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Zusammenfassung

In dieser Arbeit wird ein experimenteller Aufbau zur Erforschung von ultra-
kaltem fermionischem 6Li mit einstellbarer Wechselwirkungsstärke und Di-
mensionalität vorgestellt. Der Aufbau wird zur Untersuchung der Schallge-
schwindigkeit vs und der suprafluiden kritischen Geschwindigkeit vc im Über-
gang von Bose-Einstein Kondensation (BEC) zu Bardeen-Cooper-Schrieffer
(BCS) Suprafluidität eingesetzt. Die Ergebnisse dienen als Richtwerte für
Theorien zur Beschreibung stak korrelierter Systeme.

Um vc zu messen wird eine Störung, welche durch einen stark fokussierten
Laserstrahl erzeugt wird, mit konstanter Geschwindigkeit entlang einer Linie
konstanter Dichte durch eine suprafluide Probe bewegt. Für Geschwindigkei-
ten größer als vc wird eine Erwärmung des Gases beobachtet. Die kritische
Geschwindigkeit wird für verschiedene Wechselwirkungsstärken gemessen, wo-
bei der BEC-BCS Übergang abgedeckt wird.

Nach dem Landau Kriterium und der Bogoliubov Theorie sind vc und vs in
einem Bose-Einstein-Kondensat eng miteinander verknüpft. Zur Messung von
vs wird ein Dichteüberschusses im Zentrum der Probe erzeugt und die sich
daraufhin ausbreitende Dichtemodulation beobachtet. Die beiden Geschwin-
digkeiten vc und vs werden bei ähnlichen Wechselwirkungsstärken und in
ähnlichen Proben gemessen, um die Vergleichbarkeit sicher zu stellen.

Der Aufbau, welcher die ultrakalten Proben zur Verfügung stellt, ist ein
zwei Kammer Design mit einer magneto-optischen Falle welche mittels ei-
nes Zeeman-Slowers geladen wird. Die darauffolgenden Kühlschritte sind rein
optisch und erzeugen schlussendlich eine ultrakalte oblate Atomwolke inner-
halb einer flachen Vakuumkammer. Diese bietet optimalen optischen Zugang
und befindet sich zwischen zwei Mikroskopobjektiven mit hoher numerischer
Apertur. Diese Objektive werden dazu genutzt, um die Proben in-situ auf
Längenskalen zu untersuchen, welche den intrinsischen Längenskalen der Ga-
se entsprechen. Gleichermaßen werden optische Dipolpotentiale eingesetzt,
um die Wolken auf diesen Längenskalen zu manipulieren. Die oblaten Proben
sind so dünn, dass ihre Ausdehnung entlang der Mikroskop Achsen kleiner
als die Tiefenschärfe der Objektive ist. Mittels eines zusätzlichen blau ver-
stimmten optischem Gitters ist es möglich, einlagige zweidimensionale Gase
zu erzeugen. An diesen werden zurzeit Experimente durchgeführt.
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Abstract

In this thesis an apparatus to study ultracold fermionic 6Li with tunable inter-
action strength and dimensionality is presented. The apparatus is applied to
investigate the speed of sound vs and the superfluid critical velocity vc across
the BEC-BCS crossover. The results set benchmarks for theories describing
strongly correlated systems.

To measure vc an obstacle, that is formed by a tightly focused laser beam, is
moved through a superfluid sample with a constant velocity along a line of
constant density. For velocities larger than vc heating of the gas is observed.
The critical velocity is mapped out for various different interaction strengths
covering the transition from Bose-Einstein condensation to Bardeen-Cooper-
Schrieffer superfluidity.

According to the Landau criterion and Bogoliubov theory, vc should be closely
related to vs in a Bose-Einstein condensate. The measurement of vs is con-
ducted by creating a density modulation in the centre of the cloud and track-
ing the excited modulation. The velocities vs and vc are measured in a similar
range of interaction strengths and in similar samples to ensure comparability.

The apparatus which provides the ultracold samples is a two chamber de-
sign with a magneto-optical trap that is loaded via a Zeeman slower. The
subsequent cooling steps are all-optical and finally create an ultracold oblate
atom cloud inside a flat vacuum cell. This cell provides optimal optical access
and is placed between two high numerical aperture microscope objectives .
These objectives are used to probe the samples in-situ on length scales which
are comparable to the intrinsic length scales of the gases. Similarly, optical
dipole potentials are employed to manipulate the clouds on the same small
length scales. The oblate samples are sufficiently flat such that there spatial
extent along the microscope axes is smaller than the depth of field of the
objectives. With an additional blue-detuned optical lattice it is possible to
create single-layer two-dimensional gases on which presently experiments are
being performed.

iii





Publikationen Publications

Im Rahmen der vorliegenden Arbeit
ist die folgende wissenschaftliche Veröf-
fentlichung entstanden.

The following research article has been
published in the course of this thesis.

[1] W. Weimer, K. Morgener, V. P. Singh, J. Siegl, K. Hueck, N. Luick, L. Mathey,
and H. Moritz, The critical velocity in the BEC-BCS crossover , eprint
arXiv:cond-mat/1408.5239v1 (2014). Under review for Physical Review Letters

v

http://de.arxiv.org/abs/1408.5239




Contents

1 Introduction 1

2 An apparatus to create degenerate strongly interacting 6Li 7
2.1 Setup I: From the oven to an ultracold gas . . . . . . . . . . . . . . . . . . 7

2.1.1 General considerations and cooling concept . . . . . . . . . . . . . 7
2.1.2 Vacuum design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.1.3 Cooling inside a resonator . . . . . . . . . . . . . . . . . . . . . . . 25
2.1.4 Transfer into the science cell . . . . . . . . . . . . . . . . . . . . . . 39
2.1.5 Laser system at 671 nm . . . . . . . . . . . . . . . . . . . . . . . . 40
2.1.6 Dipole trap lasers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
2.1.7 Low resolution imaging system for monitoring purposes . . . . . . 46
2.1.8 Magnetic field creation . . . . . . . . . . . . . . . . . . . . . . . . . 46

2.2 Sequence and performance . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3 From a cold gas to a flat gas 51
3.1 Imaging and manipulation with high resolution . . . . . . . . . . . . . . . 53

3.1.1 Imaging theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.1.2 Concept of the system . . . . . . . . . . . . . . . . . . . . . . . . . 59
3.1.3 Testing of the components . . . . . . . . . . . . . . . . . . . . . . . 68
3.1.4 Integration and alignment . . . . . . . . . . . . . . . . . . . . . . . 71
3.1.5 Final testing and verification . . . . . . . . . . . . . . . . . . . . . 75
3.1.6 Image acquisition and density retrieval . . . . . . . . . . . . . . . . 79

3.2 Setup II: Realisation of a flat sample . . . . . . . . . . . . . . . . . . . . . 83
3.2.1 Squeeze trap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
3.2.2 Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4 The speed of sound across the BEC-BCS crossover 93
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
4.2 Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

4.2.1 Our measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
4.2.2 Dependence on excitation strength . . . . . . . . . . . . . . . . . . 96
4.2.3 Dependence on the excitation beam diameter . . . . . . . . . . . . 97

4.3 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

vii



CONTENTS

4.3.1 First and second sound . . . . . . . . . . . . . . . . . . . . . . . . . 98
4.3.2 Speed of sound at zero temperature . . . . . . . . . . . . . . . . . 101
4.3.3 Speed of sound at finite temperature . . . . . . . . . . . . . . . . . 109
4.3.4 Influence of the trap . . . . . . . . . . . . . . . . . . . . . . . . . . 114

4.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

5 The critical velocity across the BEC-BCS crossover 123
5.1 Introduction to superfluidity . . . . . . . . . . . . . . . . . . . . . . . . . . 123

5.1.1 Theory and Landau’s criterion . . . . . . . . . . . . . . . . . . . . 124
5.1.2 Superfluidity in a BEC . . . . . . . . . . . . . . . . . . . . . . . . . 126
5.1.3 BCS superfluidity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
5.1.4 Superfluidity in the strongly correlated regime . . . . . . . . . . . . 128

5.2 Measurement procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
5.2.1 Previous measurements . . . . . . . . . . . . . . . . . . . . . . . . 130

5.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
5.3.1 Finite obstacle effects . . . . . . . . . . . . . . . . . . . . . . . . . 133
5.3.2 Trap effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
5.3.3 Finite temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

5.4 Simulation results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
5.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

6 Two-dimensional ultracold gases 139
6.1 Theory of a two-dimensional cold gas . . . . . . . . . . . . . . . . . . . . . 140

6.1.1 Pure two-dimensional system . . . . . . . . . . . . . . . . . . . . . 140
6.1.2 Realistic two-dimensional system . . . . . . . . . . . . . . . . . . . 143
6.1.3 Speed of sound in two dimensions . . . . . . . . . . . . . . . . . . . 144

6.2 Setup III: From the squeeze trap to the lattice . . . . . . . . . . . . . . . . 146
6.2.1 Concept . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
6.2.2 Green lattice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
6.2.3 Procedure and verification of single-layer two-dimensional confine-

ment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
6.2.4 Advanced manipulation methods . . . . . . . . . . . . . . . . . . . 152

7 Conclusion & outlook 157

List of Figures 161

List of Tables 165

Bibliography 167

Acknowledgements - Danksagung 177

viii



1 Introduction

Superconductivity and superfluidity are two of the most striking macroscopic phenomena
originating from microscopic quantum effects. They describe frictionless flow of either
electrons, atoms or molecules in their surrounding medium. Of particular interest are
strongly interacting systems where the superfluid state is most stable. Examples are
superfluid 4He and high temperature superconductors. The technological relevance espe-
cially of the latter is inestimable.

The remarkable property of superfluids is best illustrated by considering an obstacle
which moves through a superfluid medium. No energy will be dissipated as long as
the flow velocity is below a certain critical velocity vc. A general expression for vc was
determined by Landau [1] by considering a object with infinite mass that moves through
a superfluid under conservation of momentum and energy.

Illustration of the measurements
to determine vc (left) and vs
(right).

In this thesis, I present an experimental study of
the superfluid critical velocity in ultracold 6Li. The
experiment realizes the idealized measurement scenario
considered by Landau: a superfluid dilute atomic gas is
probed by a moving obstacle as shown in the figure. It is
the first time where the size of the obstacle is compara-
ble to the intrinsic length scales of the cold gas, e.g. the
inter-particle distance. In the BEC regime, the obstacle
can excite phonons and the Landau criterion predicts
that the critical velocity is given by the speed of sound.
Consequently we also measure the speed of sound by
exciting and monitoring density waves and compare the
results with the critical velocity. Further, we validate our experiments with simulations
performed by Vijay Singh and Ludwig Mathey.

A particular feature of our physical system is that the interaction strength of the
superfluid under study is tunable. The gas can therefore either resemble a Bose-Einstein
condensate (BEC), a Bardeen Cooper Schrieffer (BCS) superfluid or a strongly interacting
system. This tunable interaction strength is a distinct advantage of experiments with
ultracold fermionic gases compared to studies of condensed matter systems.

The adjustability of the interaction strength is made possible by a Feshbach resonance
[2] which can be addressed with a magnetic offset field. The corresponding Zeeman shift
brings a molecular bound state into resonance with the kinetic energy of two colliding
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Figure 1.1: Illustration of the Feshbach resonance between the two lowest hyperfine states of 6Li.
The resonance is located at 834Gauss and leads to a divergence of the s-wave scattering length
aA (red line). At high magnetic field strengths the scattering length is negative, corresponding
to an attractive interaction between the atoms which are depicted as the green and red spheres.
The atoms can form pairs similar to Cooper pairs and the gas is described by BCS theory. When
the Feshbach resonance is approached from the right, the scattering length diverges and the
system enters the so called unitary regime. Exactly on the resonance a molecular bound state
becomes available (green line) and the atoms form bosonic dimers. Further on the left side of the
resonance those dimers condense into a BEC which is described properly by Bogoliubov theory.
The dimers themselves interact repulsively with a scattering length of aD = 0.6aA [7].

distinguishable fermions. As a consequence, the s-wave scattering length diverges as
depicted in Fig. 1.1. The resulting change of the interaction strength leads to the so called
BEC-BCS crossover reviewed in [3, 4, 5, 6]. Far on the right side of the resonance, the
scattering length is small and negative which corresponds to a weak attractive interaction
between the fermions as described by BCS theory. On the left side, the constituents of
the gas form bosonic dimers which Bose condense and feature a weak repulsive effective
interaction. The regime in between is governed by strong interactions and a theoretical
treatment is extremely challenging. No description in terms of quasi-particles has been
found and perturbation theory is not applicable due to the lack of a small parameter.
Consequently, neither BEC nor BCS approaches give accurate results. In this regime
experiments such as the one described here can provide novel and valuable insights. As
an example, we present data for the critical velocity and the speed of sound along the
entire BEC-BCS crossover which serves as a benchmark for theories aiming towards a
understanding of strongly correlated systems.
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A system to investigate superfluid 6Li

To perform the experimental studies on ultracold 6Li a new apparatus was built, which
shall be described briefly in the following. Fermionic 6Li is initially cooled and trapped
inside a magneto-optical trap that is loaded by a Zeeman slower. A sequence of dipole
traps is employed to trap the atoms and to provide further cooling using forced evapora-
tion. Finally, the cold gas cloud is transported to a separate vacuum cell which provides
optimal optical access for experiments.

Around that vacuum cell two microscope objectives are placed in close proximity
to the ultracold gas as shown in Fig. 1.2. The high resolution of the objectives has
several advantages. Amongst them is the possibility to manipulate the gas locally on
length scales down to approximately 700 nm, comparable to the Fermi wavelength of
typical samples. Similarly, it is possible to image the gas in-situ. Therefore, not only the
spatial density distribution but also to the density-density correlations in the sample are
directly accessible. Especially for strongly interacting gases in-situ probing is superior to
time-of-flight techniques as the cloud’s expansion is not simply given by the momentum
distribution but also by the interaction energy.

The high resolution of the microscopes can only be fully utilized if the thickness of
the imaged atom cloud is less than the depth of field of the objectives. In our experiment
the sample is therefore trapped in an optical dipole trap with a highly elliptical beam
waist. By employing an additional optical lattice it is possible to compress the cloud even
further such that the gas becomes effectively a two-dimensional system. In that situation
the chemical potential and the temperature of the gas do not suffice to populate the first
excited state of the potential in the strongly confined direction. With all atoms forced
to reside in the ground state in that direction the kinematics of the gas are restricted
to the remaining two dimensions. The altered dimensionality has major impact on the
properties of the gas. For instance long-range order and therefore formation of true BECs
is no longer possible in two-dimensional systems [8, 9]. It will be intriguing to see how the
reduced dimensionality changes the many-body physics in the strongly correlated regime.

The work presented in this thesis was carried out in close collaboration with Kai
Morgener, Jonas Siegl, Klaus Hueck and Niels Strohmaier.
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1 INTRODUCTION

Figure 1.2: Sectional view and 3D rendering of the setup with which experiments on ultracold
fermionic 6Li are performed. The gas is confined by an optical dipole trap inside an ultra-high
vacuum chamber. Multiple windows in the chamber provide optimal optical access to the atoms.
Microscope objectives are placed above and below the chamber (only upper objective shown in
the left panel) and allow highly resolved probing and manipulation of the degenerate gas. The
Feshbach resonance is addressed via a magnetic field that is created by large coils placed around
the vacuum chamber. The microscope objectives are placed inside the central bores of the coils.
Dimensions are in mm. The graphic in the left panel is adopted from Ref. [10].
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Outline of the thesis

This thesis is divided into the following chapters:

• Chapter 2 describes how the apparatus produces a degenerate cloud of 6Li with
tunable interaction. It aims towards a reader who intends to learn how to operate
the machine. It contains detailed descriptions of the individual components and a
step by step walk-through of the experimental sequence.

• Chapter 3 introduces the optical system capable of acquiring in-situ images of
the cold atom clouds. The achieved resolution is on the order of typical intrinsic
length scales of the ultracold gases. In addition, the chapter describes how the
setup creates the flat samples required for such high resolution images.

• Chapter 4 presents measurements of the speed of sound carried out with the
apparatus. The measurement is performed at various different interaction strengths
such that the whole BEC-BCS crossover is mapped out. The chapter includes a
theoretical description of sound propagation which is in good agreement with the
experimental data.

• Chapter 5 presents measurements of the superfluid critical velocity across the
BEC-BCS crossover. The measurements where performed on samples similar to
those used in the speed of sound measurements. Therefore a direct comparison of
the speed of sound and the critical velocity is possible. Further, the experimentally
determined critical velocities are compared with simulation results.

• Chapter 6 introduces our approach to create two-dimensional atom clouds. First,
an overview of the theory of the physics in two dimensions is given focussing on
ultracold gases featuring strong interactions. Next, the experimental realisation is
presented as well as our method to verify the single-layer capability of the procedure.
Further, the chapter explains advanced manipulation possibilities implemented in
the setup.

5





2 An apparatus to create degenerate strongly
interacting 6Li

2.1 Setup I: From the oven to an ultracold gas

The art of cooling atom clouds to ever lower and lower temperatures is driven by the
introduction of new technologies. One very notable development used by almost all cold
atom machines nowadays is the magneto-optical trap (MOT). It was first implemented in
1987 [11] and paved the way for to the first observation of Bose-Einstein condensation in
1995 [12, 13]. Since that time many new techniques have become available which made
it possible to turn the focus from just producing cold gases towards doing research on
them or even use the clouds as environment for simulations of entirely different physical
systems. Most new cold atom machines follow a fairly similar approach to produce
cold gases. They start by either a Zeeman slower or a two-dimensional MOT to load a
three-dimensional MOT where initial laser cooling is performed. This cooling process is
ultimately limited by the recoil temperature. Further cooling is then accomplished via
evaporation either in a magnetic trap or an optical dipole trap to reach the desired low
temperatures. After the subsequent manipulation, to carry out the scientific experiment,
an image is acquired, either by using an absorption or a fluorescence technique. In the
following sections I describe the concept and the details of our approach to create an
ultracold gas.

