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Quantum mechanics is arguably the most successful
quantitative theory of nature. The theory is now 80 years old,
and no violation of quantum mechanics has ever been
detected in any laboratory despite a huge number of experi-
mental tests involving light, atoms, molecules, and solids, as
well as nuclei, electrons, and other subatomic particles. In
fact, various experimental tests of quantum electrodynamics
have achieved an astonishing agreement between measure-
ment and quantum theory—on the order of one part in a
billion. Not only is our modern intellectual description of
reality entirely quantum mechanical in nature, our modern
technology—exemplified by transistors, computer chips,
lasers, superconductors, and magnetic storage—is based
essentially on underlying quantum phenomena. Solid-state
quantum phenomena, in which theory and experiment come
together perfectly, have led to voltage standards through the
Josephson effect and to resistance standards through the
quantum Hall effect.

The recent advent of the concept of quantum computa-
tion has opened a new chapter and has spawned serious
experimental efforts toward the actual fabrication of a quan-
tum computer. A real-world, commercial quantum computer
with, for example, a few million logical quantum bits, or
qubits, would enable the efficient solution of computation-
ally difficult problems, such as prime-number factorization
and database searching, using the quantum mechanical
resources of linear superposition, unitary evolution, and the
exponentially large Hilbert space of entangled states. Yet the
final read-out process would still be an ordinary classical
measurement. In fact, a quantum computer can be exponen-
tially faster than a digital classical computer.

A crucial problem in the construction of a large, many-
qubit quantum computer is quantum decoherence: A physical
system will remain in a coherent superposition of states only
for a finite—often short—time. Any interaction with the rest
of the world or any measurement that leads to a “wavefunc-
tion collapse” will decohere the system and thereby destroy
the encoded quantum information. But a seminal theoretical
development underlies the possibility of constructing a quan-
tum computer: quantum error correction, or fault-tolerant
quantum computation (see the article by John Preskill in
PHYSICS TODAY, June 1999, page 24), which established a
threshold theorem that proves that quantum decoherence can

be corrected as long as the decoherence is sufficiently weak.
If one thinks of quantum decoherence as unwanted noise

in quantum computation, then effective “software” error cor-
rection depends on eliminating or minimizing noise in the
computer. That approach is similar in spirit to error correc-
tion in classical digital computers. For quantum computa-
tion, however, an alternative strategy, topological quantum
computation, does not try to make the system noiseless, but
instead makes it deaf—that is, immune to the usual sources
of quantum decoherence. This revolutionary strategy makes
quantum decoherence simply irrelevant, thanks to the glob-
ally robust topological nature of the computation.

Quantum computation
Suppose we have a controllable quantum system at our dis-
posal. We further assume that it is possible to initialize the
system in some known state |ψ0〉. We evolve the system by the
unitary transform U(t) until it is in some final state |ψ1〉 =
U(t)|ψ0〉. Because that evolution will occur according to some
Hamiltonian, we require enough control over the Hamilton-
ian so that U(t) can be made to be any unitary transformation
we desire. Finally, we need a way to measure the state of the
system at the end of this evolution.

Such a process of initialization, evolution, and measure-
ment is called quantum computation.1 The basic unit of a
quantum computer is the qubit—a quantum two-level sys-
tem with states |0〉 and |1〉—which can be controlled, manip-
ulated, coupled, and entangled with other qubits by external
means. The unitary operations themselves define the quan-
tum computational code.

So why hasn’t everyone run out and built a quantum
computer? There is a basic obstacle—namely, the occurrence
of errors. In the more colorful language of Asher Peres,
“Quantum phenomena do not occur in a Hilbert space. They
occur in a laboratory.” Of course, errors occur even in classi-
cal computers, but they can be surmounted by keeping mul-
tiple copies of information and checking against those copies.

