applied using a Bias-Tee at a mixer which is inserted into the RF
signal path of the BEC detection AOM. With the DC port of the Bias-Tee we can
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Figure C.3: EIT-like feature of the de-
tection beam in the optical molasses.
The transmission of the OD detection beam
trough the optical molasses was measured for
different detunings of the detection beam, in-
dicated by the frequency of the double-pass
AOM in the detection beam. The different
curves correspond to the same OD measure-
ment, evaluated at different times after the
molasses has started. The dashed lines are a
guide to the eye. The atomic resonance is at
fAOM = 67.1 MHz (see Figure 2.2).

58 60 62 64 66 68 70 72

fAOM / MHz

0

0.2

0.4

0.6

0.8

1

T
r
a
n
s
m
is
s
io
n

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.7

1.9

TMOL / s

ensure that the mixer passes the RF signal for constant light power after the AOM and
with the RF port of the Bias-Tee the modulation is applied. The OD detection light is
then split off from the BEC detection light.
The saturation intensity of the D2 line of Rb for π light is Isat = 2.5 mW/cm2 (see
[97]). Hence, the saturation power for a beam waist of wlat ≈ 80 µm is only Psat =
1
2πw

2
lat Isat ≈ 250 nW, which would require at least Pdet < 50 nW in order to ensure

a meaningful OD measurement. Since we work off-resonant, the saturation power gets
larger (similar to OD/ODres, see equation C.2) and Pdet ≈ 100 nW is still acceptable.
In the OD measurement, the reference signal which corresponds to Idet is obtained by
switching off the laser cooling for the atoms, which quickly removes all the atoms in
the beam path. The OD is then calculated according to equation C.1 and the resonant
OD follows from equation C.2.
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Figure C.4: Measured OD for red and blue detuned detection beam. The OD in
the lattice volume was measured with the OD detection beam (mode matched with coupling
lattice) for MOT configuration B (see section 5.2.1). Left: detection beam blue detuned (δdet =
2π×30.2 MHz = 5 ΓD2), right: detection beam red detuned (δdet = −2π×41.8 MHz = −6.9 ΓD2).
At t = 0 the coupling lattice is switched on and simultaneously the normal BEC MOT is quickly
switched to the sympathetic cooling MOT. At t = 0.7 s the coupling lattice is switched off again.
Parameters: Pdet = 100 nW, lattice power 441µW, OD demodulator BW 3 kHz.
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Technical difficulties