2.1.1 General considerations and cooling concept

The machine set up in the course of this thesis is very specialised in order to meet
challenging requirements. These are to cool down a fermionic sample to degeneracy,
confine it in a single two-dimensional trap to perform sophisticated manipulation of the
sample and finally probe it with high spatial resolution. To enter the regime of strong
interactions the interaction of the atoms with each other should be freely adjustable. This
chapter is intended to describe how to produce a cold gas to work with and to realize
the conditions suitable for further, more advanced manipulation and detection methods.
The latter are described in chapters 3 and 6.

7



2 AN APPARATUS TO CREATE DEGENERATE STRONGLY INTERACTING 6LI

The choice of element

One of the first decisions we had to make during the early design phase of our machine
concerned the selection of the chemical element. Alkali metals are the most commonly
used elements in cold atom experiments as they have a rather simple level scheme. Fur-
thermore, the necessary technology to cool those atoms is well developed since they have
been used in cold gas experiments for many years. Amongst the alkali metals only two
fermionic isotopes, 6Li and 40K, are radioactively stable. We chose 6Li since it offers the
following advantages: most importantly it has a very broad Feshbach resonance which
can be used to conveniently tune the interaction across the BEC-BCS crossover with
very low inelastic loss rates and hence long life times. Very low temperatures in units of
the Fermi temperature can therefore be achieved which is crucial for observing quantum
phenomena which otherwise can be easily obscured by thermal effects. The light mass of
lithium compared to potassium can be advantageous as well. In experiments with optical
lattices the tunnelling from one site to the next scales inversely with the mass of the used
atoms. The low mass of 6Li makes it easier to access quantum phase transitions. The
lattice spacing in such experiments can then be chosen larger compared to 40K which is
advantageous for the development of an imaging system with single site resolution. The
level scheme and especially the number of accessible hyperfine ground states of 40K is
richer as compared to 6Li which makes potassium a predestined candidate for exploring
spin physics [14]. There are also technological features which make it more convenient to
work with lithium rather than with potassium. The natural abundance of 6Li is ∼ 7%
whereas that of 40K is only 0.012%. This has a large impact on the price and avail-
ability of the materials. Highly enriched 6Li can be bought in rods several centimetres
long whereas enriched potassium with a 40K concentration of less than 15% is bought in
sealed ampoules containing only a few milligrams of the material. Obviously this has an
impact on how economical the setup has to deal with the initial resource of atoms. The
existent experience within a certain research group plays a significant role in the selection
process as well. In our case a large amount of expertise was available in the work with
6Li expediting the development process of the machine significantly. Finally, we came to
the decision to use 6Li in our ultracold gas experiment.

Cooling strategy

The selection of the element is closely linked to the design of the cooling strategy. With
the motive of saving time in setting up the machine we decided to implement a cooling
procedure very similar to the lithium experiment set up in Zurich by Bruno Zimmemann,
Torben Müller and Henning Moritz [15, 16, 17]. The knowledge obtained during the
development of this machine could be utilized for our own apparatus. The part of the
machine which deals with the ultracold gas after its initial production was then tailored
to the needs of our scientific goals.

The experiment concept is based on cyclic operation which means that an ultracold
sample of atoms is produced and a certain experiment is performed on it. Afterwards the

8



2.1 Setup I: From the oven to an ultracold gas

Figure 2.1: Overview over the cooling sequence. The numbers below the boxes indicate the
approximate temperature scales which are relevant at the corresponding steps and the approxi-
mate number of particles. The atoms in the Zeeman slower are in a non thermalized state and
no atoms are trapped in it so no atom number and no temperature can be given. The absorption
imaging at the end of the cycle destroys the sample and the cycle is repeated.

sample is destroyed by the imaging procedure and a new sample is created. The cycle
duration is ranging from 10 s to 15 s. Figure 2.1 gives an overview of the consecutive
steps of one experimental cycle and Fig. 2.2 shows the basic layout of the setup.

The following list describes the basic experimental steps. For more details about the
performance see chapter 2.2.

• The preparation starts with the oven where blocks of lithium are heated to obtain
a sufficiently high vapour pressure. With the help of a set of apertures a fairly well
collimated hot jet of atoms is created.

• This jet is slowed down by a Zeeman slower. It consists of a vacuum tube through
which the atoms travel, a spatially varying magnetic field and a near resonant laser
beam shone on the atoms opposite to their direction of travel. The laser beam
slows down a certain velocity class of atoms in the atom jet due to the momentum
of the absorbed photons (re-emission is spatially isotropic and has no net effect
on the atoms). The magnetic field tunes the level scheme of the atoms due to
the Zeeman effect to compensate for the velocity depended Doppler shift of the
transition frequency. It is designed such that the laser beam is resonant on a fairly
fast velocity class in the velocity distribution of the atom jet at the beginning of
the vacuum tube and slower velocity classes at the end of the tube. This allows for
a constant deceleration of the atoms along the Zeeman slower.

• The slowed atoms enter the main chamber and come nearly to a complete stop
within the MOT where the atoms are cooled down initially. The MOT consists
of a spatially varying magnetic field and six laser beams incident from all sides.
The laser beams slows down the atoms, similar to the Zeeman slower by utilizing
the Doppler effect, acting on all spatial directions. The combination of magnetic
field and laser beams also creates a spatially dependent force that traps the atoms.
Typical temperatures which can be reached with such a concept are on the order of
the Doppler temperature caused by the finite linewidth of the transition frequency.
Even lower temperatures, down to the recoil limit, can be in principle reached

9



2 AN APPARATUS TO CREATE DEGENERATE STRONGLY INTERACTING 6LI

Figure 2.2: The basic layout of the apparatus. First, lithium is evaporated inside the oven.
Second, the created atom beam is slowed down by a Zeeman slower and brought to a stop inside
the main chamber. There, the atoms are trapped and cooled inside a MOT and transferred into
a resonator enhanced optical dipole trap where further cooling is performed. Next, the atoms
are transported into the science cell where the actual experiments on the atoms are performed.
Finally a highly resolving optical system acquires an image of the atom cloud. Greyed out labels
indicate that the description of the corresponding parts can be found in the doctoral thesis of
my co-worker Kai Morgener [18].
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2.1 Setup I: From the oven to an ultracold gas

by more sophisticated laser cooling methods which are not implemented at the
moment.

• After having been cooled down in the MOT the atoms are transferred into a res-
onator enhanced dipole trap in which the cloud is cooled further by evaporation.
This resonator is explained in detail in section 2.1.3. The main idea of the resonator
enhancement is to combine a very deep dipole trap with a large capture volume to
achieve high transfer ratios from the MOT into the dipole trap.

• To achieve a good optical access to the atoms we transport them out of the main
chamber into a small science cell which is easily accessible with laser beams from
multiple directions. Therefore, we transfer the atoms from the resonator enhanced
dipole trap into a running wave dipole trap which features a movable trap centre.
After completion of the transfer the trap centre is shifted from the main chamber
into the science cell and further evaporative cooling is performed by lowering the
laser light power.

• In the science cell the atoms are transferred into a third dipole trap. The equipo-
tential surfaces of this trap are very oblate and the atomic cloud flattens out into a
pancake shaped form. I will refer to this trap as the squeeze trap during the course
of this thesis.

• The steps after the squeeze trap depend on the individual experiment to be per-
formed with the cold atoms. They may include the confinement to two dimensions,
manipulation with optical lattices or other custom procedures.

• After finishing the experimental steps the readout is performed via absorption imag-
ing using the high resolution optics around the science cell. Fluorescence imaging
might also be applied in the future.

The experiment is housed inside a modern laser laboratory equipped with two optical
tables and with good air conditioning to ensure stable environmental conditions. The
lab, and in fact the whole building, were designed to reduce vibrations from the outside
to a minimum. Altogether, these external factors are very satisfactory and offer a good
basis for building the machine.

In the next sections I will give a more detailed description of the parts in our setup
that are concerned with creating an ultracold gas. I will start with the vacuum system
and continue with the bow-tie resonator enhanced dipole trap. This concept was used for
the first time in a cold gas machine and involves several interesting experimental aspects.
Thereafter follow sections covering our transport dipole trap, the laser systems, the low
resolution imaging system and the magnetic field system. I will cover certain components
only very briefly since they will be treated with in more detail in Ref. [18], see also Fig.
2.2.
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2.1.2 Vacuum design

Ultracold gases, like BECs or degenerate Fermi gases, are among the most delicate sys-
tems which are known to exist. One point is that almost every interaction with atoms
from the environment increases the energy of the system such that the fragile state is
destroyed or at least a fraction of the ultracold gas is removed. This is the reason why all
ultracold atom experiments are performed within ultra-high vacuum environment. Typi-
cal pressures are on the order 1× 10−11 mbar which corresponds to lifetimes on the order
of 100 s. The mean free path of a gas particle under such conditions is several tens or
hundreds of kilometres, much larger than the size of the vacuum chambers. The gas flow
under these conditions is described by the molecular flow theory where the gas particles
fly in a ballistic manner from one wall to the next without interacting with other particles.
Such low pressures can only be achieved by using selected materials with low out-gassing
rates for the vacuum chamber and any possible interiors. In our case we decided for stain-
less steel which has the additional advantage of being non-magnetic. This is particular
important as we have to use strong magnetic fields to cool and manipulate the atomic
clouds. The geometry of the chamber had to be designed such that it is possible to bring
those magnetic field coils close to the position of the atoms without compromising the
optical access. All the connections are made with the ConFlat (CF) flange system, which
uses copper gaskets to achieve a tight seal with minimal leakage rates. The pumps used
to maintain the low pressure, once it is established, are two ion pumps and two titanium
sublimators. The main residual gas is expected to be molecular hydrogen as it is the
most likely gas to diffuse through chamber walls or seals. Hydrogen also diffused into
the steel of the chamber in large quantities during the time it was exposed to normal
atmosphere after being machined. These embedded molecules will gas out over a long
time after the chamber is evacuated. To artificially accelerate the outgassing a bake-out
of the chamber was performed during the creation of the vacuum.

As shown in Fig. 2.2 the vacuum chamber can be divided into several sections. These
are the oven chamber, the Zeeman slower, the main chamber, the science cell and the
main pumping section. These and further parts of the vacuum system are described in
the following sections.

Oven chamber

The sequence of our experiment starts by vaporizing solid lithium in an oven to create a
beam of hot atoms which is then slowed down with a Zeeman slower. The other possible
method to create such an atom beam would be to use a 2D MOT which is loaded via
background pressure. Such a 2DMOTmakes more economical use of the available lithium
resource but is technologically far more demanding in terms of the required optics and
laser system. As lithium is cheap we decided to use the oven/ Zeeman slower combination

At room temperature, the vapour pressure of lithium is far too low for our purposes
but it increases approximately by a factor of 10 for each 60K that the temperature is
increased [19]. To achieve sufficient vapour pressure temperatures of around 400 ◦C are
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Figure 2.3: Vapour pressure curve for liquid lithium. We operate our oven at temperatures
of around 400 ◦C where the pressure increase is approximately a factor of 10 for each 60K in
temperature increase. The formula to plot the curve can be found in Ref. [19]. Lithium melts
at 180 ◦C and boils at 1340 ◦C.

needed. Figure 2.3 shows the vapour pressure as a function of the temperature. Lithium
is liquid at our operational temperatures and chemically very reactive which imposes
certain constraints on the design of the oven and the used materials.

The design of the oven chamber was largely adopted from the experiment in Zurich
and details about the oven can be found in the thesis of Bruno Zimmermann [15]. The
oven itself is a can-like stainless steel container containing several blocks of lithium. It
has two ports for pumping to maintain the vacuum. On the axis where the atom jet
leaves the oven, several apertures collimate the beam, see Fig. 2.4. One aperture is
placed directly in front of the first flange after the oven to ensure that no liquid lithium
can reach the gasket. This is crucial since liquid lithium can damage the copper seals.
For this reason all the gaskets close to the oven are made from nickel rather than copper.
A short distance behind the oven a shield is placed which can be turned via a rotation
feed-through1 from the outside to stop the flow of atoms when the experimental cycle
does not demand it. The opposite side of this shield is angled and polished such that it is
possible to use it as a mirror to inspect the inside of the oven or the Zeeman slower tube
by looking through one of the viewports at the side of the oven chamber. It has to be

1Vacom, MagiDrive MD16
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Pressure gauge Titanium sublimator Ion pump

Rotation feed-through Oven storage chamber

Apertures

Rotating shield

Membrane bellow

Oven nozzleAngle valve

Figure 2.4: A CAD picture of the oven chamber. The right part of the figure shows a sectional
view in which the atom beam is directed to the right side and leaves the oven chamber via the
membrane bellow.

mentioned that a bearing of the rotational feed-trough was damaged after three years of
operation and for the moment we do not shut off the atom beam during the experimental
cycle. We could not observe any negative effect on the experiments performance caused
by the continuous atom beam. As the design of the feed-through relies only on magnetic
transfer of force the integrity of the vacuum is not affected.

To ensure a good vacuum a 25 l ion pump with titanium and tantalum electrodes2

as well as a titanium sublimator3 are placed inside the oven chamber. The pressure is
measured with a hot cathode ionisation gauge4. In the case of a leak, an empty oven or
an upgrade which would require to break the vacuum the oven chamber can be sealed
off from the rest of the vacuum system with a CF16 gate valve5. For separate pumping
of the oven chamber a CF40 angle valve6 is installed. The connection between the oven
chamber and the gate valve is realised with a CF16 membrane bellow. The valve is then
connected directly to the differential pumping stage described below.

The oven is divided into two heating sections, the nozzle and the storage chamber.
Both have their own heating element, temperature sensor and PID controller. Each
controller operates a solid state relay in pulse-width modulation with a pulse length of
2 s. Those relays directly control the current through the heating elements. Normal
operating temperatures are 400 ◦C for the storage chamber and 390 ◦C for the nozzle.
When set on standby overnight, both temperatures are reduced to 250 ◦C to save lithium

2Gamma vacuum, 25S-DI-2V-SC-N-N
3Vacom, Titansublimationspumpe DN40CF
4Pfeiffer, PBR260
5VAT, Ganzmetall-Schieber DN16
6VAT, “Easy-Close” Ganzmetall-Eckventil DN40
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Description Value

Temperature sensors maximum temperature 1200 ◦C
Nozzle heating band maximum temperature 450 ◦C
Storage chamber heating band maximum temperature 900 ◦C
Insulation material maximum temperature 1000 ◦C
Pressure gauge range 5× 10−10 mbar to 1000mbar
Pressure nominal at standby temperature 250 ◦C under range
Pressure nominal at 390 ◦C/ 400 ◦C 1.4× 10−9 mbar
Temperature, maximum operation 450 ◦C/ 470 ◦C, causes visible de-

posit on shield after 10min

Table 2.1: Typical values and limitations for the oven chamber.

while keeping it above its melting point of ∼180 ◦C. Special care has to be taken when
filling or refilling the oven with fresh lithium. Lithium is typically sold in kerosene which
has to be completely removed before placing it into the oven. When brought into contact
with air the lithium quickly develops a lithium hydroxide layer. This layer is highly
temperature stable (melting point ∼450 ◦C [20]) and can compromise the function of the
oven. Other compounds which can develop as well are even more temperature stable.
Examples are Lithium nitride (melting point 813 ◦C [21]) or Lithium oxide (melting point
1438 ◦C [22]). The surface layer can be easily cut off from the lithium with a knife. To
prevent a new layer from growing the oven and the lithium were placed inside an argon
bath for filling.

Differential pumping stage

With the oven operating at temperatures of approximately 400 ◦C, the gas release pro-
cesses limiting the pressure of the vacuum are much more significant than at room tem-
perature. The pressure in the oven chamber is therefore about a factor 100 higher than
the desired pressure in the main chamber. To maintain this pressure difference a differ-
ential pumping stage is employed. It separates the two vacuum sections effectively from
each other (up to a certain pressure ratio) and each section can be evacuated separately
without affecting the pressure in the other section. However, it is still possible for the
atom beam coming from the oven to enter the main chamber. The physical realisation
of the differential pumping stage is a thin and long pipe. The longer and thinner the
pipe the less likely it is for a gas particle to fly through and to affect the pressure on
the other side. In our case we connect the oven chamber with the rest of the vacuum
apparatus via a pipe with an inner diameter of 4mm and a length of 280mm. The phys-
ical quantity which determines how efficiently a gas particle can pass the tube is called
conduction and its unit is m3/s. The lower the conductance the fewer particles will pass
the pipe. However, the diameter of the pipe must not be chosen too small as the atom
beam created by the oven should still be able to fly through unaffected. For a thin pipe
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the conductance is given by [23]

C(m3/s) =
π

12
ν
d3

l
. (2.1)

Here l is the length and d the diameter of the pipe, both given in metres. The arithmetic
mean average velocity ν of the particles with mass m at a absolute temperature T is

ν =

√
8kBT

πm
, (2.2)

with the Boltzmann constant kB. For normal ambient air and molecular hydrogen at
22 ◦C this yields

CAir(m3/s) = 121d
3

l

CH2(m3/s) = 463d
3

l . (2.3)

These formulas show that the effectiveness of the differential pumping stage is limited
by the lightest gas particle present in the residual gas. In our case this is molecular
hydrogen. With our design values for the differential pumping stage we end up with a
conductance of

CH2 = 1.06× 10−4 m3/s. (2.4)

The oven chamber and the differential pumping stage act as an effective leak for the
vacuum in the main chamber. The amount of gas that passes into the main chamber in
a given time is called throughput Q

Q = C (poven − pmain) . (2.5)

The unit of Q is m3 Pa/s. Assuming the main chamber has no leaks, the equilibrium
pressure in the main chamber is given by

pmain =
Q

S
(2.6)

with the pump rate S (unit m3/s) characterizing all pumps in the main chamber. The
maximum pressure ratio between the oven chamber and the main chamber, which can be
maintained by the pumps in the main chamber, is then given by

poven
pmain

≈ poven − pmain
pmain

=
S

C
(2.7)

since poven � pmain. For our apparatus the maximum pressure ratio for molecular
hydrogen is thus

poven
pmain

≈ 950. (2.8)
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The value given in Eq. 2.8 is valid under the assumption of no leaks in the main chamber
and a pumping rate of 0.1m3/s for molecular hydrogen at a temperature of 22 ◦C. If
the above ratio is exceeded the pressure in the oven chamber will affect the pressure in
the main chamber. Normally we operate at a pressure ratio of approximately 100. As
a consequence, the differential pumping tube separates the main chamber from the oven
chamber such that their corresponding pressures are independent from each other. This
could be confirmed by monitoring the pressure gauges during heating up the oven. We
conclude that the pressure in the main chamber is not limited by the effective leak caused
by the differential pumping stage and the oven chamber but rather by other sources of
gas entry.