With a quantum computer, however, the situation is
more complex. If we measure a quantum state during an
intermediate stage of a calculation to see if an error has
occurred, we may, due to wavefunction collapse, destroy a
quantum superposition and thus ruin the calculation. Fur-
thermore, errors need not be merely a discrete bit flip of |0〉
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to |1〉, but can be a continuous phase error:
a|0〉 + b|1〉 → a|0〉 + beiθ|1〉 for arbitrary θ. Such continuous
errors, superficially reminiscent of errors in classical analog
computation, may at first sight appear impossible to rectify;
for that reason, quantum computation was long considered
to be impossible. In the mid-1990s, however, it was shown
that, despite those difficulties, quantum error correction is
indeed possible.1

One can represent information redundantly so that
errors can be identified without measuring the information.
However, the error correction process can itself be a little
noisy. More errors can then occur during error correction,
and the whole procedure will shoot itself in the foot unless
the basic error rate is extremely small. Estimates of the
threshold error rate above which error correction is impos-
sible depend on the particular error correction scheme, but
they typically fall in the range of 10−4 to 10−6 (see, for exam-
ple, reference 1 and references therein). Thus a quantum
computer must be able to perform 104 to 106 operations per-
fectly before an error occurs. That constraint is extremely
severe, and although impressive experimental advances
have been made over the last five years, it is unclear whether
quantum decoherence can be overcome in a practical quan-
tum computer architecture using quantum error correction
protocols.

Taming errors is the central physics problem that must
be solved for quantum computation to be realized. Topolog-
ical quantum computation alleviates the problem in a fun-
damental manner.

Topology and quantum computation
We now seemingly change subjects completely and consider
topology, the branch of mathematics concerned with those
properties of geometric configurations that are unaltered by
elastic deformation. The usual joke is that a topologist can-
not tell the difference between a donut and a coffee cup. One
can be continuously deformed into the other through a
sequence of smooth, small alterations, such as stretching or
indenting the surface, without ever tearing it (see figure 1).
Both a donut and a coffee cup have a single handle, so each
is topologically equivalent to a torus. Topological equiva-
lence can only be destroyed by a drastic change, such as tear-
ing the donut or gluing together two different parts of it. In
other words, topology focuses on those features of geometry

that are robust against small local perturbations.
Another example of topology is knot theory, which says,

for instance, that there is no continuous way to unknot a knot-
ted loop of string. Knot theory is particularly relevant to the
physics underlying topological quantum computation.
Rather amusingly, similar knot-theory concepts2 also arise in
a completely different area of physics, conformal field the-
ory,3 which has possible applications to string theory.

Local geometry is a highly redundant encoding of topo-
logical information. Error correction, though, requires the
redundant representation of information so that errors do not
occur. Hence, as proposed by Alexei Kitaev,4 if a physical sys-
tem has topological degrees of freedom that are insensitive
to local perturbations, then information contained in those
degrees of freedom would be automatically protected against
errors caused by local interactions with the environment. If
the system happens to be a quantum system, one should, in
principle, be able to perform fault-tolerant topological quan-
tum computation without worrying about decoherence—the
topological robustness provides quantum immunity.

This idea sounds like the answer to our quest for fault-
tolerant quantum computation until we stop for a minute and
realize that most physical systems do not have topological
degrees of freedom. Instead, they have local degrees of free-
dom that are sensitive to local perturbations. For instance, if
we have a transistor with conductance G and cut out a piece
of it, its topology remains intact but we will have drastically
affected its conductance G. And for a quantum mechanical
spin with two accessible states, the so-called spin qubit, any
variation in the local magnetic field will affect the relative
phase between those two states. So it doesn’t sound like the
topological solution suggested above has anything to do with
real-world physics. This pessimistic conclusion is wrong,
however, because of one of the most amazing discoveries of
the past 30 years.

Topological states of matter
Remarkably, condensed phases of matter do exist that are
insensitive to local perturbations. They are topologically
invariant at low temperatures and energies and at long dis-
tances. These topological states are as real as metals or
ordered magnets, but they are not as common.

The existence of such topological states is surprising,
since the topological invariance is not a symmetry of the

Figure 1. To a topologist, a
donut and a coffee cup are the
same because they can be con-
tinuously deformed into each
other without tearing or rejoining
the surface.
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underlying Hamiltonian of electrons and ions that are cou-
pled through the Coulomb interaction in a solid. The
Coulomb repulsion between two electrons, and thus the
Hamiltonian, depends strongly on the distance between
them if the positions of the other electrons and the ions are
held fixed (a valid approximation for short time scales). Con-
tinuously deforming the system by stretching or contracting
it so as to change that distance will affect the energy. There-
fore, topological invariance can only be a symmetry that
emerges at low energies and long distances. At those scales,
as the distance between two electrons is changed by stretch-
ing the system, the other electrons will rearrange themselves
so as to keep the energy unchanged. In the right circum-
stances, such invariance could lead to a topological quantum
ground state.