Calculating ODres from the off-resonant optical density OD requires that equation C.2
holds, which is based on the assumption of a Lorentzian line shape of the atomic
transition. However, the atomic resonance can get effectively broadened by effects like
electromagnetically induced transparency (EIT). This means that the calculated ODres
is larger than the real value and the OD measurement is distorted.
Linewidth broadening: EIT. We observe such a broadening of the atomic transition,
which corresponds to the EIT-like resonance curve shown in Figure C.3. The feature
is present over a large period of 2 s during the expansion of the optical molasses. Even
though it would in principle be possible to include this measured broadening into the
calculation of ODres, this would hold only for one specific combination of molasses pa-
rameters and detection beam detuning δdet. However, in the experimental cycle the
laser cooling parameters are not always constant. For example, the MOT is changed
to the optical molasses or into the high density MOT for sympathetic cooling (MOT
configuration B, see section 5.2.1). Furthermore, we observe that the measured broad-
ening of the atomic transition in a MOT is much less defined than the clear feature for
the molasses. If the EIT effect involves different mF states, this could be explained by
the presence of large magnetic field gradients in a MOT. Furthermore, the EIT effect
is a coherent process and the decoherence effects in a MOT are certainly stronger than
in a molasses.
Lattice effects. In addition to the distortions due to linewidth broadening effects, the
coupling lattice can also distort the OD measurement, as discussed in the following.
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Figure C.5: Change of the OD by the lattice potential. The OD in the lattice volume
was measured with a blue detuned OD detection beam (mode matched with coupling lattice)
for different lattice detunings in MOT configuration B (see section 5.2.1). Left: OD time traces
for the same configuration like in Figure C.4 (left) and for more red and blue lattice detunings.
Right: Mean OD during the MOT phase (0 < t < 0.7 s) for the different lattice detunings and fits
to the data using a simple model which reflects the lattice beam potential. Parameters: detection
beam power Pdet = 100 nW, detection beam blue detuned (δdet = 2π × 30.2 MHz = 5 ΓD2),
lattice power Plat = 441µW, OD demodulator BW Bd = 3 kHz.
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Firstly, the near-resonant lattice beam can also be involved in processes like EIT. Sec-
ondly, we observe indications of a photonic band gap for the detection light. This effect
was predicted in [188] and is based on Bragg scattering of the detection beam by the
periodical density distribution of the atoms in the lattice. It depends on the sign of
the detection beam detuning and theoretically only occurs for a red detuned detection
beam. This different behavior for blue and red detection beam detuning δdet is shown
in Figure C.4 for the MOT configuration B used for sympathetic cooling (see section
5.2.1). Firstly, one can see that the sign of δdet changes the result ODres of the OD
measurement in the normal MOT for t < 0. This effect is less pronounced in the final
MOT (without lattice) for t > 0.7 s. Secondly, one can see that the coupling lattice in
the period 0 < t < 0.7 s also changes the calculated ODres. For blue detection beam
detuning δdet > 0 this effect is consistent with the predicted behavior, that the blue
detuned lattice pushes atoms out of the lattice, while the red detuned lattice attracts
atoms. This effect was confirmed by a systematic measurement and is shown in Figure
C.5. However, for the red detuned detection beam the change of ODres is reversed and
can not be explained by this model. We tried to confirm that this effect is connected to
a photonic band gap by measuring the reflection of the detection beam from the atomic
cloud. This measurement is shown in Figure C.6 and can be regarded as a strong in-
dication for the presence of Bragg scattering and a photonic band gap in the coupling
lattice for δdet > 0. Specifically, we observe a detection beam signal on the lattice re-
flection photodiode (see Figure 2.22) which is only present if the lattice is switched on
and which is larger than the signal from the lattice itself. The only possibility which
could explain this fact without the existence of Bragg scattering is that the beat signal
of the lattice light and some detection beam stray light has AC components in the
demodulator bandwidth around the demodulator frequency 50 kHz. This could not be
ruled out in this measurement.
Validation of the OD measurements. In order to estimate the accuracy of our OD
measurements in a MOT, we tried to exclude all effects like EIT or the lattice effects
on the OD measurement. For this, the OD was measured without the lattice beam and
the laser cooling was quickly switched off at different times during the high-OD phase
of MOT configuration B. Hence, the atoms then experience a TOF phase and are only
illuminated by the OD detection beam, just like in the normal TOF absorption imaging

Figure C.6: Evidence of a photonic
band gap in the coupling lattice. The
OD in the lattice volume was measured
with a red detuned OD detection beam
(mode matched with coupling lattice) in
a similar configuration like in Figure C.4
(right). Additionally, the signal of the lat-
tice back reflection photodiode (see Figure
2.22) was measured with another demod-
ulator. Parameters: detection beam power
Pdet = 100 nW, detection beam red detuned
(δdet = −2π × 37.8 MHz = −6.2 ΓD2), lat-
tice power Plat = 221µW, OD demodulator
BW Bd = 3 kHz.
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of a BEC. This measurement is shown in Figure C.7 and it shows that the lock-in OD
measurement can be trusted after a TOF of approximately 6 ms for a demodulator
bandwidth Bd = 3 kHz (before there are some strange bumps in the zero-span traces,
which are most likely related to the demodulator).
Assuming that the radius w(t) of the atomic cloud during ballistic expansion evolves
according to

w(t) =
√
w2

0 + 2kBT

ma
t2 , (C.3)

the atomic density ρ will evolve according to ρ ∼ w−3(t) and the integrated density
along the axis of the detection beam can be modeled as ρint ∼ ODres ∼ w−2(t) =
1/
(
w2

0 + 2(kBT/ma)t2
)
. Even though the temperature T of MOT configuration B was

measured in a separate measurement (see Figure C.2), it must be regarded as a free
fit parameter. This is because the fit function must be assumed as ODfit = c1/(c2 +
2kBT/mat