Zeeman slower

From a vacuum point of view the Zeeman slower is just a stainless steel tube, roughly
700mm long. Its first part is the differential pumping pipe described in the previous
section. It is important to place the differential pumping stage close to the oven as the
atom beam diverges with travelling distance. After the differential pumping section the
inner tube diameter increases to 22mm. More details about the Zeeman slower can be
found in the thesis of my co-worker Kai Morgener [18].

Main chamber

The main chamber was designed in the framework of the diploma thesis of our former
student Florian Wittkötter and many details about it can be found in his thesis [24]. A
picture of the chamber is shown in Fig. 2.5. It plays a particularly important role in
the cooling sequence of the atoms as several steps are performed in it. The atoms arrive
from the Zeeman slower and are captured and cooled by the MOT. After this initial
cooling, the atoms are transferred into a resonator enhanced dipole trap in which further
cooling is performed. The main chamber contains this resonator as it needs to be placed
completely inside the vacuum. To continue the sequence, the atoms are transferred into
the transport dipole trap and transported out of the main chamber into the science cell.
This imposes a couple of constraints on the design of the main chamber which were only
possible to meet with a custom made chamber rather than with off the shelf components.
The main features are:

• The chamber has following ports:

– a port to accept the Zeeman slower (CF25)
– a port to accept the main pumping section (CF100)
– 6 viewports for the MOT (4 x CF40; 2x CF100)
– 2 viewports for the cooling resonator, 1 for incident light (CF40), 1 for moni-

toring (CF16)
– an electrical feed-trough to control the piezo of the cooling resonator
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– a port to accept the science cell (CF40)
– a viewport for the transport dipole trap (CF40)
– a port for a potassium 2D MOT as part of a potential future upgrade (CF16)
– a viewport opposite to the potential 2D MOT (CF16)
– multiple pairs of diametrically placed viewports for imaging (CF16)

• It houses the cooling resonator, see section 2.1.3.

• It accepts the magnetic field coils for the Feshbach field and the MOT field.

After the MOT phase our cooling strategy involves a transport of the cloud for ∼2 cm
performed by the cooling resonator before the atoms are transferred into the transport
dipole trap. As a consequence the ports for the MOT and the Zeeman slower have to be
aligned on a different point than the ports for the science cell and the transport dipole
trap. This and the sheer density of ports makes it impossible to use a ready-made,
commercially available cell. We decided to use the same magnetic field coils to create the
Feshbach field for evaporation and the MOT-gradient field. As the two corresponding
spatial locations are at different positions, we centred the coils around the evaporation
spot and use additional coils to the side of the main chamber to shift the magnetic centre
of the MOT field to its designated position. To reduce thermalisation effects of the
magnetic field coils on the vacuum chamber, the coils are mounted on a separate frame
which has no mechanical contact to the vacuum chamber. The aforementioned port for
a potassium 2D MOT contains a gate valve7 but there are no plans at the moment to
realize this possibility. The material we chose for the main chamber is the steel 1.4301
(V2A) which is well machinable, non magnetic and well suited for ultra-high vacuum
applications.

Main pumping section

To maintain the vacuum, after it is established in the first place, it is necessary to
continue pumping due to gas release from the walls, potential small leaks and possibly
even diffusion of hydrogen through the chamber walls and seals. In our setup this pumping
is provided by the main pumping section which is attached to the main chamber opposite
to the Zeeman slower as shown in Fig. 2.2. It contains a 100 l s−1 ion getter pump with
titanium and tantalum electrodes8 connected to the main chamber with a large diameter
tube ensuring a good conductance. The pump itself provides a free optical path for a
laser beam entering from the other side of the pump via a sapphire viewport required to
operate the Zeeman slower. Sapphire was chosen since it has a better resistance against
the chemical aggressive lithium than quartz glass. The tube connecting the ion pump
with the main chamber contains a titanium sublimator9 which can coat a large area of

7MDC Vacuum, Similar to MIV-150-T / 316000 with CF-16 on the right side
8Gamma vacuum, 100L-DI-6D-SC-N-N
9Varian, Mini Ti-Ball
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To science cell

Connector for
pressure gauge

To ion pump

To oven chamber

Connector for
titanium sublimator

Figure 2.5: A CAD picture of the main chamber with the top window not shown. The indicated
laser beams are determining the positioning of the ports. They are colour coded as follows: yellow
- Zeeman slower, red - MOT, purple - cooling resonator, green - transport dipole trap, blue -
imaging, orange - possibility for 2D MOT upgrade.

Description Value

Pressure gauge maximum operating pressure at 10mA
emission current

1.4× 10−4 mbar

Titanium sublimator recommended maximum current 50A
Pumping section nominal pressure 1.8× 10−11 mbar

Table 2.2: Typical values and limitations for the pumping section.

the tube as well as a part of the main chamber with titanium. Both, the ion pump and
the chemical pumping with the titanium coating work without any moving parts and thus
without causing vibrations. This ensures minimal impact on the performance of the rest
of the apparatus. The large diameter connection tube houses also an ionization pressure
gauge10. A CF40 angle valve11 is located on the far side of the pumping station, close to
the Zeeman slower viewport which was used for initial evacuation of the whole vacuum
chamber. In case the Zeeman slower viewport becomes opaque by lithium deposit on
its inner surfaces a replacement without breaking the vacuum in the main chamber is
possible by closing a CF40 gate valve12.

10Varian, UHV-24p Nude Bayard-Alpert gauge; According to the data sheet, the indicated pressure
for an actual pressure of 1× 10−11 mbar is about a factor 2 too high.

11VAT, “Easy-Close” Ganzmetall-Eckventil DN40
12VAT, Ganzmetall-Schieber DN40

19



2 AN APPARATUS TO CREATE DEGENERATE STRONGLY INTERACTING 6LI

The science cell

The science cell can be regarded as the main component of the experiment’s vacuum
system even if its size and appearance might not be very impressive. In it all the ac-
tual “physics” experiments are performed whereas the rest of the vacuum setup is only
required to provide the samples. There are several design requirements to this cell in
our experiment. Most importantly we want to perform high resolution imaging on the
atomic samples. This requires the optical quality of the windows of the science cell to be
as good as possible. The distance between the atom cloud and the necessary microscope
objective has to be as small as possible (see chapter 3 for more details). This inevitably
leads to a very flat design as we placed two such objectives on both sides of the cell. Fur-
ther, we need to maximise the optical access to install optics around the cell needed for
manipulating or probing of the atomic clouds. Finally, the cell has to provide ultra-high
vacuum environment in order to obtain long lifetimes of the ultracold gases. As we use
strong magnetic fields to manipulate the cloud which are potentially quickly changing in
time, the cell has to be non magnetic and ideally does not support eddy currents.

To make everything as perfect as possible we opted for a glass cell to avoid eddy
currents completely. To make a long story short: this attempt failed and we now use
a more conventional metal cell. Basically the usage of ultra-high vacuum glass cells is
an established technology and one can order custom made cells. However, anti-reflection
coated glass cells remain difficult to manufacture. The procedure of joining the different
parts of a glass cell by fusing or bonding requires high temperatures which destroys any
coating previously deposited on the components. Hence, a glass cell can only be coated
after assembly which is simple from the outside but almost impossible from the inside.
When designing the machine we had the idea to realize an optical resonator around the
glass cell. To achieve a reasonable performance of such a resonator the cell must be
anti-reflection coated well to reduce losses. We found a company13 which claimed to be
able to produce glass cell coated inside and outside with UHV capability. Unfortunately,
the result did not match our specifications. After spending valuable time in design work,
ordering three cells from that company and waiting for nearly a year we received three
cells with inadequate properties. The broadband-coated windows showed a reflectivity
of around 1.5% per surface at the design wavelengths, see Tab. 2.3 for details. A single
pass of a light beam through such a cell passes four of those surfaces and a resonator
around the cell would have a very low finesse. After realizing that we switched back to
a more conservative design and ordered a custom made metal cell.

This metal cell14 is made from the non-magnetic steel 316LN which is well suited for
vacuum applications. Its shape is a flat octagon with seven CF16 viewports on the sides
as shown in Fig. 2.6. Those ports are angled by 2◦ to avoid undesired back reflections
of laser beams which pass the cell diametrical. The eighth port is used to connect the
cell via a tube to the main chamber. The top and bottom windows are 4.00± 0.05mm

13Precision Glassblowing, Centennial, USA
14UKAEA CCFE Special Techniques, Abingdon, Oxfordshire, United Kingdom
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Wavelength Reflectivity of the large windows Reflectivity of the small windows

532 nm 2.6% 2.8%
671 nm 1.4% 1.1%
1064 nm 1.1% 1.4%

Table 2.3: Performance of the anti-reflection coating of the glass cell. The values correspond
to the reflected light intensity compared to the intensity of the incident beam. The light inside
the resonator we planned to realize around the glass cell would have to pass four surfaces which
would lead to intensity losses of 4.4% to 11.2% per round trip.

thick and separated by only 8mm. The surface quality of the main windows is specified
to be better than λ/8 and anti-reflection coated for 532 nm, 590 nm, 670 nm, 780 nm and
1064 nm for incident angles between 0◦ and 30◦. To reduce the pressure in the science
cell, a non-evaporable getter15 was placed inside the connection tube. The getter material
was activated during the bake-out. Compared to a glass cell the coating of the windows
is much easier to realize as the assembly of the cell does not require high temperatures.
However, there are also certain drawbacks of the metal cell design compared to the glass
cell:

• Magnetic influence: The employed steel is not completely non-magnetic which
might cause undesired vibrations when magnetic fields are switched rapidly. The
material is also conductive which limits the switching times of magnetic fields due
to eddy currents.

• Optical access: Due to spatial restrictions the optical access is not as good as that
of the original glass cell design. With the glass cell there was the possibility for
three additional in plane beams crossing under a 120◦ angle.

• Surface quality of the two main windows: The main windows of the metal cell de-
sign are connected to a metal frame prior to coating. Afterwards this metal frame
is electron beam welded to the main body of the cell. This welding might induce
stress in the windows which potentially could cause bending affecting the micro-
scope resolution. A spherical curvature of a window can be mostly compensated
by adjusting the focal position of the microscope objective whereas a cylindrical
curvature cannot be compensated and imposes direct influence on the imaging res-
olution. To assess this potential issue, the curvature of the main windows of the
assembled cell was measured with a interferometric technique. Indeed, one of the
windows showed a curvature which was twice has high in one direction as in the
other. This ratio might change under the influence of the vacuum but it seems
very unlikely that the cylindrical component will disappear. The other window
only showed a spherical curvature. We mounted the cell such that the window with

15SAES Getters, ST122/NCF/50-150/130X180/D
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only spherical distortion faces downwards as the imaging microscope is positioned
on this side.

• After the delivery of the cell, an angle between the top and bottom main windows
of the cell was discovered. This angle is 0.5◦ and has to be taken into account when
aligning the high resolution imaging system as elaborated in chapter 3.

• Vacuum connection: The tube connecting the cell with the main chamber is 126mm
long and has a diameter of 16mm. This results in a conductance of 4× 10−3 m3/s.
Assuming a pumping speed of 0.1m3/s in the main chamber this gives an effective
pumping speed at the science cell of 3.8× 10−3 m3/s. This value is rather low and
might cause a relatively poor vacuum in the science cell which potentially limits the
achievable lifetimes for the atom clouds in the experiments. Due to the lack of a
possibility to measure the pressure in the science cell directly, it is not certain if this
poses an issue. Nevertheless, a new connecting tube was designed and manufactured
which maximizes the cross section as much as possible. It is not integrated into the
apparatus yet, but if the vacuum of the machine is ever opened one should think
of the possibility to replace the tube.

• Vacuum gas emission: A further possible issue limiting the base pressure is hydrogen
outgassing from the metal. It is expected that glass has a lower emission rate than
metal.

• Size: Due to the usage of standard CF16 viewports on the side, the height of the cell
is increased to the size of a CF16 connector. The diameter of the cell is increased
as well, since those viewports are large compared to glass cell windows and require
screws increasing the size even further. This overall increase of the size had to be
taken into account for all magnetic field coils and optical elements placed around
the cell.

Figure 2.6: A CAD picture of the science cell. The drawing shows that the main windows are
sunk into the cell to allow for a positioning of the microscope objectives close to the atoms.
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Creating an ultra-high vacuum

After assembly of the vacuum system the next step is the evacuation. The apparatus
provides the possibility to separate the oven chamber from the rest of the vacuum setup
with a gate valve. The two sections were evacuated separately and connected after the
vacuum was established.

The basic approach to achieve the ultra-high vacuum is to first pump the chamber
and reduce the pressure to a value where it is limited by gas release from the walls
and outgasing of potential contaminations inside the chamber. This pressure is on the
order of 10−7 mbar. A further pressure reduction can then be achieved by heating the
whole setup which increases this gas release rate significantly. After a few days of baking
the temperature can be lowered again after the majority of the embedded gas has been
pumped away. After this baking of the chamber, pressures on the order of 10−9 mbar can
be reached. Further reduction is possible by using ion getter pumps and in particular
titanium sublimation pumps. The latter coat the inside of the vacuum chamber with
titanium. Titanium is chemically quite reactive and forms chemical compounds with
many of the residual gas particles binding them to the chamber surface. Pressures of
approximately 10−11 mbar can be achieved with this method. Even lower pressures can be
reached by using cryogenic pumps. However, there is no necessity for such low pressures
in the apparatus presented in this thesis and the additional effort would not be justified.

The pumps used for initial evacuation are a turbo molecular pump (TMP)16 backed
by an oil-free scroll pump17. The procedure is listed below in more detail:

• We evacuated only the main chamber with all ports closed by blind flanges with the
TMP and baked it at 300 ◦C for 5 days. The final pressure, measured with a cold
cathode gauge, was 3× 10−9 mbar. This step served as a test for leak tightness of
the custom produced chamber.

• We evacuated the complete system except the oven chamber and baked it at 190 ◦C
for 5 days. The connecting tube between the main chamber and the science cell
was heated to 450 ◦C to activate the non-evaporable getter inside. To keep the
temperature from exceeding the limits of the window coatings of the science cell
we attached a heat sink to the connection tube close to the science cell. Due to
the high temperatures we did not use aluminium foil for insulation but a special
insulation material which can withstand higher temperatures. During the bake-out
we operated the titanium sublimator at a current of 30A to release contamination
therein. The pressure final obtained, was 1.2× 10−9 mbar measured with the hot
cathode gauge after the bake-out was completed.

• Next, we switched on the ion pump. After 5 days the final pressure dropped to
5× 10−10 mbar measured with the hot cathode gauge. The start-up process of this

16Pfeiffer, HiPace 80 Turbo-Drag-Pump
17Varian, SH110
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particular ion pump is known to fail occasionally. It helps to increase the voltage
in small steps starting from 3000V to the final 7000V.

• Finally, the titanium was sublimated with the ion pump switched off. This has
to be done at least twice as the first sublimation emits a large amount of unde-
sired gas embedded in the titanium ball and the pressure might even increase. We
operated the sublimator at 53A (8.7V) for 10min which is well above the recom-
mended maximum value of 50A. The colour of the source should be white during
sublimation. Higher currents should not be used as we destroyed one sublimator
when operating it at 56A. After 50 s the electrical connection was lost and we
had to break the vacuum for replacement. Leaks can also result from temperature
induced stress in the main chamber walls during titanium sublimation. We had to
replace one of the large CF250 gaskets on the lower port of the main chamber after
a sublimation.

• We removed the TMP. A couple of days after the titanium sublimation the pressure
in the main chamber reduced to 4.5× 10−11 mbar and has continued to decrease
since then. Now, approximately 3 years later, we reached an indicated pressure
of 1.7× 10−11 mbar if the apparatus is cold. If it is running and thermalized, the
pressure rises to approximately 2.1× 10−11 mbar.

The oven chamber was evacuated using a similar procedure:

• We assembled the oven chamber and filled the oven with lithium.

• We baked the oven chamber at 190 ◦C. The storage chamber of the oven itself was
heated to 600 ◦C and the nozzle to 450 ◦C using the heating elements later used for
normal operation. The bake-out duration was 4 days. At high temperatures the
oven emits large quantities of lithium and special care was taken that the polished
surface of the rotating shield was facing away from the oven.

• After cooling down (oven kept at 300 ◦C) and activating the ion pump the pressure
in the oven chamber dropped below the lower measurement limit of the installed
cold cathode gauge of 5× 10−10 mbar.

• We started the titanium sublimation with the ion pump switched off. The installed
titanium sublimator has three filaments which can be operated separately. All
three filaments were heated at a current of 40A for 20 s followed by 50A for 15 s for
cleaning. The final titanium sublimation was then performed with filament number
1 at a current of 42A until the pressure stabilized followed by 49A at 5.21V for a
duration of 2min.

• We switched on the ion pump and removed the TMP. With the oven on a standby
temperature of 250 ◦C the indicated pressure was under range and with the oven
operating at 390 ◦C/ 400 ◦C (nozzle/ storage chamber) the indicated pressure rose
to 1.4× 10−9 mbar.
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After both sections were successfully evacuated, the CF16 gate valve connecting them
was opened. There was no indication that the pressure in the one section influenced
the pressure in the other section. This indicates that the differential pumping stage is
working as intended.

2.1.3 Cooling inside a resonator

The cooling scheme of most ultracold atom experiments starts with a MOT and continues
with an evaporation in either a magnetic or an optical dipole trap. Both approaches have
their advantages and disadvantages. The magnetic trap has a very large capture volume,
larger than the MOT size, and thus can capture a large fraction of the atoms which
are previously trapped and laser cooled by the MOT. However, the trap frequencies are
relatively low, which leads to small atom densities. This causes the evaporation to be less
efficient, as thermalisation takes a long time. Furthermore, as the magnetic field is used
for trapping it is impossible to create high offset fields to address a magnetic Feshbach
resonance at the same time.