Although this idea sounds simple, it is actually a rever-
sal of the paradigm with which many physicists have become

accustomed—namely, that low-energy, long-distance physics
is less symmetrical than the microscopic equations of motion.
In a solid, for instance, the Hamiltonian is invariant under
arbitrary uniform translations of all the particles. In the
ground state, however, the ions form a crystalline lattice that
is invariant under a much smaller group of translations, that
is, discrete translations through lattice vectors. The cosmic
microwave background provides an example from physics at
a very different scale. It has a slight anisotropy, meaning that
the temperature is different in different directions, even
though the underlying equations are rotationally invariant.
Crystalline lattices and the microwave background are both
examples of spontaneously broken symmetry.

Topological states of matter are an example of the con-
verse: physical systems in which the low-energy, long-
distance physics is more symmetrical than the microscopic
equations. This is emergent symmetry.

In high-mobility gallium arsenide heterostructures and quantum
wells, electrons can be confined to move in a two-dimensional
plane. If a 2D electron gas is placed in a perpendicular mag-
netic field and cooled to low temperatures, the electrons organ-
ize themselves in a topologically invariant state.

The most salient manifestation of topological invariance is
the quantization of the transverse or Hall resistance
Rxy = h/νe2, where the so-called filling factor ν is a rational
number, h is Planck’s constant, and e is the electron charge.
(The fundamental constants h and e combine to form a quan-
tum of resistance h/e2 ≈ 25 812 Ω, which is macroscopic
and used as the international reference standard for resis-
tance.) We usually distinguish the cases in which ν is an inte-
ger (the integer quantum Hall effect) from those in which ν is
a fraction (the fractional quantum Hall effect). The quantiza-
tion of Rxy occurs simultaneously with the vanishing of the lon-
gitudinal resistance Rxx, as seen in the figure.

Quantum Hall states bear resemblances to both supercon-
ductors and insulators. Like superconductors, quantum Hall
states have zero longitudinal resistance and exhibit dissipa-
tionless current flow. But because of the nonzero Hall resis-
tance, the longitudinal conductance Gxx, obtained by inverting
the resistivity matrix, is also zero, as in an insulator. Like both
superconductors and insulators, quantum Hall states have an
energy gap Δ for excitations above the ground state. Both Rxx
and Gxx scale as e−Δ/T.

The robust quantization of the Hall resistance in a quantum
Hall state is a direct manifestation of the topological nature of
the system’s ground state. In fact, the quantized Rxy is a topo-
logical invariant—it is independent of the shape or size of the
sample—which is why the quantization is exact.

From Robert Laughlin’s theory for the ground state and
low-lying excitations of a fractional quantum Hall state at
ν = 1/m with m odd, we know that the hallmark of the frac-
tional quantum Hall states is that they support excitations with
fractional charge and exotic braiding statistics. For instance,
at the ν = 1/3 plateau, the low-lying excitations about the
ground state are quasiparticles with charge e/3. If an electron
is added to the system, it will break up into three quasiparti-
cles, each with charge e/3.

At first glance, this looks a little crazy. We know that a pro-
ton is composed of three quarks, but an electron is supposed
to be fundamental. How can it break up into smaller con-

stituents? The answer is that the system is composed of many
electrons. If they were not interacting with each other, then an
added electron would move independently of all the others,
and there would simply be an excess charge e wherever the
extra electron was located, moving with whatever momentum
the electron had been injected with. However, the electrons in
the fractional quantum Hall state are all interacting with each
other. Low temperatures and a strong magnetic field tend to
enhance the effects of the electron–electron interactions. Con-
sequently, when an electron is added to the ν = 1/3 state, the
other electrons rearrange themselves so that no excess charge
e is found at the location of the added electron. Instead, it is
energetically favorable to have three lumps of excess charge
e/3. The size of the lumps of charge is controlled by the ener-
gy gap Δ and is comparable to a quantum mechanical length
scale known as the magnetic length l0 = √�c/eB, on the
order of 100 Å for a field of 5 T. (Figure adapted from ref. 9.)