2) ≡ 1/
(
c′1 + c′2t

2). The fit to the zero-span OD traces in Figure C.7 shows
that the measured ODres before the TOF phase corresponds to the fitted values from the
TOF measurements up to a factor of two to three (except for one outlier). The fit results
for the initial cloud radius w0,fit are all consistent with the value w0,2D ≈ 1.2(1) mm
obtained by the 2D fit results of the TOF temperature measurement in Figure C.2.
Due to the fact that a more precise estimation of the initial cloud radius w0 is very
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Figure C.7: OD measurement via TOF samples. The OD of the MOT configuration B
(see section 5.2.1) without the coupling lattice was measured for different switch-off times toff
of the MOT. Left: Overview of all OD time traces. The switch-off times are indicated by the
gray dashed lines. Right: All MOT switch-off events shifted to t = 0 and a zoom into the first
15 ms of the OD during TOF. The fits to the OD traces were performed for t > 6 ms, which is
indicated by the right dashed line and a red solid lines for the fits. The fit functions are extended
to t = 0, which is indicated by the red dotted lines. The fit results for the initial cloud radius
w0,fit are shown in the legend. Parameters: detection beam power 100 nW, detection beam blue
detuned (δ = 2π × 30.2 MHz = 5 ΓD2), OD demodulator BW 3 kHz.
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difficult, this uncertainty represents a limit for the accuracy of the fitted ODres.
In summary it can be said that the OD measurements without coupling lattice can be
trusted up to a factor of two to three. Using a blue detuned detection beam, also the OD
measurements with the lattice beam can be trusted qualitatively, as Bragg scattering
does not play a role and the change of the OD behaves very predictable as expected
by the attractive and repulsive lattice potential for the atoms. However, a more precise
and reliable measure of the atom number in the lattice during the sympathetic cooling
process remains a technically very challenging issue.

C.3 Parasitic heating in combined cooling

In the same experimental run as the measurement of steady state feedback cooling (see
subsection 4.4.3), the coupling lattice was additionally switched on without atoms in
the beam path. In this way, the parasitic effects of the coupling lattice on the feed-
back cooling performance could directly be observed. For this, the coupling lattice was
switched on with a constant power Plat = 1 mW and it was waited until the new ther-
mal steady state was reached. Especially the length drift of the fiber cavity in the
MiM system needs to be compensated. In this configuration, the same measurement as
described in subsection 4.4.3 was performed.
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Figure C.8: Spectral determination of the bath temperature Tbath with coupling
lattice switched on. The measurement in Figure 4.12 was repeated in the same experimental
run with the coupling lattice switched on at a power of Plat = 1 mW. Left panel: In-loop
displacement PSD Sy(f) for different feedback gains gv (blue) and fits to the spectra (red)
using expression 4.10 with gv and Tbath as free fit parameters. Inset figure: zoom into the peak
area. Right panel: bath temperatures and feedback gains obtained by the fits in the left panel
for the different adjusted gains P (gain of the feedback loop, see Figure 4.8). Mean of bath
temperatures is Tbath = 5.53(13) K (blue dashed line). Data acquisition: Zoom-FFT spectra
from lock-in amplifier, resolution 220 mHz, each spectrum averaged ten times. Parameters:
feedback light power P0.5 = 462 µW in front of cavity fiber at 50% working point of EOM,
optomechanical system and detection parameters summarized in table 3.1.
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Figure C.9: Parasitic effects of the coupling lattice during feedback cooling. Mode
temperatures of the oscillator Tmode as a function of the feedback gain gv and a least-square
fit to the data using expression 4.19 (with gd = 0). The data without the coupling laser is the
same data as in Figure 4.14, the data with the coupling laser switched on was obtained by fits
to the measured spectra using Tbath = 5.53(13) K, similar as shown in Figure 4.13. The error
bars include the statistical error of gv.

Figure C.8 shows the spectra that were obtained for feedback cooling with intermediate
gains that can be used to determine the bath temperature Tbath. In contrast to the mea-
surement without coupling lattice, the obtained bath temperature Tbath = 5.53(13) K is
significantly larger than without the coupling beam (see Figure 4.12). Using this value
of Tbath, the spectra can be fitted with gv as the only free fitting parameter similar as
shown in Figure 4.13. Finally, the obtained values for gv can be used to calculated the
mode temperatures Tmode.
Figure C.9 shows that the minimum achievable mode temperature Tmin with the cou-
pling beam on is significantly larger than Tmin without the coupling beam. This tem-
perature temperature difference is in good agreement with the larger bath temperature
for the measurement with coupling beam on, according to equation 4.22.
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