An optical trap does not depend on any magnetic fields and a Feshbach resonance
can be used without affecting the trap. The trap frequencies which can be realized with
optical traps are high compared to magnetic traps which improves evaporative cooling.
Moreover, the trapping mechanism works independently of the hyperfine state of the
trapped atoms and even largely independent from the chemical element used as long
as the light is red-detuned with respect to the atomic transition. On the downside,
the trapping volume of a typical optical dipole trap is small compared to the size of
a MOT which means that a significant portion of the atoms in the MOT cannot be
transferred into the trap. Besides, building far detuned optical dipole traps which are
deep compared to the temperature of a MOT requires high laser powers which is cost
intensive and potentially dangerous to work with.

To combine the benefits of both methods we implemented an optical cooling concept
using a resonator inside the vacuum which was originally conceived by Tilman Esslinger
[25, 26]. The basic working principle is shown in Fig. 2.7. Its function relies on the fact
that a ring resonator supports both running wave and standing wave operation. If only
one beam is coupled into the resonator, a running wave mode is excited. If two beams
are coupled in, travelling in opposite directions, a standing wave pattern emerges which
is similar to the pattern in a two-mirror linear resonator.

As shown in the Fig. 2.7, the resonator is designed such that its eigenmode has a
beam waist a certain distance away from the MOT position. Due to beam divergence the
mode profile has a relatively large cross section where it passes through the location of
the MOT. This means that if the atoms are transferred from the MOT into the cooling
resonator the spatial overlap is good, and high transfer ratios can be achieved. As a
standing wave forms the dipole trap at that point, the atoms are not accelerated towards
the beam waist. When detuning one of the incident beam frequencies with respect to the
other, the standing wave pattern starts to shift and can be used to transport, the atoms
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Figure 2.7: Working principle of the cooling resonator.(a) After the Zeeman slower and MOT
phase the atoms are loaded into the standing wave pattern inside the resonator. (b) A frequency
detuning between the two incident trapping beams causes the standing wave pattern to shift
and transports the atom into the beam waist. (c) One beam is switched off and evaporative
cooling is performed in the remaining running wave dipole trap by lowering the beam power. (d)
Afterwards the atoms are transferred into the transport dipole trap which moves the cloud into
the science cell. The graphic is adopted from Ref. [24].

26



2.1 Setup I: From the oven to an ultracold gas

to the beam waist. During the transport the cloud is adiabatically compressed which
increases the thermalisation rate for later evaporation. When the atoms reach their final
position, one of the resonator beams can be switched off as longitudinal confinement
is now provided by the beam divergence. At this stage, evaporative cooling can be
performed efficiently and the atoms are ready to be used for further steps. The frequency
detuning between the two incident beams must not be larger then the linewidth of the
resonator, as otherwise one of the beams will no longer be coupled into the resonator.
The expression for the shift speed v is

v = λ · δν (2.9)

with the laser frequency difference δν and the laser wavelength λ.
A further advantage of using a resonator is that the light intensity inside the resonator

is enhanced compared to the incident beams. This effect permits the use of far detuned
wavelengths and moderate laser powers to create a very deep dipole trap.

Realisation

The realisation and testing of the cooling resonator was one of the topics in the diploma
thesis of our former student Florian Witkötter and details about the design can be found
in his thesis [24]. One design goal was to realize a resonator with a high finesse to
have sufficient enhancement of the light power. This can only be realized when placing
the resonator inside the vacuum chamber to avoid losses at the viewports. Therefore,
only vacuum compatible materials can be used and any potential virtual leaks have to
be avoided. Once adjusted, the setup also has to be stable enough to operate without
readjustment for several years. The result of the design work can be seen in Fig. 2.8. The
resonator is mounted on a baseplate which enabled us to align it in a test setup outside
the vacuum and afterwards to integrate the fully adjusted assembly into the main vacuum
chamber as a whole. The design is a four mirror bow-tie configuration with two curved
mirrors, creating the desired beam waist of the eigenmode. The bow-tie configuration
leads to an almost perpendicular incident angle of the beams on the curved mirrors which
causes the resulting beam waist to be almost circular. One of the mirrors is mounted on
a piezo actuated mirror holder which was intended to be used for frequency stabilisation
of the resonator on the laser light frequency. We do not use this option at the moment as
it is more convenient to stabilize the laser on the resonator than the other way around.
The most important parameters of the cooling resonator are collected in Tab. 2.4 on
page 38.

The optical layout to couple light into the resonator is shown in Fig. 2.9. The
two beams which excite eigenmodes in the two different propagation directions of the
resonator are guided towards the resonator through one of the CF40 viewports of the
main chamber. On the opposite side of the chamber the power of the light transmitted
by the resonator is measured. A fraction of the reflected light of one of the beams (the
primary beam) is separated with a beam sampler from the incident light of the secondary
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Mirror holder

Piezo actuated mirror
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Figure 2.8: A photograph of the cooling resonator assembly before integration into the vacuum
chamber. Each mirror holder supports two mirrors. The capton insulated wire visible in the
picture was intended to supply the piezo on which one of the four mirrors is mounted. This
option to stabilize the resonator length was not pursued and the wire was removed.

beam travelling on exactly the same axis (although in opposite direction). This light is
used for the Pound-Drever-Hall (PDH) frequency stabilisation (see below). As the four
mirrors of the bow-tie resonator define a plane in space it brakes rotational symmetry
along the axis of the incident light. This leads to a polarisation dependence of the
coupling efficiency, which would not occur for a simple, rotationally symmetric, linear
resonator. Therefore, we placed quarter-waveplates and half-waveplates in the paths of
the two incident beams and carefully adjusted the polarisation to maximize the coupling
efficiency. The coupling efficiency also depends on the quality of the transversal mode
matching of the incident beams with the eigenmodes of the resonator. As the two curved
mirrors of the resonator are hit by light under a certain angle the effective radius of
curvature is different for the two transversal directions. As a result, the created beam
waist is elliptical and not circular. This results in differing divergence angles in the
two transverse directions and the incident light beams should have an elliptical beam
profile. We use a combination of spherical lenses and anamorphic prism pairs to shape
the incident beams for optimal mode matching.

The above mentioned cooling scheme requires a high level of control over the light field
inside the resonator. An overview is shown in Fig. 2.10. As the resonator accepts only
light with certain frequencies it is necessary to stabilize the laser output frequency onto
the resonator. Furthermore, a mechanism is required to introduce a controlled frequency
difference between the two incident beams to perform the transport of the atoms inside
the resonator. At the same time, the two beam frequencies have to be phase stable
with respect to each other to prevent any oscillations of the standing wave pattern. To
perform evaporative cooling the beam powers have to be stabilized and controllable. This

28



2.1 Setup I: From the oven to an ultracold gas

����������
	
���


����������
�������


���
	
���


���
�������
���

�����
�	�����


����������
��

�����
���	��


�������

�������


�������
����


��������

 ���


������
����
�����

 ���
�!���
�����
����������"�
�"
�#$�������!���������
�����
����������"�
�	�%�
����!���������

Figure 2.9: The beam delivery concept for the cooling resonator. The electro-optical modulator
(EOM) creates frequency sidebands on the laser beam which is necessary for the Pound Drever
Hall (PDH) stabilisation of the laser output to the length of the resonator. Two AOMs allow for
separate control of the power and the frequency of the two beams coupled into the resonator.
A beam sampler in the incident path of the secondary beam picks up a small percentage of the
reflected light of the primary beam (which travels along the same path as the incident secondary
beam) and guides it to an RF photodiode for the PDH lock. The feedback elements are the
AOM frequencies and the laser itself. Two photodiodes, one for the primary and the other for
the secondary beam, behind the resonator monitor the power which is coupled into the resonator.
Their output is used for power stabilisation using the AOMs as control element.
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Figure 2.10: Overview of the different control systems of the cooling resonator. The blue
boxes are the requirements and the green boxes describe the corresponding system to meet those
requirements. As the beam power is varied during the experimental sequence and the error signal
of the frequency stabilisation depends on that power we implemented an additional automatic
gain control of this error signal. This guaranties a good performance of the frequency stabilisation
over a wide range of input power.

has implications on the frequency stabilisation as it has to work independently from the
beam power incident on the resonator. A further requirement is automatic relocking. In
each experimental cycle the resonator is switched off once and the frequency stabilisation
has to perform an automatic relock in each cycle. The relock has to work reliably such
that it always captures the correct transversal mode of the resonator. The components
which provide all this control are described in the following sections.

Power control and stabilisation

For a stable operation and especially for evaporative cooling we accurately control the
beam powers inside the resonator. The regulating elements are the two AOMs placed
in the beam paths of the two incident beams. We positioned two low noise photodiodes
behind the resonator, outside the vacuum chamber. They monitor the light that is
transmitted by the resonator as soon as an eigenmode is excited. These measured powers
are compared with set values given by the computer-based experiment control and handed
to two PI controllers. Their output signals are then controlling the deflection of the AOMs
and thus stabilize the beam powers to the given set values. The achieved regulation speed
is 10 kHz (3 dB point).
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Frequency stabilisation

An optical resonator only accepts light with certain wavelengths to excite longitudinal
eigenmodes. Only when the wavelength of the incident laser beam matches the round trip
length of the resonator it is possible to couple light into it. Therefore, it is necessary to
actively stabilize the length of the resonator with respect to the frequency of the incident
laser light. For our application of optical dipole trapping we are not interested in a certain
absolute frequency so it is sufficient to stabilize the system to an arbitrary longitudinal
mode of the resonator. For the case of our cooling resonator this stabilisation was a
challenging task as the linewidth of the eigenmodes is only 80MHz. Hence, it is necessary
to stabilize the length of the resonator with a precision on the order of 0.3 nm or to adjust
the wavelength of the laser light correspondingly. The basic stabilization technique is the
PDH lock. Its details are explained for example in Ref. [27]. We modulate frequency
sidebands onto the laser light with the help of an electro-optical modulator. The reflected
light of the primary beam which is not coupled into the resonator, including the side
bands, is monitored by an RF photodiode and the phase of the beat signal is processed
to obtain an error signal according to the PDH scheme. For feedback we use multiple
elements to control the laser output frequency. The secondary beam does not have to
be frequency stabilized independently as the two beams are emitted by the same laser
and the eigenfrequencies of the two possible travel directions inside the ring resonator are
identical. We do not control the length of the resonator as we observed problems with the
electrical connection of the piezo inside the vacuum. The different feedback mechanisms
are:

• AOM frequency: For fast feedback we change the modulation frequency of the two
AOMs by directly using the PDH error signal to change the frequency of the RF
source. Details about the RF generation are explained in the next section about
frequency control. The achieved bandwith is 100 kHz.

• Piezo of the laser: The laser generating the light for the cooling resonator contains
a piezo crystal changing the output wavelength. We use this option as feedback
element with intermediate speed. The corresponding control signal is created by
an integral controller with the PDH error signal as input. The control bandwith is
42 kHz. The maximum stroke is limited by the specified maximum voltage of the
piezo in the laser. The tuning range is thereby limited to approximately 200MHz
which is less than the free spectral range of the optical resonator (345 kHz). As a
consequence, there is sometimes no resonator line within reach and another feedback
loop is required to keep always one resonator line within the tuning range of the
piezo feedback loop.

• Temperature of the laser crystal: The temperature of the laser crystal can be
controlled and thus utilized to tune the laser wavelength over a wide range. We
use the (not yet amplified) control voltage of the laser piezo to control the laser
temperature via a very slow PID controller. If the resonator line drifts, the feedback
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loop with the laser piezo will change the laser’s output wavelength to follow that
drift by changing the piezo control voltage. This causes the temperature of the
laser crystal to change as well. Hence, the piezo voltage is kept low and there is
always one resonator line in the centre of the tuning range of the piezo feedback
loop. Temperature feedback is naturally slow and the bandwith is on the order of
1Hz.

As the resonator dipole trap is switched off once per experimental cycle, an automatic
relock mechanism had to be implemented. A relock is only possible if there is a resonator
line within the tuning range of the piezo feedback loop. This is not always the case as
the length of the cooling resonator changes due to thermalisation effects during machine
warm up or even due to cycle periodic temperature fluctuations. Occasionally there
is no longitudinal resonator mode available for the piezo feedback to lock on after the
light is switched back on. In that case the aforementioned temperature PID controller
automatically resets its integral part. The sudden change in laser crystal temperature
then changes the laser wavelength quickly and new lines become available for locking.

Frequency control

To create a stable, non fluctuating standing wave pattern inside the resonator it is nec-
essary to stabilize the driving frequency of the two AOMs which the two incident laser
beams pass. A schematic of the AOM frequency generation is shown in Fig. 2.11. The
phase stability is ensured by creating the radio frequency with two direct digital synthe-
sizers (DDS) which share the same clock signal. Their output signals are mixed with the
signal from a single voltage controlled oscillator (VCO). The capability of the VCO to
quickly change its output frequency is used for the fast feedback loop of the frequency
stabilisation (see previous section). The signal strengths are then adjusted by two volt-
age controlled attenuators which therefore control the power of the laser beams incident
onto the resonator. Electronic switches are installed to completely switch off of the RF
frequencies. Eventually the signals are amplified to supply the AOMs.

The cooling procedure requires a small frequency detuning (less than a linewidth of
the resonator) as described above to transport the atoms inside the cooling resonator by
shifting the standing wave pattern. This is realized by a frequency change of the DDS
supplying the primary beam. By using the DDS for this purpose phase stability between
the two output signals is ensured even for differing frequencies.
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Figure 2.11: A scheme for the radio frequency generation needed to supply the AOMs of
the cooling resonator laser beams. The frequency and power of the signal driving the AOMs
determine the frequency and power of the light beams. The power can be controlled with a pair
of voltage variable attenuators. The frequency is the sum of the frequency of a voltage variable
oscillator (VCO, which is the same oscillator for both AOMs) and that of two direct digital
synthesizers (DDS) sharing the same clock. The VCO is used for stabilisation of the frequency
as it acts equally on both beams and the two DDS are used to create a small frequency difference
between the beams to perform the transportation of the atom cloud inside the cooling resonator.
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Figure 2.12: A scheme of the automatic gain correction circuit to ensure constant lock per-
formance over a wide range of incident beam power. A power detector measures the RF power
coming from the fast photodiode, used for the PDH lock, and controls a voltage controlled at-
tenuator (VVA) to keep this power constant. By this the amplitude of the PDH error signal
becomes almost independent of the beam power incident onto the resonator.

Power independent frequency stabilisation: Lock-tight

For evaporative cooling the beam power inside the cooling resonator is reduced. This
reduces the amplitude of the PDH lock error signal which is proportional to the incident
beam power. Therefore, evaporative cooling would result in a reduced stability and
performance of the frequency lock. To encounter this problem we use an automatic gain
correction circuit. It was developed by Alexander Frank and Robert Jördens and details
can be found in Ref. [26]. A schematic explaining its function is shown in Fig. 2.12.

Automatic relocking: Lock-block

After we set up the hardware for the resonator we observed a serious problem. Although
the lock was quite stable and the frequency and power control worked as intended the
automatic relocking was not working properly. Due to the complicated transversal mode
profile and polarisation dependence of the resonator eigenmode, we were not able to
perfectly match the modes of the incident light and the resonator TEM00 eigenmode.
We always excited higher transversal modes at different frequencies as well. As a result,
the PDH error signal showed various features which belong to those higher modes. The
automatic relock randomly locked onto those features and in many cases the laser was
stabilized onto one of the higher transversal modes. To distinguish between the different
modes, it is possible to monitor the beam power transmitted by the resonator. The cou-
pling efficiency of the higher transversal modes is low and the transmitted beam power
will be low as well if the lock captures such a mode. We made use of this behaviour to
develop an electronic circuit we call “lock-block”. A schematic is shown in Fig. 2.13. It
compares the measured power of the monitoring photodiode behind the cooling resonator
with a constant value set by a potentiometer. Only when this measured power is higher
than the threshold, the lock function of the piezo feedback loop described above is en-
abled. If the power is below the threshold, the piezo controller switches into a “dither”
mode where the piezo constantly scans the laser’s output wavelength searching for a cap-
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Figure 2.13: The basic working principle of the lock-block circuit. A photodiode monitors the
light power transmitted by the cooling resonator. If the adjustable threshold power is exceeded,
the PDH lock is enabled. For evaporative cooling in the resonator, the beam power is reduced
deliberately and the circuit can be bypassed with a TTL signal. A manual bypass is possible as
well for adjustment purposes.

ture point in the PDH error signal. If the coupling efficiency of all higher (undesired)
transversal modes of the cooling resonator is low enough, there exists a certain setting
of the threshold value such that the lock is only able to capture the correct mode. If
the beam power in the resonator is lowered for evaporative cooling the circuit can be by-
passed with a digital signal sent by the experiment control computer. A manual bypass
for adjustment purposes is possible as well. The challenge in designing the circuit was to
make it fast. The scan of the laser wavelength over 200MHz needs approximately 50ms.
The linewidth of the resonator is 80 kHz which implies that the circuit needs to establish
the lock within less than 20 µs.

Identifying the waist via the light shift

It is rather straightforward to transfer atoms from the MOT into the cooling resonator
due to the large depth of the dipole trap. But it is far more demanding to locate the
waist of the beam in the resonator. The waist’s position needs to be known to determine
the duration of the transport inside the resonator trap to move the atoms from the MOT
location to the intended position for evaporation and unloading. We cannot examine
the spatial extend of the trapped cloud directly inside the resonator as there is no high
resolution imaging available in the main chamber. However, it is possible to measure the
light shift of the trapped atoms. If absorption imaging is performed on trapped atoms,
their transition frequency will change depending on the locally present laser intensity [28].
The modification of the transition frequency reaches a clear maximum at the position of
highest intensity which is inside the laser beam waist as shown in Fig. 2.14. It turned
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Figure 2.14: Measurement of the imaging transition frequency due to the light shift inside the
cooling resonator. The detuning is given in units of the transition linewidth of 6Li (1Γ ≈ 6MHz)
and the zero detuning point is set to the loading position. The optimal transport time in this
example is approximately 1.4 s, which corresponds to a spatial distance of 29mm. The frequency
detuning between the two resonator beams was 20 kHz.

out to be advantageous for this measurement to switch off the secondary beam just prior
to imaging.