Box 1. The fractional quantum Hall effect
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In more technical language, we would say that a system
is in a topological phase if its low-energy, long-distance effec-
tive field theory is a topological quantum field theory—that
is, if all of its physical correlation functions are topologically
invariant up to corrections of the form e−Δ/T at temperature T
for some nonzero energy gap Δ. This behavior is precisely
what is found in the fractional quantum Hall effect,5 as dis-
cussed in box 1.

Anyons and braiding
In addition to their fractional charge (see box 1), quasiparti-
cles in the fractional quantum Hall effect have another
remarkable property: They are anyons. Anyons were first
proposed as a mathematical possibility in which any phase
factor eiα, not just +1 for bosons and −1 for fermions, can
result from a counterclockwise interchange of two particles.
Such natural generalizations of fermions and bosons are
topologically allowed in two spatial dimensions. To under-
stand anyons a little better, we first look at the braiding of
particle trajectories in two spatial dimensions.

Consider the braiding properties of particle trajectories
in 2 + 1 dimensions (2 spatial and 1 time dimension). Accord-
ing to Richard Feynman’s path-integral formalism, the quan-
tum mechanical amplitude for n particles that are at positions
x1, x2, . . . , xn at an initial time t0 to return to those coordinates
at a later time t is given by a sum over all trajectories. Each
trajectory is summed with weight eiS/�, where S is the trajec-
tory’s classical action. This particular assignment of weights
is consistent with the classical limit: As � → 0, the stationary
points of the action dominate and give the familiar classical
solutions. A peculiarity of two spatial dimensions, however,
is that the space of particle trajectories is disconnected: As
may be seen in figure 2, it is not always possible to continu-
ously deform a given trajectory into a different one.

Consequently, at the quantum mechanical level, we have
the freedom to weight each trajectory’s contribution to the
path integral by a different phase factor. Since the trajectories
are not continuously deformable into each other, the classi-
cal limit is completely blind to the phases we choose.

These phase factors constitute an abelian (commutative)
representation of the braid group. For the case of two parti-
cles, the braid group is simply the group of integers, with
integer n corresponding to the number of times one particle
winds counterclockwise about the other (negative integers
are clockwise windings). If the particles are identical, then we
must allow exchanges as well, which we can label by half-
integer windings. The different representations of the braid
group of two identical particles are labeled by a phase α, so
that a trajectory in which one particle is exchanged counter-
clockwise with the other n times receives the phase factor einα.

If α = 0, the particles are bosons; if α = π, the particles
are fermions. For intermediate values of α, the particles are
anyons. The anyonic representations of the braid group are
just an extension of the two-particle case: Whenever any of N
identical particles is exchanged counterclockwise n times
with another, the system gains a phase factor einα.

In interacting many-body systems—such as metals,
semiconductors, magnets, and liquid helium—the low-
energy excitations that control most of the observable prop-
erties behave, somewhat magically, much like weakly inter-
acting particles. Such excitations, dubbed quasiparticles by
Lev Landau, are usually bosons or fermions. However, in a
fractional quantum Hall state—and perhaps elsewhere—
quasiparticle excitations above the ground state are anyons.
In the fractional quantum Hall state with filling factor ν = 1/3,
for example, a phase e2πi/3 results when one quasiparticle

encircles another; when a counterclockwise exchange occurs,
half of that phase is accrued, eπi/3. In fact, the phase factor is
exactly e2πi/3, independent of shape, speed, and other trajec-
tory details. Finite-temperature corrections to the phase
changes are on the order of e−Δ/T, as in longitudinal and trans-
verse resistance in the Hall regime (see box 1). At low tem-
peratures, those corrections are extremely small.

Abelian anyons provide an example of a unitary trans-
formation that can be performed exactly in a topological state
of matter. Unfortunately, it is a trivial transformation, just
changing the phase of the wavefunction. To apply unitary
transformations that are useful for quantum computation, we
will need a special class of topological states that support
non-abelian anyons.

Non-abelian anyons
Abelian anyons at the 1/3 fractional quantum Hall state do not
constitute the most exotic possibility that one can imagine.
Suppose we have g degenerate states ψa, where a = 1, 2, . . . , g,
of particles at positions x1, x2, . . . , xn. Exchanging particles 1
and 2 might do more than just change the phase of the wave-
function. It might rotate it into a different one in the space
spanned by the ψa states. Expressed in terms of those states,
ψa → Mab ψb. Exchanging particles 2 and 3 may lead to a dif-
ferent rotation: ψa → Nab ψb.

