
Winter term 2012/13
Exercise Sheet 10, Theoretical Quantum and Atom Optics

University of Hamburg, Prof. P. Schmelcher

To be returned on Tuesday, 15/01/2013, in the tutorials

Exercise 20. Vortices in Bose-Einstein Condensates

Let ψ(r) denote the Gross-Pitaevskii wavefunction of a repulsively interacting condensate in free
space. Certainly, ψ(r) should be a single-valued quantity as any wavefunction. In particular, the
value of ψ(r) must coincide with the value of the wavefunction if one starts at r and returns to r
after moving along any closed loop ζ.

(a) Consider the Gross-Pitaevskii wavefunction in its hydrodynamic representation, i.e. ψ(r) =
f(r) eiφ(r). Show that for any closed loop ζ the circulation:

Cζ [v] =

∮
ζ

dr v(r) (1)

is quantized, where v(r) = ~
m∇φ(r) denotes the local velocity of the condensate. Quantization

of the circulation means that there is a constant α such that Cζ [v] = α l for some l ∈ Z.
Determine α.

(b) Now show that applying Stokes’ theorem to equation (1) in a naive way would lead to the
conclusion that l = 0 always. This, however, contradicts the experimental observations that
BECs can feature vortices1 and even turbulence! So why is Stokes’ theorem not applicable in
this situation? Please be reminded of the exercise sheet 4 (“the phase operator”). There, one
central result was that it is only possible to define an approximately hermitian phase operator
if the probability of having a zero density vanishes. So how does the density profile of a vortex
have to look like qualitatively?

(c) Now let’s turn to a 2-dimensional BEC living in the xy-plane. Suppose that there is a vortex
of so-called charge l at the origin. Introducing polar coordinates (ρ, ϕ), assume that the phase
field φ(r) is independent of ρ. Make the simplest ansatz for φ(r) leading to a vortex of charge
l and determine the corresponding velocity field v(r)!

(d) Finally, we aim at calculating the energy of a single vortex of charge l, which is defined as
the difference of the energy of a uniform BEC with and without vortex. For obtaining a finite
energy, we should better consider a disk of radius R out of the uniform condensate, where
the vortex shall lie in the origin of this disk. Show that the energy functional for the uniform
condensate with the vortex equals:
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where an isotropic density distribution f(ρ) has been assumed. The density profile can be
determined by minimizing El[f ] under the constraint that

∫
dρ ρf(ρ) equals the total particle

number. The resulting ODE, however, can only be handled numerically. In contrast to this,
the energy of the BEC without vortex, El=0[f0], can be easily calculated since f0 is a constant.
One can show that for R � ξ =

√
~2/2mU0f20 (ξ is the so called healing length) the energy

of the singly charged vortex is given by:
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Would it be energetically favourable to have a single vortex of (not too large) charge l > 0 or
l spatially well separated singly charged vortices?

10 Points

1A BEC is said to have at least one vortex within the boundary ζ if Cζ [v] 6= 0.