Performance and parametric heating

After we implemented stabilisation and control for the beam power and frequency as
well as the automatic gain control and the lock-block circuit, the resonator operation
became stable. If the apparatus is thermalized and properly adjusted, the automatic
relocking works in a very satisfactory manner and we observe a failed relock attempt
only every couple of hundred shots. The lock itself is stable and the laser frequency
remains stabilized on the resonator reliably during the evaporation process. However,
the adjustment of the feedback loops is a delicate process and requires a certain amount
of exercise. Fortunately, readjustment is typically not necessary on a daily basis.

Nevertheless, there was a major problem with the cooling sequence and thus we use
the resonator in a different fashion as initially intended and described above. During the
transport, the trap frequencies are position-dependent as the beam diameter, and thus the
local intensity is changing as well during the movement from the MOT position (loading)
to the beam’s waist (evaporation and unloading). If the local trap frequency becomes
resonant with another oscillation frequency present in the system, e.g. a fluctuation of
the laser power, parametric heating occurs which leads to atom loss [29]. Due to the
continuous sweep of the trap frequency during the transport, we encountered such a
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resonance. On absorption images it was possible to observe a region of high loss rate at a
certain spatial position. The exact location of this region is changing slightly with time,
probably due to changes in the exciting frequency leading to the parametric heating.
To avoid this atom loss, we decided not to use the transport feature of the resonator
dipole trap. Instead, we perform the evaporation in the standing wave pattern at the
loading position. During the evaporation the power of the secondary resonator beam
is ramped down faster than that of the primary beam. Therefore, the last part of the
evaporation is performed in a running wave trap. The longitudinal confinement along
the resonator mode is provided by the transport dipole trap which is already switched
on at that moment and the trap has the character of a crossed beam dipole trap.

To increase the cooling performance it should be possible to change the way the
cooling resonator is used and to overcome the problem with parametric heating. A more
sophisticated transport scheme, like switching the secondary beam off for a certain time
and letting the atoms “fall” to the waist position before switching it back on, might be a
possible solution.
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Description Value

Roundtrip length 0.87± 0.01m
Incident angle of beams on resonator mirrors 2◦

Material Stainless Steel
Linewidth 83± 9 kHz
Finesse 3880± 40
Free spectral range 345± 4MHz
Design wavelength 1064 nm
Power enhancement 1300± 100
Typical coupling efficiency (primary beam) 85%
Waist size (1/e2 radius, intensity) 17.5 µm x 30 µm
Waist tilt angle with respect to the baseplate ∼ 45◦

Diameter of the baseplate 238mm
Regulation speed of the PI power control 10 kHz
Lock sideband modulation frequency with EOM 68MHz
Lock bandwith AOM feedback 100 kHz
Lock bandwith piezo feedback (on laser) 20 kHz
Tuning range of piezo feedback (on laser) ±100MHz
Lock bandwith temperature feedback ∼1Hz
Incident beam powers for loading (per beam) 105mW
Incident beam power at end of evaporation (pri-
mary beam only)

8mW

Trap depth for 6Li during loading 40mK
Trap frequencies for 6Li during loading 10MHz× 135 kHz× 80 kHz
Transport distance in resonator, design value 20mm
Transport frequency detuning up to 40 kHz
Transport frequency detuning ramp time 200 µs
Transport time ∼1.4 s
AOM design frequency 110MHz

Table 2.4: Properties of the cooling resonator. All resonator specific data are adopted from
Ref. [24]. The trap frequencies and depths were calculated with measured beam powers.
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Description Value

Wavelength 1064 nm
Waist size (1/e2 radius, intensity) 23 µm
Focal length of focusing lens 1000mm
Trap frequencies for 6Li and 4W beam power 8800Hz× 8800Hz× 90Hz
Trap depth for 6Li and 4W beam power 290 µK
Power regulation AOM and PID controller with logarithmic

photodiode
Regulation speed of the PI power control 5 kHz
Lateral position stabilisation Active control loop with piezo actuated mir-

ror and quadrant photodiode
Translation stage maximum travel range −1.5mm to 351.0mm
Translation stage nominal travel 16.85mm to 343.2mm
Translation stage maximum current motor 4.5A continuous, 14.2A (RMS) peak
Translation stage maximum current controller 10A

Table 2.5: Properties and limitations of the transport dipole trap.

2.1.4 Transfer into the science cell

After evaporative cooling in the cooling resonator, the atoms are transported from inside
the main chamber into the science cell. The transport is performed by a focused running
wave dipole trap which uses the same laser as the cooling resonator. As the atoms at
this point are already pre-cooled, the power enhancement of a resonator is not necessary
for trapping. The lens which focuses the beam for this dipole trap is mounted on an
air bearing translation stage18 and a movement of this lens shifts the focal position of
the beam from the main chamber into the science cell. There, further evaporation is
performed by lowering the beam power of the transport dipole trap. To ensure optimal
stability the traps pointing is actively stabilized with a control loop. The pointing is
monitored by a quadrant photodiode and regulated with a piezo actuated mirror. More
properties of the transport trap are collected in Tab. 2.5. Details of it can be found in
Ref. [18].

There is one potential issue which I would like to mention here. We observed strong
atom losses under certain (unknown) conditions during the initial phase of the transport
with this trap. We assume that back reflections of the trap beam, caused by optical
elements behind the science cell are responsible for the losses. Solutions are to use an
optimized acceleration scheme of the translation stage (the current limits of the controller
must be observed) and to block all optics behind the science cell with a shutter which
opens shortly before the translation stage reaches its final position.

18Stage: Heason AirGlide, Ultra Precice Air Bearing System, 350mm; Controller: Aerotech, Ensemble
ML10-40 digital controller and linear amplifier
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2.1.5 Laser system at 671 nm

The MOT, the Zeeman slower and the imaging require a reliable and stable laser system
to drive the 6Li transition at a wavelength of approximately 671 nm. The level scheme of
6Li together with the used transitions is shown in Fig. 2.15. We use the D2 line which
connects the 2S1/2 and the 2P3/2 electronic states. The lower state is split into two levels
F=1/2 and F=3/2 by an energy corresponding to 228MHz. The splitting of the upper
state is less than the transition linewidth of 6MHz and thus negligible in most cases.
Exposed to a magnetic field, the two lower states split into a total of 6 states as shown
in Fig. 2.16. The 2P3/2 state shows a magnetic field dependence as well, which has to
be taken into account for imaging at high magnetic fields. The requirements on the laser
light used for cooling and imaging are as follows:

• MOT cooler: Drives the transition from 2S1/2, F=3/2 to the 2P3/2 state. Tuning
of the beam’s frequency is only required within ∼100MHz for adjustment purposes
and the MOT compression phase.

• MOT repumper: Drives the transition from 2S1/2, F=1/2 to the 2P3/2 state. The
light has fixed frequency offset of 228MHz with respect to the cooler light.

• Zeeman slower light: Drives the same transition as the cooler. But its frequency
detuning has to be adjustable independently.

• Imaging light: Drives the same transition as the repumper, but requires a far
larger frequency tuning range. To image the cold atoms at varying magnetic field
strength, across the Feshbach resonance, a frequency tuning range of ∼1GHz is
required. Only low powers are necessary.

The lasers which produce the light for the MOT, the Zeeman slower and the imaging
as well as the required optics are located on a separate optical table. The light is coupled
into single mode, polarization maintaining optical fibres to guide it to the experiment
table. A picture of the optical table with the laser system is shown in Fig. 2.17.

Concept and layout

The basic idea of the laser system is a reference laser which is stabilized onto the 6Li
transition line with the help of a lithium vapour cell. Two further lasers are then stabilized
with respect to the reference laser with a frequency lock-in technique described in Ref.
[30]. These offset locks offer a tunable frequency offset and thus the possibility to control
and change the output frequencies of the lasers during the experimental cycle. A scheme
of the laser system is depicted in Fig. 2.18. We use external cavity diode lasers in Littrow
configuration19 as they are easy to operate, affordable and compact. In addition they

19The reference laser and the MOT laser are homebuilt. The imaging laser is a Toptica DL 100 pro.
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Figure 2.15: The level scheme of 6Li showing the fine structure and hyperfine structure together
with the transitions used in the experiment. The corresponding wavelength is approximately
671 nm. As the natural linewidth of this transition (6MHz) is larger than the hyperfine splitting
of the 2P3/2 state no specific F state can be addressed. The hyperfine states themselves are
degenerate due to different possibilities for the mF quantum number. The frequency values are
adopted from Ref. [19].
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Figure 2.16: Magnetic field dependence of the 2S1/2 groundstate of 6Li calculated with the
Breit-Rabi formula. The lower two lines correspond to F = 1/2 state (mF = ±1/2), the upper
four to the F = 3/2 state (mF = ±3/2,±1/2). We prepare the cold gases in the lower two states
at the end of the MOT phase. If required for the experiment, radio frequency pulses can be used
to transfer atoms into the other states.

41



2 AN APPARATUS TO CREATE DEGENERATE STRONGLY INTERACTING 6LI

Figure 2.17: A picture of the 670 nm laser system. It creates the light needed for optical cooling
in the MOT, the Zeeman slower and the beams necessary for imaging.

offer the convenient possibility to tune the output frequency by changing the angle of the
laser grating with a piezo.

With minor modifications, the laser system can be used to cool bosonic 7Li as well.
The hyperfine splitting of the 7Li groundstate is ∼800MHz and thus the two 114MHz
AOMs have to be replaced by 400MHz AOMs (see Fig. 2.18). The reference laser then
has to be locked onto a 7Li transition. Our vapour cell also contains the bosonic isotope
of lithium for this purpose. Performance data of the laser system is presented in Tab.
2.6. In the following sections the individual lasers are described in more detail.

Reference laser

The reference laser is locked using the PDH locking scheme onto the atomic transition
of 6Li which causes absorption in a lithium vapour cell. More precisely, it is locked to
the crossover of the D2 line which is the mean of the cooling and repumping transition.
Feedback is provided by the piezo which changes the angle of the laser grating. The
sidebands needed for the PDH lock are created by modulating the current of the laser
diode. The layout of the absorption cell is described in Ref. [31]. The cell is filled with
nuggets of 6Li and 7Li and provides a vacuum to avoid undesired absorption lines. To
obtain a sufficiently large lithium vapour pressure, the cell is heated to 340 ◦C. It is
important to note that the vapour pressure increases by a factor of 10 for each 60K in
temperature, see also Fig. 2.3. Only a slight increase in heating power can cause the
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2.1 Setup I: From the oven to an ultracold gas

Figure 2.18: The basic concept of the laser system to cool 6Li. The reference laser is stabilized
onto the atomic transition using the PDH locking technique on the absorption signal of a vapour
cell. The other lasers are stabilized using offset locks with respect to the reference laser which
offers the possibility to tune the output frequency over a wide range during the experimental
cycle. The light for the MOT and the Zeeman slower is amplified by tapered amplifiers. The
AOMs are performing slight frequency adjustments of the light as well as rapid switching and
regulation of the beam powers. Additional mechanical shutters, not shown in the figure, can be
used to switch off individual beams completely.
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2 AN APPARATUS TO CREATE DEGENERATE STRONGLY INTERACTING 6LI

vapour pressure to rise such that the windows of the cell become coated. As a measure
of prevention, an independent temperature guard monitors the temperature and shuts
down the heating if the set limit is exceeded.

MOT laser

The laser for the MOT cooling and repumping beam uses an offset lock to stabilize the
output frequency relative to the reference laser. The light is amplified with a tapered
amplifier and split into two beams. The beams’ frequencies are shifted with the help of
an AOM by 114MHz for the repump beam and −114MHz for the cooler beam which
takes into account the hyperfine splitting of the groundstate of 228MHz. Both beams
can be separately switched off by mechanical shutters located in front of the single mode,
polarisation maintaining fibres guiding the beams to the experiment. The powers of the
beams are measured behind those fibres and stabilized with PI controllers acting back
onto the AOMs previously mentioned.

Image and Zeeman slower laser

The laser used for the Zeeman slower and imaging is stabilized to the reference laser with
an offset lock as well. Here, the photodiode monitoring the beat signals between the two
lasers has been optimized for high speed up to approximately 3GHz. This ensures a large
tuning range of the output frequency required for imaging at high magnetic fields. The
tuning range finally achieved in the experiment is approximately 1GHz, limited by other
electronic elements in the offset lock circuit. The light is split behind the offset lock into
two beams, one for the Zeeman slower and the other for imaging. The beam path for the
Zeeman slower contains a tapered amplifier to create sufficient light power. The imaging
beam is further split into two beams both controlled by AOMs. One of the AOMs shifts
the light’s frequency by +40MHz and the other by −400MHz. In combination with the
tuning range provided by the offset lock, the latter allows for a frequency shift sufficiently
large to image atoms at a magnetic field strength of more than 1000G, whereas the beam
passing the +40MHz AOM is used for low field imaging. Fast switching of the beams
is also performed with those AOMs followed by mechanical shutters to prevent any light
from leaking through.

2.1.6 Dipole trap lasers

Manipulation laser at 780 nm

To manipulate the ultracold clouds, we set up an external cavity diode laser with an
output wavelength of 780 nm. A tapered amplifier increases the beam power which is
then regulated and stabilized with the help of an AOM. The light of this laser can be
used to create an attractive potential which was for example used in our measurements
of the superfluid critical velocity of strongly correlated atoms. More details on those
measurements can be found in 5.
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Description Value

Reference laser, locking point D2 line of 6Li
Vapour cell, temperature set point 341 ◦C
Reference laser, output power 10mW
Reference laser, power available for lock on 6Li transition 0.5mW
Reference laser, power available for offset locks 4.5mW
MOT laser, output power behind laser 28mW
MOT laser, output power in front of tapered amplifier 15mW
MOT laser, output power behind tapered amplifier (oper-
ated at 710mA)

240mW

MOT laser, output power in front of the AOMs 121mW(Cooler), 44mW(Repumper)
MOT laser, output power behind the AOMs 61mW(Cooler), 29mW(Repumper)
MOT laser, output power in front of fibres 53mW(Cooler), 28mW(Repumper)
MOT laser, output power behind fibres 20mW(Cooler), 13mW(Repumper)
Imaging laser, output power behind laser 22mW
Imaging laser, output power in front of tapered amplifier 15mW
Imaging laser, output power behind tapered amplifier (op-
erated at 810mA)

330mW

Imaging laser, output power in front of Zeeman slower
fibre

255mW

Imaging laser, output power behind Zeeman slower fibre 80mW
Imaging laser, output power available for imaging 3mW
Imaging laser, offset lock tuning range (locking on the first
rising edge)

130MHz to 830MHz

Imaging laser, offset lock tuning range (locking on the sec-
ond rising edge)

350MHz to 1000MHz

Table 2.6: Typical performance values of the 670 nm laser system. The power values are meant
as reference and the actual values reached in the experiment may differ.
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Pinning laser at 672 nm

A further diode laser works at 672 nm and is intended to create near detuned optical
dipole potentials. Due to the small detuning with respect to the atomic transition, the
resulting traps can be very deep. In a lattice configuration very efficient spatial pinning
of the atoms can be achieved. Such pinning might be required for future single atom
detection experiments using fluorescence imaging.

Laser system 1064/532 nm

Apart from the diode lasers we also use solid state lasers with an output wavelength of
1064 nm20. A part of this light is frequency doubled to obtain the wavelength of 532 nm21.
Both wavelengths are used to create dipole traps which are either attractive (1064 nm)
or repulsive (532 nm). Due to the far detuning with respect to the atomic transition
wavelength of lithium high laser powers of several tens of watts are required. It is very
difficult to couple beams with such high powers into single mode fibres. Therefore, we
placed the corresponding light sources directly on the experiment table and used only
free space optics. More details about the solid state laser system can be found in Ref.
[18].

2.1.7 Low resolution imaging system for monitoring purposes

Several low resolution optics with simple small CCD cameras22 are placed around the
experiment to perform absorption imaging. The absorption images acquired by those
cameras provide valuable information for the adjustment and optimization of the appa-
ratus. The imaging optics are designed as confocal microscopes with two achromatic
lenses to minimize aberrations. A list of the installed imaging options is shown in Tab.
2.7.

2.1.8 Magnetic field creation

The design and the setup of the magnetic coil system were subject of the doctoral work
of my co-worker Kai Morgener and details can be found in Ref. [18]. A sketch of the
locations of the coils around the vacuum chamber is shown in Fig. 2.19. The coils are
able to produce offset fields with a strength of more than 1500G as well as anti-Helmholtz
fields required for the MOT.

20Innolight, Mephisto MOPA and Nufern, Sub-1174-22 Fibre laser
21Evans & Sutherland, doubling cavity
22Point Grey, 1.3MP B&W Chameleon
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Name of the camera Position of camera View direction Magnification

Flea Above main chamber −z -
BEC-X 2D board −x 5
BEC+Y 2D board +y 0.905
BEC-X+Y 2D board −x+ y 1
MOT-Z MOT board −z 0.31

Table 2.7: A List of the installed imaging systems for low resolution imaging. The axes are
defined as follows. x: along Zeeman slower away from the oven, y: from science cell to MOT
chamber, z: vertical direction facing upwards. The “2D board” is the breadboard around the
science cell and the “MOT board” is the breadboard for the MOT optics. The magnification of
the camera named Flea was not determined as it is only used to monitor the fluorescence light
of the MOT in real time during the experimental cycle and is not used for data acquisition. The
other cameras are used for absorption imaging.

Zeeman slower coil Push coils MOT coil

Cloverleaf coil

Levitation coil

Feshbach coil

Jump coil

Helmholtz coil

Figure 2.19: The placement of the magnetic field coils in the experiment. The vacuum chambers
are not shown for simplicity. The coils themselves are shown in brown and the support frames
in green. The push coils and the MOT coils are located around the main chamber, whereas the
stacked coils in the foreground are placed around the science cell.

47



2 AN APPARATUS TO CREATE DEGENERATE STRONGLY INTERACTING 6LI

2.2 Sequence and performance

This section describes the cooling sequence in detail, starting from solid lithium blocks in
the oven and ending with an ultracold gas with tunable interaction located in the science
cell. I would like to refer the reader who is particularly interested in the creation of a
single-layer, two dimensional sample to chapters 3 and 6. A list of reference values for
atom numbers and sequence times is presented in Tab. 2.8.