If Mab and Nab do not commute—that is, if
MabNbc ≠ NabMbc—the particles are said to obey non-abelian
braiding statistics. With such particles, we can effect non-
trivial unitary transformations just by braiding particles.
Thus, non-abelian quasiparticles are the sine qua non for
topological quantum computation.

Non-abelian braiding gives the answer to a question that
may have been bothering the reader: If topological protection
is so effective at isolating quantum information from errors
caused by the environment, how can we manage to manipu-
late and read the information? If the quasiparticles of the sys-
tem exhibit non-abelian braiding statistics, that is, if they are
non-abelian anyons, then the g-dimensional Hilbert space of
n-particle states can be used to store quantum information. To
manipulate it, we need to perform braiding operations on the
n quasiparticles in the system. Ideally, we would like to be able
to perform any desired unitary transformation (or at least to
approximate it within desired accuracy) simply by braiding
quasiparticles. For a large class of states, such manipulation
can indeed be done.6 At the end of a calculation, we can read

Figure 2. Different trajectories of a collection of parti-
cles in two spatial dimensions cannot always be adia-
batically deformed into each other. The unbraided pairs
in (a) and the braided pairs in (b) are two such discon-
nected trajectories.
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the state of the system by using a non-abelian generalization
of the Aharonov–Bohm effect to make a topological meas-
urement of topological information: By sending in a non-
abelian anyonic test quasiparticle and allowing its different
trajectories to encircle the quasiparticles that contain the
desired quantum information, we can read that information
through the quantum interference between the trajectories.

To explore how non-abelian braiding could work, con-
sider two simple models. The first model has three basic qua-
siparticle types, which we’ll label 0, 1/2, and 1. These three
labels are the “topological charges”—essentially a general-
ization of the α phase factors—of the three quasiparticle
types. An arbitrary combination of quasiparticles can simi-
larly be labeled by a topological charge. In an abelian system,
the total charge is simply the sum of each quasiparticle’s
charge. But in a non-abelian system, the addition rules get
complicated; in this first model, the rules resemble those for
quantum mechanical angular momenta.

We’ll say a quasiparticle of charge 0 is present when the
system is in its ground state—that is, when no quasiparticles
are present at all. It is also possible for a collection of nonzero
quasiparticles—like quantum mechanical spins—to essen-
tially cancel each other out, so that when another quasipar-
ticle is taken around the entire collection, nothing happens.
In that case, we again say that the collection has total topo-
logical charge 0. Alternatively, the topological charge of a col-
lection could be 1/2 or 1. These are the only possibilities. If we
consider, for example, two 1/2 quasiparticles, their total topo-
logical charge can be either 0 or 1. However, if we have two
1 quasiparticles, their total topological charge must be 0, and
if we have a 1/2 and a 1, their total topological charge must be
1/2. (The combination of 0 and any j is j.)

Suppose we have four quasiparticles of type 1/2 whose
total topological charge is 0. The total topological charge of
the first and second quasiparticles can be either 0 or 1. If it is
0, then the total topological charge of the third and fourth
must also be 0 since the total of all four is 0. Similarly, if the
topological charge of the first two is 1, then that of the third
and fourth must also be 1. Thus, we have two states of four
1/2 quasiparticles and, continuing in a similar manner, 2n−1

states of 2n quasiparticles of type 1/2 for which the total topo-
logical charge is 0.

These arguments suggest a way to create a basis to
describe this degenerate space of states. Combine the 2n qua-
siparticles into n pairs. Each pair can have a topological
charge of 0 or 1; only the charge of the last pair is constrained,
since the total charge of all 2n quasiparticles is 0. Thus, 2n
quasiparticles form n − 1 qubits. An arbitrary state of the sys-
tem can be projected onto basis states formed by assigning a
definite charge of 0 or 1 to each qubit; each basis state thus
corresponds to a sequence of n − 1 classical bits.

In such a basis, the braiding rules are as follows. When
two quasiparticles belonging to the same pair are braided, a
basis state only changes by a phase. However, when a qua-
siparticle from pair i is taken around a single quasiparticle
from pair j, as in figure 2b, a NOT gate is applied to qubits i
and j (up to a phase). When a quasiparticle is taken around
both quasiparticles in pair j, a basis state is multiplied by +1
if bit j has charge 0, and by −1 if the bit has charge 1. There-
fore, the two braiding operations between pairs do not com-
mute. From these braiding rules we can determine the effect
of an arbitrary braid on any initial state. Unfortunately, braid-
ing alone is insufficient in this system to generate all possi-
ble unitary transformations. However, the next example is
sufficient and therefore supports universal quantum com-
putation through braiding.6

Now consider a model with only a single nontrivial qua-
siparticle type, with topological charge 1. As before, it is use-
ful to say that a quasiparticle of charge 0 is present when no
quasiparticles of charge 1 is present. When two quasiparti-
cles are present, their combined state can be either 0 or 1. Sup-
pose we have n quasiparticles with total topological charge
0; let An be the number of such states. To determine An, pick
two of the quasiparticles. Their combined state is either 0 or
1. If their combined state is 0, then the remaining n − 2 quasi-
particles must also have total topological charge 0, and there
are An−2 of those states. If the combined topological charge of
the two quasiparticles is 1, then the pair is topologically
equivalent to a single quasiparticle of charge 1, and so the
system behaves as if there were n − 1 quasiparticles of type
1; there are An−1 of those states that have total charge 0. Hence,
An = An−1 + An−2. The dimension of the Hilbert space for
n + 1 particles is thus the nth Fibonacci number, and these
quasiparticles are sometimes called Fibonacci anyons.

For an example of their braiding rules, consider four
quasiparticles whose total topological charge is 0. If we
divide the quasiparticles into two pairs, each pair can have a
total topological charge of either 0 or 1; thus we can label the
two states |0〉 and |1〉. If the initial state is |0〉, then detailed
calculations show that the braid of figure 2b transforms it to
τ−2 (τe4πi/5 + e2πi/5) |0〉 + τ−3/2 (eπi/5 − e3πi/5) |1〉, where τ = τ2 − 1 is
the golden ratio, (1 + √5)/2.

In the first example, braiding operations had the effect
of π/2 rotations about orthogonal axes in Hilbert space; such
rotations form a finite group. In the second example, how-
ever, the rotations are by multiples of π/5 about different axes
in Hilbert space. Those rotations do not form a finite group
but rather a dense set, so any desired unitary transformation
can be approximated to arbitrary accuracy. Thus, Fibonacci
anyons support universal quantum computation.6 Reference
7 presents specific gates for such non-abelian anyons.

Now all we need is to identify a stable topological state
supporting quasiparticles that are non-abelian anyons and
then perform the requisite braiding operations to carry out
topological quantum computation.

Non-abelian topological phases in nature
The most likely known candidate8,9 for finding a topological
state with non-abelian anyonic excitations is the fractional
quantum Hall state at the plateau observed at ν = 5/2. Quasi-
particle excitations (which, according to theory, have charge
e/4) about this ground state are suspected to be non-abelian
anyons10,11 of precisely the type discussed in the first exam-
ple above.

How can we tell experimentally if this hypothesis is cor-
rect? How can we use this state for quantum computation?
These two questions have essentially the same answer: By
performing braiding operations and observing their effects,
we can deduce the non-abelian statistics of the quasiparticles
in the state and apply fault-tolerant quantum gates to topo-
logically protected qubits. Recent theoretical work12−15 pro-
poses specific experiments to achieve these two ends, as
described in box 2.

The ν = 5/2 state, if it is non-abelian, would realize the
braiding statistics of the first example above. But those
braiding operations alone cannot implement any desired
unitary transformation. To achieve that completeness, qua-
siparticle braiding must be supplemented by either some
unprotected operations or some other topological opera-
tions, such as topology change. However, the ν = 12/5 quan-
tum Hall state, if it is non-abelian, would most likely realize
the non-abelian statistics of the second example in the
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previous section, and thus could support universal topolog-
ical quantum computation.