1. The sequence starts with loading the MOT with atoms emitted by the oven and
slowed down by the Zeeman slower. During the loading phase the cooler and
repumper beams are red-detuned with respect to their corresponding atomic tran-
sitions by approximately 5.5 linewidths. After typically 5 s, we trap approximately
30× 106 atoms inside the MOT.

2. After the MOT is loaded we switch off the Zeeman slower and compress the MOT
by ramping the detunings of the cooler and repumper laser closer to their respective
resonances. Simultaneously the powers of the two lasers are reduced to a fraction
of the initial values. The reduction of the repump beam power is faster than that
of the cooling beam. This leads to a transfer of atoms from the F = 3/2 ground
state to the F = 1/2 state as shown in Fig. 2.15. During the compression, the
location of the MOT is shifted to the loading position of the cooling resonator with
the push coils .

3. Already during the MOT loading phase, the cooling resonator beams are running at
their maximum power values. After the MOT is compressed, the lasers for optical
cooling can be switched off completely and the atoms are trapped solely by the
resonator dipole trap. When the transfer is completed, the magnetic field config-
uration is changed from an anti-Helmholtz (needed for the MOT) to a Helmholtz
configuration. This creates an offset field with a strength of approximately 210G23

which increases the scattering length between atoms in the two hyperfine states
F = 1/2, mF = ±1/2 due to the Feshbach resonance. The achieved interaction is
strong enough to perform forced evaporative cooling in the resonator by linearly
lowering the light intensity of the dipole trap. The secondary beam is ramped down
slightly faster than the primary beam, changing the trap continuously from a stand-
ing wave trap into a running wave trap. Before the secondary beam is switched
off entirely, the beam of the transport dipole trap is switched on to provide lon-
gitudinal confinement. After the evaporation is finished, the beams of the cooling
resonator are switched off completely and the atoms are confined by the transport
trap.

4. The transportation from the main chamber into the science cell is then performed
by moving the lens focusing the beam of the transport dipole trap. This process
takes approximately 1.5 s and induces almost no atom loss.

23This corresponds to an s-wave scattering length of a ≈ −750 aBohr.

48



2.2 Sequence and performance

5. When the atom cloud arrives at its final position inside the science cell, the magnetic
field strength is increased to address the Feshbach resonance. The ramp of the
magnetic field is performed as fast as the power supplies allow to cross lower lying
p-wave Feshbach resonances as quickly as possible. Those very narrow resonances
cause strong atom loss rates. After the magnetic field is ramped up, the next
evaporative cooling step is performed by lowering the laser intensity of the transport
dipole trap. The beam power is ramped down exponentially to optimize the cooling
efficiency. Before reaching its final value, the ramp is interrupted for a short time
to perform the active position stabilisation of the transport trap with the help of
a quadrant photodiode and a piezo actuated mirror. The stabilisation is always
performed at a laser power of 100mW to be independent of the final evaporation
depth. The evaporation continues after the stabilization is completed.

6. After the last evaporation step, an image of the cloud can be taken. Either by
the high resolution microscope system or by one of the low resolution optics. To
compensate the Zeeman shift, the frequency of the imaging laser has to be adjusted
according to the magnetic field strength during the image acquisition. At very low
magnetic fields the atomic transition is not closed. To obtain a picture of the atoms
at no or at low magnetic fields it is required to shine in the cooling beam of the
MOT to constantly clear the F=3/2 state during the imaging process.

If the last evaporation step ends with a sufficiently shallow trap, an ultracold, elon-
gated gas is produced. The magnetic field can then be adiabatically ramped to a value
which corresponds to the desired interaction between the atoms. It is possible to cre-
ate either a molecular BEC or a superfluid with fermionic constituents described by BCS
theory. Density profiles of one of the first BECs we created with the apparatus are shown
in Fig. 2.20. When lowering the final evaporation beam power, a bimodal shape of the
density distribution becomes visible which is a distinguishing feature of a BEC. Almost
pure condensates with 100× 103 Atoms (per hyperfine state) can be produced. Atoms in
the two hyperfine states are present in equal numbers as the evaporation tends to min-
imize any population difference. For the experiments presented in chapters 4 and 5 as
well as for the creation of two dimensional atom clouds (chapter 6), the final evaporation
depth is chosen higher such that the gas is just cold enough to transfer the cloud into
the squeeze dipole trap which is explained in chapter 3.

Compared to similar machines of other research groups, the atom number trapped in
our MOT is fairly small (approximately 30× 106 compared to ∼10× 109 in the Lithium
experiment in Zurich [15]). The reason is unknown at the moment. Possible issues are
insufficient laser power or insufficient atom flux emitted by the oven. The magnetic
field design might be responsible as well. It is rather complicated as the MOT centre is
pushed away from the geometric centre of the main MOT coils. Nevertheless, we still
obtain decent atom numbers at the end of the evaporation which implies that our cooling
scheme is quite efficient.
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(a) Final trap power 40mW (b) Final trap power 15mW (c) Final trap power 2.5mW

Figure 2.20: Density distributions of a cold gas in the transport dipole trap. With decreasing
final evaporation depth the gas becomes colder and a bimodal density distribution appears. This
is evidence that we produced a molecular BEC of ultracold 6Li.

Sequence time Point in sequence Atom number
(per spin state)

0 s Start -
5.5 s MOT, loaded 30× 106

5.5 s Cooling resonator, loaded 20× 106

7.1 s Transport trap, loaded 1× 106

8.5 s Transport trap, transport completed 1× 106

10.9 s Transport trap, evaporated to stabilisation 230× 103

11.3 s Transport trap, end of evaporation 100× 103

13 s Experiment ready for next cycle -

Table 2.8: The table presents reference values for atom numbers which can be reached for a
experimental sequence that aims for the creation of an almost pure BEC trapped by the transport
trap inside the science cell. The atom numbers correspond to a final evaporation power of 5mW.
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3 From a cold gas to a flat gas

One particularly fascinating property of the science with ultracold gases is the readout of
the experiments. Although the investigated samples are extremely fragile, it is possible
to simply take pictures of them. The underlying microscopic physics, which governs the
behaviour of the gas cloud, is influencing its macroscopic shape. Thus the acquired images
can reveal quantum mechanical effects in a striking fashion. It was possible to show
remarkable quantum mechanical effects on ultracold atom clouds which could be made
visible without complicated data analysis. Examples are the matter wave interference of
two BECs [32] or the direct observation of quantised vortex patterns present in superfluid
gases [33].

The two possible techniques used for acquiring those pictures, are fluorescence and
absorption imaging. For the latter the atoms are illuminated with resonant light and
the resulting absorption pattern is imaged on a camera. In fluorescence imaging, the
spontaneously re-emitted photons are detected. Due to very low background, very small
atom numbers can be detected with fluorescence imaging. However, it is also more chal-
lenging to implement. Due to the typically small signals, care has to be taken that stray
light does not reach the camera. In the experiments presented in this thesis absorption
imaging is used.

Although applied very successfully, the imaging of cold atom clouds is always con-
fronted with two particular difficulties. Firstly, the clouds are typically fairly small, only
a couple to tens of µm in diameter. Optics which achieve spatial resolutions on this length
scale are quite complex, work-intensive in design and require large numerical apertures.
Secondly, the atom clouds can be fairly dense which leads to an insensitive density re-
trieval in absorption imaging as simply all light is absorbed. Thus, the strategy which
was followed by many cold atom experimentalists was to let the cloud expand prior to the
image acquisition by switching off the confining traps. After a short time-of-flight (TOF),
during which the cloud expands, the picture is acquired. At the same time, this expan-
sion reduces the optical density to more feasible values. For a non-interacting gas TOF
imaging maps the momentum distribution prior to the release of the atoms into their real
space positions during the image acquisition (for a TOF sufficiently long). This approach
has been, and still is, very successful and numerous interesting results could be obtained
with it. Furthermore, TOF imaging was developed into more sophisticated techniques
like band-mapping in optical lattice experiments [34] or Stern Gerlach type experiments
and also applied to interacting gases where the understanding of the expansion processes
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is more challenging [35, 36, 37].
During the last years a change in the image acquisition strategy can be observed

within the cold atom community. More and more experiments are performed which are
able to spatially resolve the cold gas clouds confined in the trap without using the TOF
imaging technique. Such in-situ imaging promises interesting possibilities for new studies
on ultracold gases. The real space information acquired in such experiments avoids
difficulties of deducing properties from TOF pictures. This is particularly interesting in
systems featuring strong interactions as they can complicate the dynamics during TOF
significantly such that the expansion is not entirely understood yet. In-situ imaging
can reveal non-trivial distributions of the atoms in the trap. An example would be the
plateau, or “wedding-cake” structure of Mott-insulators [38]. In-situ imaging with a high
resolution opens the door to investigate spatial fluctuations of the gas properties. For
example, the correlations of density fluctuations can be used to derive other quantities
of the gas such as the temperature [39]. In combination with optical lattices even single
site and thus single atom resolution comes within reach, which would allow the study
of models developed for solid state physics on a microscopic level. Such experiments do
already exist for bosons [40, 41], but not yet for fermions.

Another property of high resolution experiments is that if it is possible to resolve cer-
tain length scales, it is also possible to shine light onto the atoms with the same resolution.
As a consequence, such experiments offer the possibility for high resolution manipulation
(via the dipole force). This can range from shining in single small obstacles into the atom
cloud (see chapter 5 for an example) to complicated, arbitrary potential landscapes. The
latter brings mesoscopic physics into the scope of quantum gas experiments.

Thus, the idea of building a cold fermion machine capable of in-situ high resolution
imaging seems to be a promising endeavour. But it is quite challenging as well, as I will
show in this chapter. There are basically two reasons. One is the need for exceptionally
good optical access to the atoms and a microscope objective which is placed in close
proximity to the sample. The other is the necessity of a very flat, ideally two-dimensional,
atom cloud to fully utilize the potential offered by the highly resolving optics as the depth
of field of such optics with high numerical aperture is inevitably quite short. Additionally,
unwanted integration along the imaging axes should be avoided.

The wide range of research possibilities which become accessible in such “2D-quantum
gas microscope experiments” and the increasing level of skill in tackling the involved
technical challenges recently triggered construction efforts of such machines in many
quantum gas research groups all over the world. An incomplete list of examples are the
machines in the Chin group in Chicago [38], the Dalibard group in Paris [42], the Jochim
group in Heidelberg [43], the Bloch group in Munich [40], the Greiner group in Boston
[41] and the setup described in this thesis. The combined efforts of all those groups
promise a huge variety of interesting physics to be discovered in the coming years.

The following two sections describe our own microscope system and the creation of
flat, but still three-dimensional, samples. Our approach to confine ultracold atom clouds
into two dimensions is presented in chapter 6.
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3.1 Imaging and manipulation with high resolution

The following pages elaborate the technical realisation of our high resolution microscope
system. A section about the theoretical background of imaging optics is included as
well as information about the testing of the components, the integration of the assembly
into the machine and the verification of its proper function. The section covering the
alignment procedure of the microscope assembly is meant to serve as a manual for future
re-alignment. If the reader is in the situation to adjust this part of the machine it is
strongly recommended to read these instructions carefully.

3.1.1 Imaging theory

This section is intended to give a short theoretical introduction to the topic of imaging.
It closely follows the master’s thesis of our former student Jan-Henning Drewes [10]. The
properties of an ideal lens will be discussed to define a criterion for resolution. The
point spread function (PSF), which determines the resolution, will be introduced and its
connection to the numerical aperture (NA) of the system will be explained. As real lens
assemblies are non-ideal, they cause several types of optical aberrations. Therefore, the
major aberrations of our high resolution optical system will be discussed as well.

Ideal lenses, diffraction limit

Consider an ideal lens, fully characterized by its focal length f and its aperture diameter
a, which is used to image a point-like light source located at a distance d1 from the lens
and at a position (ξ, η) (in Cartesian coordinates) in the object plane perpendicular to the
optical axis. A sketch is shown in Fig. 3.1. The resulting field distribution in the image
plane, at a distance d2 from the lens, is called the point spread function h(u, v, ξ, η), where
(u, v) are the coordinates on the imaging plane. Furthermore we will assume 1

d1
+ 1

d2
= 1

f
which is the condition for a focused image.

For an extended object UO(ξ, η) the convolution of the object with the PSF yields
the field at the imaging plane:

UI(u, v) =

∫ ∞
−∞

∫ ∞
−∞

h(u, v, ξ, η)UO(ξ, η) dξ dη. (3.1)

In this sense, the PSF can be regarded as the transfer function of the optical system.
For the ideal case, one could assume that the PSF is a delta distribution and the

system would be fully characterized by its magnificationM = d2/d1. The above equation
then simplifies to

UI(u, v) =
1

M2
UO

( u
M
,
v

M

)
. (3.2)

This assumption of a delta-type PSF is not realistic even for the ideal lens sketched
above due to diffraction of the light at the lens’ aperture. A more realistic PSF can be
obtained by considering the electric field emitted by the light source and then calculating
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Figure 3.1: Sketch of a perfect lens with focal length f which images a point like light source.
The source is located at a distance d1 to the left of the lens and its image is at a distance d2 to
the right of the lens. The angle θ and the diameter a of the open aperture are determining the
resolution of the lens. The coordinate labels given in the illustration correspond to those used in
the calculations in the text.

its propagation through the lens to the imaging plane. The lens introduces a position
dependent phase shift of the electric field [44]. The obtained expression for the PSF is
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Here, λ is the wavelength of the light and k = 2π/λ the corresponding wavenumber. The
pupil function P (x, y) accounts for the finite size of the lens. It is 1 for (x, y) inside the
lens’ free aperture and 0 elsewhere. Equation 3.3 can be simplified significantly.

• Term 1 can be neglected as we are only interested in the intensity distribution in
the image plane and therefore the amplitude information of the field .

• Term 2 could potentially affect the imaging process due to the convolution given in
Eq. 3.1. However, for a good imaging system the PSF should be close to a delta
distribution which implies that only a small region in the object plane affects the
field at a given point in the image plane. Using the magnification M yields:

exp

(
ik

2d1

(
ξ2 + η2

))
≈ exp

(
ik

2d1

u2 + v2

M2

)
. (3.4)

Therefore, term 2 can be neglected similar to term 1.
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Figure 3.2: The squared PSF for a perfect lens with the optical parameters of our microscope
objectives. The position of the first minimum determines the resolution according to the Rayleigh
criterion.

• Term 3 can be neglected if d2 is chosen such that 1
d1

+ 1
d2

= 1
f . This is exactly the

classical lens law for geometrical optics.

• Rescale the coordinates in the object plane ξ̃ = Mξ and ν̃ = Mν.

Hence,

h(u, v, ξ, η) ≈ 1

iλ2d1d2
·
∫ ∞
−∞

∫ ∞
−∞

P (x, y)·exp
(
−ik

((
u− ξ̃

)
x+ (v − η̃) y

))
dx dy. (3.5)

This is the Fourier transform of the pupil function P (x, y) of the lens. A circular ideal
lens with diameter a and (ξ, η) = (0, 0) results in

h(r) ∝ J1 (kar/d1)

kar/d2
, (3.6)

where J1 is the Bessel function of the first kind and first order and r =
√
u2 + v2. The

intensity distribution of a point like light source is the square of this result and is shown
in Fig. 3.2.

The shape of the PSF can be used to define the resolution of an optical system.
According to Lord Rayleigh [45] the resolution is given by the position of the first zero
crossing of the PSF given in Eq. 3.6 which is also illustrated in Fig. 3.3:

rR = 0.61
λ

NA
. (3.7)
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Figure 3.3: Illustration of the intensity distribution of two overlapping PSFs separated by the
distance given by the Rayleigh resolution of our microscope objectives. It depends on the relative
phase relation of the light emitted by the two sources if they can be separated after they have been
imaged. In the case of absorption imaging, the light is typically coherent and the phase difference
between neighbouring regions is small, which reduces the resolution of the optical system.

Here the numerical aperture is defined as NA = a/(2d1) = sin θ, where θ is the angle
between the optical axis of the lens and the ray which passes the lens at the maximal
distance to its centre as shown in Fig. 3.1.

This resolution is solely limited by the finite size of the lens, it is also referred to as the
diffraction limit. The microscopes in our quantum gas experiment feature a numerical
aperture of NA = 0.62 which corresponds to a resolution of rR = 660 nm for the imaging
wavelength of 671 nm. Another possibility to define the resolution is to claim that two
points in the object plane can be separated as long as their overlapping PSFs in the
imaging plane have a minimum in between. This is the so called Sparrow criterion. The
corresponding expression in terms of the numerical aperture is:

rS = 0.47
λ

NA
. (3.8)

The above considerations for the resolution assume an incoherent light field. For
two overlapping PSFs the total intensity consequently is the sum of the two individual
intensities. For coherent light the amplitudes of the fields have to be added and the phase
difference of the light emitted by the two sources has to be taken into account as shown
in Fig. 3.3. In the case of absorption imaging, the light is strongly coherent and the
resolution is reduced if the imaging light travels along the optical axis (due to Babinet’s
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Figure 3.4: Illustration of how a finite aperture of an otherwise ideal lens limits the resolution.
The small object corresponds to a broad distribution in momentum space ((kξ, kη)-space). Each
momentum corresponds to a certain angle. The lens can only accept angles up to a certain value
and therefore clips the momentum distribution. The inverse Fourier transformation then yields
a broadened image on the imaging plane.

principle). For fluorescence imaging, a certain degree of incoherence can be achieved
which improves the resolution. A detailed analysis about the degree of incoherence for
the example of fluorescence imaging of a 2D MOT insulator can be found in Ref. [46].

Another way to look at the phenomenon that even an ideal lens has only a finite
resolution is as follows, see also Fig. 3.4. The spatial Fourier transform of the object
in the ξ and η directions corresponds to a certain distribution of wave-vectors kξ and
kη. The total length of the wavevector is fixed by the wavelength of the light k = 2π/λ.
Therefore, a given (kξ, kη) determines a certain angle with respect to the imaging axis
under which the corresponding ray propagates through space. If this ray cannot pass
the pupil defined by the lens the momentum information is lost. Therefore, the finite
size of the lens acts is a rectangular filter in k-space. The propagation from the lens
to the imaging plane corresponds to the inverse Fourier transformation. As the high
momenta components are clipped by the pupil the resulting PSF must have a finite
width. For a shorter wavelength (larger k) the same (kξ, kη) corresponds to a smaller
angle. Consequently, smaller features can be resolved by using shorter wavelengths.

Real lenses, aberrations

Real lenses or lens assemblies often do not reach the limit of diffraction-limited resolu-
tion, due to aberrations caused by imperfections of the lenses themselves and inaccurate
alignment of the system. Both result in a broadening of the PSF and thus in a reduced
resolution. The higher the numerical aperture of an optical system, the more effort has
to be put into the design of the system such that it operates close to the diffraction limit.
Aberrations can be classified as monochromatic or chromatic. The latter are caused by
wavelength dependent effects of the optical system on the transmitted light. An example
would be chromatic focal shift where the focal length of a lens varies with the wavelength
of the light. Monochromatic aberrations, in contrast, appear even when using a single

57
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wavelength. In the case of imaging an ultracold gas cloud the light used is monochromatic
and the corresponding aberrations have to be considered.

Lord Rayleigh showed that for a spherical aberration of 0.25 λ (absolute) the reso-
lution is close to the diffraction limit with a Strehl ratio of S = 0.8. The Strehl ratio is
defined as the peak intensity of the image compared to the maximum attainable value
achieved with an ideal, diffraction-limited lens. For arbitrary aberrations, the situation
is more complex and the actual resolution depends on the specific type of the aberration.
An analytical study for several types of aberrations can be found in Ref. [47]. An ap-
proximate formula to calculate the Strehl ratio for a given aberration is derived in Ref.
[48]:

S = exp

(
−
(

2πσ

λ

)2
)
. (3.9)

Here σ is the root-mean-square deviation of the wavefront of the light with wavelength
λ. According to this expression an aberrated wavefront with σ/λ < 0.07 results in a
resolution close to the diffraction limit (S < 0.8).

The monochromatic aberrations can be further classified by the Zernike polynomials
which can be used to fit the aberrated wavefront. According to this classification the
lowest order, and typically most influential, aberrations are defocus, astigmatism and
coma which are illustrated in Fig. 3.5:

• Defocus: Defocus results in a parabolic wavefront at the imaging plane. In our
experiment it can be easily corrected for by adjusting the distance between the
microscope and the atoms. The distance on the object side over which the lens can
image a source with diffraction-limited resolution is called the depth of field. A
lens with a high numerical aperture has a short depth of field which then requires
precise focal adjustment of the objective and a flat sample.

• Astigmatism: Astigmatism is described by a Zernike polynomial of the same
order as defocus but with additional azimuthal contribution. The optical system
has two different focal lengths in the sagittal and tangential direction. As a result,
a point-like light source can only be focused to the diffraction limit in one of the
two directions. Astigmatism is the major aberration observed if our microscope
objective is not well aligned with respect to the glass window of the science cell.

• Coma: If defocus and astigmatism could be eliminated by design and alignment,
coma will become significant as next-order effect. It affects objects located away
from the optical axis and the resulting image appears wedge shaped. If the micro-
scopes are misaligned with respect to the science cell windows in our experiment,
coma is observed in addition to astigmatism.
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3.1 Imaging and manipulation with high resolution

(a) Defocus

meridional plane

sagittal plane

(b) Astigmatism (c) Coma

Figure 3.5: The three main types of aberrations encountered in our high resolution microscope
system: defocus, astigmatism and coma. Defocus is the aberration where the focal point is
positioned in front of or behind the imaging plane. This results in a circular blurring of the
image. Astigmatism occurs if the lens has different focal lengths in the sagittal and meridional
planes. This might arise from design (e.g. cylindrical lens), manufacturing or alignment errors.
As a result, only one of the two directions can be in focus at a time. Coma affects only off-axis
light sources. The position of the focal point depends on the distance between the corresponding
ray and the optical axis of the lens. Lenses which are corrected for coma are called aplanatic.

Correction strategies to reduce aberrations

A simple spherically curved lens shows strong aberration and diffraction-limited resolu-
tion can only be achieved for small numerical apertures. If higher resolutions are required,
lens combinations can be used, where different aberrations of the single lenses cancel each
other. The higher the required resolution, the more complex the design and the smaller
the manufacturing and alignment margins. If chromatic aberrations have to be reduced
as well, different glass types can be used in combination. Lenses that are corrected for
chromatic aberrations are called achromats (same focal plane for two wavelengths) or
apochromats (same focal plane for three wavelengths).

3.1.2 Concept of the system

The basic concept of our high resolution imaging optics is the infinity corrected micro-
scope. The system consists of an objective with a high numerical aperture placed close
to the atom cloud which is imaged. The light emitted by an imaginary light source at
the position of the atom cloud exits the objective as a collimated beam and is guided
to a telephoto lens assembly which focuses the light onto a CCD detector. A sketch of
the setup is shown in Fig. 3.6. A symmetric arrangement of two objectives was cho-
sen, where one is used for imaging in connection with the telephoto lens and the other
to guide highly focussed beams onto the ultracold sample. Those beams can affect the
atoms via the dipole force and can thus be used for manipulation with high resolution.
The testing and development of the microscope system was part of the master’s project
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Figure 3.6: A sketch of the high resolution optics arrangement in our experiment. The lower
microscope objective and the telephoto lens are primarily used for imaging. The upper microscope
objective is used for high resolution manipulation of the cold gas with focussed laser beams. The
imaging beam for absorption imaging enters via the upper objective as well.

of Jan-Henning Drewes [10].

Microscope objectives and telephoto lens

The main components of the imaging system are the two microscope objectives. Together
with the telephoto lens they form an optical system of high performance and they are a
key component of the machine. The experimental apparatus is designed specifically to
allow the placement of those objectives and to provide the conditions for them to perform
well. The general properties of the optics are:

• Numerical aperture of 0.62 which corresponds to a spatial resolution of 660 nm for
light with a wavelength of 671 nm (Rayleigh criterion). This is on the order of sev-
eral intrinsic length scales of the gas which can be expected for the experiments we
plan like the healing length, inter atom distance or lattice constants for experiments
with optical lattices.

• Diffraction-limited performance for the imaging wavelength of 671 nm. This corre-
sponds to a wavefront deviation of less than 0.07 root mean square or 0.25 absolute
as described above.

• Diffraction-limited performance for other wavelengths which are possibly used in
the experiments ranging from 532 nm to 780 nm.
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3.1 Imaging and manipulation with high resolution

• Correction for the science cell windows. To achieve the required resolution it is
crucial to correct for the effects of the windows of the science cell. For the same
reason the manufacturing requirements for wedge-angle and accurate thickness of
the window are strict as well.

• Non-metallic materials. The objectives are placed in the central bore of the large
magnetic field coils around the science cell. Any response of the microscopes to
varying magnetic fields would have a negative influence on their performance.

• The diameter of the housing of the objectives is 44mm. If the objectives would be
larger, there would be not sufficient adjustment range inside the central bore of the
magnetic field coils.

• Field of view of 150 µm in diameter. This reflects the estimated size the our atom
clouds.

• No cemented surfaces. This is a particularly exotic requirement for such microscope
objectives. It is planned to guide a red-detuned dipole trap through the upper
microscope objective with a wavelength of 1064 nm. As the detuning with respect
to the transition wavelength is quite large, high beam powers are necessary to
create a deep trap. The approximate radius of the laser beam1 is 370 µm in the
plane of the atoms. A beam with such a spot size at the place of the atoms is
only slightly affected by the microscopes lenses, which means it does not change
its diameter significantly when passing through the optics. The intensity of the
beam is estimated to reach values up to 10 kW/cm2 inside the microscope objective
to create a dipole trap of sufficient depth. According to the manufacturer of the
objective, optical cement would not be able to withstand such intensities. As a
consequence, an air spaced lens design is chosen for which imposes no intensity
limitations.

• Low chromatic focal shift for the specified wavelengths (532 nm to 780 nm).

• The telephoto lens is compatible with the full the numerical aperture of 0.62 offered
by the microscope objective.

The requirements for the optics were challenging to meet, so the design and manu-
facturing work was assigned to a company specialised on precision optical components2.
The final design for the microscope is an eight-lens objective shown in Fig. 3.7. It reaches
the requested numerical aperture of 0.62 and operates diffraction-limited for wavelengths
ranging from 532 nm to 780 nm. It has an effective focal length of 26.2mm which results
in a beam diameter of 32.5mm behind the objective if a point-like light source is located
in the focal plane. Further properties are collected in Tab. 3.1 on page 67.

11/e2 intensity
2Special Optics, New Jersey, USA
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Figure 3.7: The lens design of the microscope for the high resolution imaging and manipulation
system. All the lenses are air spaced to avoid the usage of optical cement which would limit
the maximally allowed light intensity. The two planar surfaces at the right side of the drawing
symbolize the window of the science cell. The diameter of the largest lens in the drawing is
19.2mm. The numerical aperture achieved by the objective is 0.62.

Polarisation management

There is an issue caused by the possibility of shining in a far detuned dipole trap via
the upper microscope. The beam creating such a trap will also pass through the lower
microscope objective and the telephoto lens and will finally reach the camera. As the
camera contains a highly sensitive CCD sensor it must be protected from such high-
intensity beams. Filters can only be a solution if the powers and intensities involved
are not too high due to typically low damage thresholds. A more elaborated solution is
to make use of the polarisation of the light. In front of the upper microscope objective
and behind the lower one large multi-order waveplates3 are placed (diameter of free
aperture 34mm), which act as quarter waveplates for the imaging wavelength of 671 nm.
In addition a polarising beam splitter cube4 (edge length 40mm) is installed in front of
the telephoto lens as shown in Fig. 3.8.

The concept is as follows: the imaging light is linearly polarised before it passes
through the first quarter waveplate. This waveplate is oriented such that the light exits
circularly polarised to drive the imaging transition of the atoms. After the light passes the
two microscope objectives and the atom cloud, which does not change the polarisation,
the second waveplate changes the polarisation back into a linear one. The following
polarising beam splitter cube is oriented such that the light can pass and continue to the
camera via the telephoto lens. The two waveplates are compensating each other and in
combination they act as an effective zero-waveplate. This holds for all wavelengths. The

3LENS-Optics, W4M36-671
4LASEROPTIK, custom made with optical contact bond
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3.1 Imaging and manipulation with high resolution

high-intensity dipole trap beam with a wavelength of 1064 nm has a linear polarisation
perpendicular to that of the imaging light before reaching the first waveplate. After
exiting the second waveplate it is still linearly polarised perpendicular to the polarisation
of the imaging light. The beam splitter cube thus efficiently separates the high-intensity
beam from the imaging light and guides it to a beam dump. As the waveplates are not
designed for the wavelength of 1064 nm their effect on this light is difficult to predict. Most
likely the polarisation of the dipole trap beam is elliptical between the two waveplates. As
the dipole force is polarisation independent this has no negative effect on the performance
of the trap.

The proper function of this concept to protect the camera depends on the purity of
the polarisation in front of the first waveplate, the precise adjustment of the waveplates
with respect to each other and the optical quality of the components used. A complete
suppression of the dipole trap beam power which reaches the camera can thus not be
anticipated. A high quality band-pass filter5 is placed in front of the camera to block
any remaining light which could damage the CCD sensor or distort the acquired images.
The filter also blocks any low intensity light of other wavelengths which potentially are
used for manipulation of the ultracold gas cloud.

Camera

The high resolution imaging employs an Andor Ixon EMCCD camera which contains
a back-illuminated 512 × 512 pixel CCD sensor. Its entrance window is anti-reflection
coated for several wavelengths including 671 nm. In addition the window is wedged by
0.5◦ to avoid undesired interference effects. The effective pixel size at the position of
the atoms is 400 nm × 400 nm and the field of view of the camera is 200 µm × 200 µm,
matching the field of view of the microscope objective. This camera was selected since
it offers optimal performance for low photon numbers which we expect for fluorescence
imaging and it already has proven itself to be a reliable component in other ultracold
atom experiments, e.g. in the lithium experiment in Zurich [49].

Mechanical design

To hold the microscope objectives in their position, it was necessary to design and build a
stable and precisely adjustable mounting system. Imaging in the sub-µm regime requires
optics which are stable on at least a similar length scale over a long time. It is important
to design the mounts such that they are adjustable, since precise alignment of the micro-
scope objectives is necessary to achieve diffraction-limited resolution. An independent
requirement is the insensitivity to magnetic field influence as the microscopes operate in
a high magnetic field environment. The concept is based on the design which is used in
the experiment in Zurich [15], Fig. 3.9 shows a sketch. It is a stacked assembly with
multiple stages that offers different degrees of freedom for coarse and fine adjustment.

5Semrock, single-band bandpass filter 661/20-25
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Figure 3.8: The polarisation concept of the imaging system. Two waveplates are placed in
the setup such that their net effect is that of a zero-waveplate. Hence, the polarisation of a
beam is maintained after passing both waveplates, independent of the wavelength. Therefore,
a polarising beam splitter cube can be used to separate two beams which are linearly polarised
perpendicular to each other before entering the optical system. The two waveplates are designed
as quarter-waveplates for the wavelength of 671 nm to create the desired circular polarization for
absorption imaging. The concept allows the efficient separation of high-intensity beams from the
imaging light to protect the camera.
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3.1 Imaging and manipulation with high resolution

The stack for the lower microscope is described in the following. The upper stack is very
similar apart from that the spacer block and the turning mirror are missing.

1. Base plate: The base plate is mounted onto the optical table. It holds a 90◦

turning mirror to guide the light from the atoms towards the telephoto lens. A
metallic mirror with minimal surface curvature is used for this purpose which also
ensures that the polarisation of the light is not affected. The mirror does not change
its position if any of the following adjustment stages moves. This is important for
the alignment process described later in this chapter.

2. Translation stage: The manual translation stage6 offers coarse adjustment in the
two linear directions parallel to the optical table.

3. Spacer block: The spacer block offers the space required to place the mirror
mounted on the base plate.

4. Tilting stage: The tilting stage offers the possibility to adjust the two tilt angles
which are crucial for the correct operation of the microscope objectives. It is also
used to adjust the position of the microscope along the imaging axis. The travel
range offered in this direction exceeds 20mm. This is particularly important to
assemble the system as explained in section 3.1.4. It is a custom design, since no
commercial system is available that meets the requirements.

5. Piezo stage: For precise adjustment of the microscope objective in the three linear
directions, a three-axes piezo stage7 is used. It offers a travel range of 100 µm in
all directions. Strain gauges allow an active stabilization of the stage to suppress
any long-term drifts and piezo hysteresis. The stage can be used to quickly change
the microscope position from one experimental cycle to the next without the need
to open the shielding of the apparatus.

6. Connector tube: The connector tube connects the microscope objective with the
piezo stage. It is manufactured from the same material as the microscope housing8

and hence is absolutely insensitive to magnetic fields. Its thermal expansion co-
efficient is similar to aluminium which reduces thermally induced stress and even
compensates certain expansion effects as the table on which the upper microscope
mechanics are mounted is made from aluminium. The large waveplate for the po-
larisation management is kept in place by the connector tube as shown in Fig.
3.9.

7. Microscope objective: The microscope objective itself is mounted on top of the
connector tube.

6OWIS, KT 90-D56-EP
7piezosystem jena, Tritor 102 SG
8Material: Ultemr 2300, PEI-GF30
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Wave plate holder

Piezo translation stage

Tilting stage

Manual translation stage

Connector tube

Microscope objective

Microscope objective

Connector tube

Operating slit for lower waveplate

Piezo translation stage

Tilting stage

Manual translation stage

Spacer block

Base plate

Adjustment screw 2

Adjustment screw 1

Adjustment screw 3

Figure 3.9: A sketch of the mount assembly for the microscope objectives. It offers precise
and accurate positioning of the objectives in all three linear directions and for the two relevant
angles. The labelling of the adjustment screws is important for the alignment process.
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3.1 Imaging and manipulation with high resolution

Description Value

Objective, Numerical aperture 0.62
Objective, Effective focal length 26.2mm
Objective, Design wavelengths 532 nm to 780 nm
Objective, Field of view 150 µm in diameter
Objective, Working distance Last lens - Atoms 10.5mm
Objective, Working distance Last lens - Window sur-
face

2.5mm

Objective, Working distance Housing - Window sur-
face

1.3mm

Objective, Number of lenses 8
Objective, Chromatic focal shift < 2 µm for λ between 580 nm and

1064 nm
Objective, Transmission losses 532 nm: 16.7%; 671 nm: 7.9%;

1064 nm: 21.9%;
Objective, Housing material Ultemr 2300, PEI-GF30
Objective, Housing outer diameter 44mm
Objective, Maximum tilt angle with respect to win-
dow for a wavefront deviation < 0.25(absolute)

0.06◦

Telephoto lens, Effective focal length 1000mm
Telephoto lens, Number of lenses 3
Telephoto lens, Maximum tilt angle with respect
to the imaging axis for a wavefront deviation
< 0.25(absolute)

0.25◦

Telephoto lens, Maximum position shift with respect
to the imaging axis

3mm

Objective and telephoto lens, Anti reflection coating Broadband 500 nm to 1050 nm
Objective and telephoto lens, Manufacturer Special Optics, New Jersey
Objective and telephoto lens, Magnification 40
Camera, type and manufacturer Andor Ixon back-illuminated EMCCD
Camera, pixel number 512× 512
Camera, pixel size 16 µm× 16 µm

Table 3.1: Properties of the high resolution imaging and manipulation system
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Figure 3.10: A sketch of the Twyman-Green interferometer to test optical components. It
is a Michelson interferometer where one arm with a mirror of good quality acts as reference
and the other arm contains the DUT as well as a back reflector with similar quality to that of
the reference arm. Any wavefront deviation introduced to the beam by the DUT changes the
interference pattern visible on the screen. If the DUT is focussing or defocussing the reflector of
the test arm has to be chosen accordingly, as shown in Fig. 3.11. The screen can be replaced by
a simple imaging system and a CCD camera.

3.1.3 Testing of the components

Due to the high complexity, it was necessary to test the performance of all components
used for the high resolution optical system individually. After these individual tests a
test setup was built to verify the performance of the whole system and to develop an
alignment strategy. A proper alignment strategy is crucial due to the tight tolerances of
the optical design of the microscope objectives. Diffraction-limited resolution can only
be reached if the objectives are oriented perpendicular to the science cell windows with
an accuracy better than 0.06◦.