A non-abelian quantum Hall state is currently the most
promising route to topological quantum computation and
perhaps the most promising route of any kind to scalable,
fault-tolerant quantum computation. However, we should
also look elsewhere for a topological quantum computer,
even though that search requires reinventing the wheel that
is already in motion in the context of the fractional quantum
Hall effect. We need to understand how and when topologi-
cal phases can occur in other physical systems. Some possi-
bilities are p-wave superconductors such as strontium
ruthenate16 (see PHYSICS TODAY, January 2001, page 42), frus-
trated quantum magnets17 (see PHYSICS TODAY, February
2006, page 24), and cold atoms in optical lattices18 (see

PHYSICS TODAY, March 2004, page 38). Where to find such
phases is very much an open problem. One might be only
half-joking in suggesting that the easiest way to solve that
problem might be to build a fractional quantum Hall
quantum computer first and then use it on the solid-state
physics problems that must be solved to develop a “high-
temperature” topological quantum computer.

Outlook
The most important issues facing topological quantum com-
putation are twofold: (1) finding or identifying a suitable
system with the appropriate topological properties (that is,
non-abelian statistics) to enable quantum computation; and
(2) figuring out a scheme to carry out the braiding operations
necessary to achieve the required unitary transformations.

With a device like that shown in the
figure, one can determine whether
the observed quantum Hall state at a
filling factor ν of 5/2 is non-abelian
by performing a simple quantum
computation with a topologically pro-
tected qubit.13 The device consists of
a quantum Hall bar that has two indi-
vidually gated “antidots,” labeled 1
and 2, in its interior. (An antidot is the
opposite of a quantum dot; it is a
region from which electrons are
excluded as a result of an electrostat-
ic potential applied to a gate elec-
trode.) By tuning the voltages applied
to the six gate electrodes around the
perimeter, one can control the tunnel-
ing (dashed lines) between the top and bottom edges at those
points. There are three basic steps to our computation: (i) per-
form a nondemolition measurement of the qubit, (ii) flip the
qubit, and (iii) measure it again.

As per the rules set forth in the text for the first example of
non-abelian anyons, the device forms a qubit when there is
one quasiparticle (or any odd number14,15) on each antidot.
One can determine which state the qubit is in by measuring
the longitudinal conductivity σxx, because it is determined by
the interference between two processes that are sensitive to
the topological state of the quasiparticles on the antidots.
When appropriate voltages are applied to the gates at M and
N and at P and Q so that tunneling can occur there with
amplitudes t1 and t2, those two processes are a quasiparticle
tunneling from M to N, and a quasiparticle continuing along
the bottom edge to P, tunneling to Q, and then moving along
the top edge to N. (The amplitude t2 includes a phase factor
associated with the extra distance traveled in the second
process.) The relative phase of the amplitudes for these
processes depends on the state of the qubit: σxx ∝ |t1 ± it2|2,
where the amplitudes are added if the qubit is in state |0〉 and
are subtracted if the qubit is in state |1〉. Such a measurement
projects the qubit onto one of the eigenstates but otherwise
leaves it intact. Hence, it is an example of a quantum nonde-
molition measurement.

To flip the qubit, we apply voltage to the gates at A and B
so that one quasiparticle, with charge e/4, tunnels between the
edges. If the ν = 5/2 plateau is a non-abelian topological

state, as expected, the tunneling will transform the qubit from
|0〉 to |1〉 and vice versa. This is the logical NOT operation.
Measuring the qubit again should show the relative sign of the
tunneling amplitudes reversed, even though the magnetic
field, chemical potential, and gate voltages are precisely the
same. It may be useful to have a third antidot between A and
B to act as a turnstile ensuring that only a single quasiparticle
tunnels between A and B. If control of the tunneling between
A and B is imperfect, then some of the time an even number
of quasiparticles would tunnel between A and B, which would
produce no change in the conductivity, but some of the time
an odd number of quasiparticles would tunnel, thereby flip-
ping the conductivity, which is enough to confirm that the
ν = 5/2 state is non-abelian.

What is the stability of the qubit? A bit-flip error occurs
when, as in the controlled bit flip, a quasiparticle encircles
one of the antidots or passes between them from one edge to
the other. A phase-flip error occurs when a quasiparticle
encircles both dots. The rates for both sources of error are
similar since they are limited by the density and mobility of
excited quasiparticles. Hence, we expect that the error rate Γ
will have a thermally activated form: Γ/Δ ∼ T/Δ e−Δ/T ∼ 10−30,
where Δ is the quantum Hall state’s energy gap. This number
has sparked interest in topological quantum computing
because it is well below the fault-tolerance threshold and
many orders of magnitude smaller than the estimated error
rates for other proposed physical implementations of quantum
computation.

Box 2. Topologically protected qubits at the ν = 5/2 plateau
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Both are tall orders, and any experimental progress even 
in accomplishing the first one would be an important
achievement.

The only topological system definitely known to exist in
nature is in the quantum Hall regime, where topological
states, such as the ν = 1/3 fractional quantum Hall state, that
support abelian anyonic excitations are reasonably well
established. Of course, for topological quantum computa-
tion, anyons are necessary but not sufficient. We also need
non-abelian anyonic statistics, which may exist in the
observed ν = 5/2 fractional quantum Hall state. The reason for
discussing the fractional quantum Hall state at length in this
article is precisely because it is the only known concrete can-
didate that addresses both of the above issues. One cannot,
however, rule out the possibility that the 5/2 state is not non-
abelian, since currently there is, at best, only indirect experi-
mental and theoretical evidence that it is non-abelian.

The good news is that experiments are under way to test
the non-abelian nature of the quasiparticle statistics in the
5/2 state (see box 2). But even if the 5/2 state is definitively
shown to be a non-abelian state, it is still not enough for a
universal quantum computer. It can form a perfect quantum
memory, but it does not allow any general unitary transfor-
mation to be applied.

The state with ν = 12/5 is extremely fragile and is barely
observable even at low temperatures (on the order of 20 mK)
and in the best samples.9 It may be a non-abelian state that
supports universal quantum computation. However, much is
unknown about the 12/5 state, and its possible role in topo-
logical quantum computation is speculative at this stage.

Thus there is a strong need to find other systems satis-
fying the above two criteria for topological quantum com-
putation. Although a few non-quantum-Hall proposals have
been put forth, concrete suggestions for how to carry out qua-
siparticle braiding exist only in quantum Hall systems. Yet
even unsuccessful quests for other systems capable of sup-
porting topological quantum computation will likely reap
rewards along the way.

References
1. J. Preskill, Lecture Notes in Quantum Computation,

http://www.theory.caltech.edu/people/preskill/ph229/#lecture.
2. V. F. R. Jones, Bull. Am. Math. Soc. 12, 103 (1985).
3. E. Witten, Commun. Math. Phys. 121, 351 (1989).
4. A. Kitaev, Ann. Phys. (NY) 303, 2 (2003).
5. S. Das Sarma, A. Pinczuk, eds., Perspectives in Quantum Hall

Effects: Novel Quantum Liquids in Low-Dimensional Semiconductor
Structures, Wiley, New York (1997).

6. M. H. Freedman, M. Larsen, Z. Wang, Commun. Math. Phys. 227,
605 (2002).

7. N. E. Bonesteel et al., Phys. Rev. Lett. 95, 140503 (2005).
8. R. L. Willett et al., Phys. Rev. Lett. 59, 1776 (1987).
9. J. S. Xia et al., Phys. Rev. Lett. 93, 176809 (2004).

10. G. Moore, N. Read, Nucl. Phys. B 360, 362 (1991).
11. C. Nayak, F. Wilczek, Nucl. Phys. B 479, 529 (1996).
12. E. Fradkin, C. Nayak, A. M. Tsvelik, F. Wilczek, Nucl. Phys. B 516,

704 (1998).
13. S. Das Sarma, M. Freedman, C. Nayak, Phys. Rev. Lett. 94, 166802

(2005).
14. A. Stern, B. I. Halperin, Phys Rev. Lett. 96, 016802 (2006).
15. P. Bonderson, A. Kitaev, K. Shtengel, Phys Rev. Lett. 96, 016803

(2006).
16. S. Das Sarma, C. Nayak, S. Tewari, http://arXiv.org/abs/

cond-mat/0510553.
17. A. Kitaev, http://arXiv.org/abs/cond-mat/0506438.
18. L.-M. Duan, E. Demler, M. D. Lukin, Phys. Rev. Lett. 91, 090402

(2003). �

See www.pt.ims.ca/9466-17

See www.pt.ims.ca/9466-18