An Twyman-Green interferometer was used for the individual testing of single com-
ponents [50]. A sketch is shown in Figure 3.10. The reference arm contains a good quality
mirror which causes minimal wavefront deviation. The test arm contains the device under
test (DUT) and a back reflector of good quality. The back reflector is chosen according
to the properties of the DUT, either a plane mirror or a high quality spherical reflector9.
Fig. 3.11 gives an overview over the different configurations. Spherical aberrations of
mirrors can be difficult to measure with this setup as it is difficult to find back reflectors
for the two interferometer arms which are not curved themselves. Figure 3.11(a) shows
a solution to the problem.

Each type of optical aberration causes unique features in the interference pattern
visible on the screen. A collection is shown in Fig. 3.12.

During the tests of several components used in the high resolution test setup, we ob-
9The group of Selim Jochim kindly lent us a reference sphere for that purpose
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(c) Non focussing element

Figure 3.11: Different configurations of the test arm of the Twyman-Green interferometer. If
the spherical curvature of a plane mirror is under investigation configuration (a) is suitable. Due
to the non-perpendicular incident beam, the mirror under test shows different effective curvatures
in the sagittal and tangential beam direction. This results in an elliptical interference pattern
and the curvature of the DUT can be separated from the curvature of the back reflectors. If
a focussing elements is under test, configuration (b) is used. Care should be taken that the
spherical back reflector is of high surface quality. Configuration (c) is suitable to test a non-
focussing optical element. The reference arm and the light source are not shown in the figures
for simplicity.

served that the Bragg mirrors used in our experiment show significant surface curvatures
which causes wavefront deviations of up to 2 λ (absolute). We assume that the reason is
mechanical stress induced by the coating but also the way how the mirrors are mounted
in their mirror holders. It turned out that the common way of mirror mounting by using
a locking screw which presses on the side of the mirror can cause the mirrors to bend
significantly. As the mirrors are mostly used in a 45◦ configuration the resulting wave-
front deviation is elliptical. This makes it impossible to compensate for the aberration
with simple focus adjustment of lenses in the beam path. Mirrors with metal coating
perform significantly better. If the usage of Bragg mirrors is unavoidable, tilted lenses in
the beam path can be used to compensate the deviation to a certain degree. Spherical
curvature of an even higher degree was measured for dichroic mirrors. Those aberrations
have to be considered if high quality beams with several different wavelengths shall be
combined by using such dichroic mirrors. For focussing a beam to a diffraction-limited
spot with the microscope objectives it is absolutely necessary to correct the aberrations
which are caused by the curved mirrors.

After verifying that each optical element which is part of the high resolution optical
system performs within the specifications, the system as a whole was analysed in a
dedicated test setup. It contained a mock-up of the science cell to simulate the real cell
of the experiment. Details about this test setup can be found in Ref. [10]. An alignment
strategy was developed by using this setup which is described in the next section. To
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(a) Tilt x (b) Tilt y (c) Defocus (d) Astigmatism (e) Astigmatism
and defocus

(f) Astigmatism,
defocus and tilt x

(g) Astigmatism,
defocus and tilt y

(h) Coma (i) Coma and
tilt x

(j) Coma and
tilt y

Figure 3.12: Simulated interference patterns which could be obtained with the Twyman-Green
interferometer. Tilt can be obtained by tilting the mirror in the reference arm and should
not be considered as aberration (a), (b). Defocus can be a result of a curved reflector in the
reference arm or a wrong distance between a focussing DUT and the spherical reflector in the
test arm (c). For focussing elements (e.g. a microscope objective) defocus can be corrected by
refocusing. Astigmatism and coma can be caused by misalignment or manufacturing errors of the
optical elements (d), (h). Depending on the presence of additional defocus and tilt the resulting
interference patterns change significantly (f), (g), (i), (j).

measure the resolution of the adjusted imaging system, small scale targets10 which were
placed inside the mock-up cell were imaged. This and other testing methods are presented
in section 3.1.5 including an interferometric approach which offers several advantages to
the imaging of known targets.

101951 USAF resolution test chart, group 9 with smallest element 3; and a pinhole target with hole
diameter < 1 µm manufactured by Lenox Laser
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3.1 Imaging and manipulation with high resolution

3.1.4 Integration and alignment

To build a high numerical aperture optical system which reaches the diffraction-limited
resolution, high precision and accuracy are required in the manufacturing and in the
alignment process. Any misalignment of the lenses used will cause aberrations and dis-
tort the final performance. As a logical consequence the microscope objectives used in
our machine have to be aligned with high accuracy with respect to the windows of the
science cell. The allowed angular tolerance is 0.06◦. To reach this accuracy an alignment
procedure was developed by using the test setup. In this section I will present this proce-
dure in a step by step manner in detail such that it can be used as an instruction manual
for future alignment. A reader of general interest may skip this section. The strategy is
first to set up guidance beams which are well aligned with respect to the windows of the
science cell and then use those beams to align the microscopes and the telephoto lens.
An overview of the used components is given in Fig. 3.13.

Before starting the alignment the machine has to be able to produce a cold atom
cloud which is trapped within the magnetic field centre of the coils around the science
cell (e.g. by using the transport dipole trap). These trapped atoms will serve as a position
reference for the alignment process.

1. Set the upper guidance beam angle: The upper guidance beam should be
collimated and have a small diameter. Collimation can be checked with a shearing
interferometer. After adjustment it should be precisely perpendicular to the upper
window of the science cell. The adjustment is carried out by guiding the beam
which is reflected from the upper window back into the fibre coupler of the upper
guidance beam. A beam splitter can be placed in front of the fibre coupler on
the laser table combined with a photodiode or CCD camera to observe that light
was coupled back into the fibre. There is an angle of 0.5◦ between the upper and
lower window of the science cell which is larger than the required accuracy for the
microscope objective angle. A piece of paper with a small hole can be placed on
the science cell to distinguish the reflection from the upper window from that of
the lower window. The guidance beam is shone through the hole with a certain
angle with respect to the windows. Only the back reflection of the upper window
can be observed as the paper blocks the reflection from the lower one. Remove the
piece of paper and memorize which reflection belongs to which window.

2. Set the upper guidance beam position: Prepare an atom cloud in the transport
trap at the location of the magnetic centre of the coils around the science cell. The
centre can be found by TOF imaging and minimizing the position shift during TOF.
Set up a low resolution absorption imaging system and use the upper guidance
beam as imaging beam to image the atom cloud. Move the guidance beam until it
is centred with the atom cloud. The smaller the diameter of the guidance beam,
the higher the accuracy that can be achieved.

3. Repeat steps 1 and 2 until angle and position of the upper guidance beam are
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Figure 3.13: The adjustment setup for the high resolution optics. The two guidance beams
are perpendicular to the science cell windows and serve as reference for angular alignment of the
microscope objectives and the telephoto lens. The large-diameter interferometer beam is used for
lateral positioning of the objectives as described in the text. It can be used for an interferometer
in Twynman-Green configuration to test the quality of the alignment as shown in Fig. 3.15.
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3.1 Imaging and manipulation with high resolution

satisfactory and stable. Make sure that the guidance beam passes through all
optical elements centred. Lock all adjustment screws of the mirror mounts and
mark the fibre which is used for the guidance beam. If the guidance beam should
be used again in future, it is important to use exactly the same fibre as each one
has a slightly different connector.

4. Set up the lower guidance beam: Repeat the procedure described above in a
similar way for the lower guidance beam. Use the reflection of the lower window as
reference this time. Install the large polarizing beam splitter cube and the metallic
turning mirror of the lower microscope mount for the guidance beam. Only use the
baseplate with the mirror mount at this stage without all the other parts of the
microscope mount assembly. Take care that this last mirror in front of the science
cell is targeted at the centre by the adjusted lower guidance beam.

5. Set up the virtual window: Later in the process, after the microscope objectives
are installed, the reflections of the guidance beams from the science cell windows
cannot be used any more for alignment purposes as they are strongly divergent
after passing through the microscope objectives. Therefore, a mirror is placed at
one of the ports of the large polarising beam splitter which reflects the light of
the lower guidance beam back into the fibre, as shown in Fig. 3.13. This creates
a collimated reference beam on the path where the telephoto lens is placed after
the lower microscope is installed and the back reflection of the window cannot be
used any more. This step concludes the guidance beam setup. When working
with the polarising beam splitter cube it might be necessary to install additional
quarter-waveplates in the beam paths to obtain similar beam powers in all paths.

6. Install the upper microscope objective: It is necessary to temporarily remove
the mirror holder which holds the last turning mirror in front of the science cell to
install the upper microscope objective. It is required to re-mount it at exactly the
same position after the upper microscope assembly is installed. For this purpose,
several kinematic stops are placed on the vertical breadboard defining a reference
edge. If the same person mounts the mirror several times in a row a reproducibility
of the angle below 0.01◦ for the reflected laser beam can be achieved after practis-
ing. When screwing the microscope objective to its support tube, strong tightening
should be avoided as this could cause the internal lens alignment to deteriorate.
During the installation, extend the three plungers of the tilting stage to their max-
imum to ensure that the microscope objective does not crash into the science cell
window. Lower the microscope by retracting the plungers of the tilt stage. A lens
cleaning tissue can be placed on the cell to ensure sufficient spacing between the
objective and the science cell window. Everything is safe as long as it is possible
to move the tissue back and forth.

7. Align the upper microscope objective angle: Place the alignment glass plate
(the one with two strings attached to it) into the rectangular holes cut into the
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3 FROM A COLD GAS TO A FLAT GAS

connector tube and make sure it rests stable on the edge of the microscope housing.
Use the upper guidance beam to adjust the angle of the microscope assembly. The
back reflections from the alignment glass plate should return to the fibre coupler.
The alignment glass plate has a small wedge angle and two back reflections can
be seen. The alignment should be performed such that the two reflections are
symmetrically placed around the fibre coupler. The placement of the glass plate
inside the connector tube is a delicate task with the risk of damaging the microscope
objective. Prior practice is recommended.

8. Set up the large-diameter interferometer beam: Create a collimated laser
beam with a diameter of approximately 33mm. This beam will later be used to
check the proper performance of the whole system but it is also utilized for the
alignment procedure. It enters the upper microscope objective along the same path
as the upper guidance beam via flip mirror mounts. Make sure the beam is well
aligned with respect to the upper microscope using the alignment glass plate. Check
for proper collimation in front of the last mirror with a shearing interferometer.

9. Align the upper microscope objective position: The (low resolution) imag-
ing, which previously served to determine the correct position of the upper guidance
beam, is used to place the upper microscope objective at the correct spatial position.
The interferometer beam is focused by the upper microscope to a diffraction-limited
spot which can be imaged with the imaging system below the cell. Use the tilt stage
and the manual translation stage to move the microscope objective until the im-
aged beam is at the same place where the atoms where previously imaged and the
spot size is minimal. Make sure that during the procedure the piezo stage is in a
neutral position in all three directions to provide sufficient adjustment range for
later corrections.

10. Repeat steps 8 and 9 until angle and position of the upper objective are satisfactory
and stable. Remove the alignment glass plate. Remove the lower low resolution
optics.

11. Install the lower microscope: The installation of the lower microscope and the
positioning stages works in multiple steps. During the process, do not move the
base plate of the positioning stages and the large polarizing beam spitter. Install
each individual part of the mount assembly separately, starting with the manual
translation stage. The last item to install is the lower microscope objective mounted
on its connector tube. Do not separate them! It is necessary to lower the tilt stage
to its minimum11 to install the mounting tube on the piezo stage. Install the
lower large-diameter waveplate. After the complete assembly is installed, raise the
microscope by extending the plungers of the tilt stage. Again take care not to crash
into the science cell window.

11Caution: The minimum distance is 2mm before the platform touches the base.
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3.1 Imaging and manipulation with high resolution

12. Align the lower microscope angle: Use the lower guidance beam to align
the angle of the lower microscope objective. Several back reflections of the lower
guidance beam can be seen in front of the port of the polarizing beam splitter which
faces the camera. One originates from the virtual window and another from the
waveplate installed in the lower microscope connector tube. When the waveplate
holder is turned, the corresponding back reflection will trace out a circular pattern.
The centre of this circle should be aligned with the back reflection originating from
the virtual window. It is easier to achieve this if the reflections are guided to a
screen or wall a few metres away from the cube. The lower microscope objective is
not mounted perfectly perpendicular to the waveplate as the mount tube is slightly
bended. Screw 1 has to be turned 225◦ clockwise and screw 2 180◦ clockwise to
compensate this bend. The screw labelling is shown in Fig. 3.9. Mark the position
of the centre of the circle which is now traced out by the reflection originating from
the waveplate on the screen.

13. Align the telephoto lens: The lower guidance beam and the camera are used to
align the telephoto lens. Mark the pixel number where the reflection of the virtual
window hits the CCD sensor. Install the telephoto lens. Place a mirror on the exit
side of the lens housing and position the lens such that the back reflection from
that mirror and the one from the virtual window overlap. Remove the mirror and
position the telephoto lens until the beam hits the camera at the same spot as
without the lens. Iterate until the angle and the position are correct.

14. Align the lower microscope position: Image the focused beam created by
the upper microscope and the interferometer beam with the lower microscope and
the camera. Position the lower microscope objective until the spot has minimal
diameter and is centred on the CCD sensor. Recheck the angular alignment with
the help of the back reflection of the guidance beam from the waveplate.

If it is impossible to position the microscopes without touching one of the windows
of the science cell, the magnetic centre has to be adjusted. This can be achieved by
using one of the extra magnetic field coils which are placed around the science cell. The
alignment of the transport dipole trap has than to be changed to the new centre and the
microscope alignment can be repeated.

A general issue to consider is that if any component is screwed onto a breadboard or
the optical table it takes a certain time until the system stabilizes. Drifts can be observed
over several days. This should be kept in mind when doing any changes to the machine
close to the high resolution optics.

3.1.5 Final testing and verification

As the proper alignment is crucial for the high resolution optics to perform as specified
it is necessary to verify it. In our experiment several methods can be used to test the
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3 FROM A COLD GAS TO A FLAT GAS

quality of the alignment. They differ in which components are tested and if they just
provide a quality measurement or also indications of what can be done to improve the
performance. A combination of the methods listed below has to be employed to obtain
a complete picture of the performance of the entire optical system.

• Target: The most straight forward method to check the imaging quality is to
image a known, small-scale target placed in the object plane. The approach is
very reliable and requires only very limited interpretation of the results. It can be
easily used to extract information on astigmatism by comparing the optimal focal
settings of the microscope for minimal spotsize in two perpendicular directions
when imaging a small pinhole. This method measures the combined performance
of the whole imaging system, including the telephoto lens and all other involved
components. It is not possible to differentiate which element is misaligned if the
performance does not meet the expectations. However, as the required accuracy for
the objective is much higher than that for the other elements, it can be assumed
that the major aberrations are caused by incorrect alignment of the objective. The
main disadvantage of this approach is that it cannot be used in the real machine
but only in the test setup. There is no possibility to place a target inside the
vacuum cell. For future machine designs, it might be a helpful feature to allow the
placement of a target inside the science cell. In addition this would simplify the
alignment of the microscopes. As the method requires a complete imaging system,
including a telephoto lens and a camera, the alignment of the upper microscope
objective has to be tested separately.

• Focused beam: One method to test the performance of the whole imaging and
manipulation system is to use a high quality beam with large diameter, focus it with
the upper microscope and image the focus with the lower microscope objective and
the telephoto lens. A measurement of the spotsize on the camera serves as a measure
of the alignment quality. Figure 3.14 shows an example. This method is useful to
verify the alignment. However, if the spot on the camera shows aberrations, it is
difficult to find the reason. It might be misalignment of one of the two microscope
objectives, the telephoto lens, the incident beam itself or any combination of those.
The quality of the imaged spot on the camera depends significantly on the quality
of the large-diameter collimated beam that enters the system from the top. The
creation of such a beam is time consuming, see for e.g. Ref. [51]. Especially, the
usage of dichroic mirrors in the beam path make a proper collimation of the beam
rather complex. These dichroic mirrors show a strong spherical curvature which has
to be corrected for, if they are used in reflection. The focussed beam method should
thus be used only if a high quality beam with a large diameter is already available.
Nevertheless, the method offers the possibility to check the relative alignment of
the entire optical system. The method does not verify if the system is well aligned
with respect to the position of the atoms.

76



3.1 Imaging and manipulation with high resolution

S
po

ts
iz

e 
[µ

m
]

Objective position [µm]

Figure 3.14: Measured spotsize (1/e2 radius of a Gaussian fit to the intensity distribution) on
the camera for imaging a highly focused beam for different focal settings of the microscope. The
two curves correspond to the spotsize in two perpendicular directions. The imaging wavelength
was 780 nm. The two curves are slightly shifted with respect to each other which is an indication
for astigmatism. The measurement for this plot was performed by our former Bachelor student
Martin Schlederer [51].

• Interferometer: The most feasible way to check the alignment of the microscope
objectives is the Twyman-Green interferometer in the configuration shown in Fig.
3.15. The setup is very similar to the one described in section 3.1.3. A large non-
polarizing beam splitter cube (NPBS) is placed on the upper optical breadboard
right in front of the last mirror before the microscope to set up the interferometer.
Two additional mirrors are used as back reflectors, one right behind the lower
microscope mount assembly and the other behind one of the open ports of the
NPBS. In combination with the large diameter interferometer beam, which was
previously used to align the microscope objectives, and a screen on the remaining
port of the NPBS the setup is complete. The working principle is the same as
explained in section 3.1.3 with both microscope objectives and the science cell
serving as DUT. The main advantage of the interferometric approach is that it
not only provides precise information about the wavefront quality, but also shows
the type of the aberration which causes any possible wavefront distortion. Figure
3.16 shows examples of interference patterns. Another advantage of this method
is that only the optical system itself is tested. The actual beam quality of the
laser beam used does not influence the interference pattern. The time required
to set up this interferometer and check the alignment of the objectives is much
less compared to the focused beam method. A complete check can be done in
approximately one hour which makes this method also suitable for more frequent
tests of the performance of the imaging and manipulation system. Note that this
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Figure 3.15: Setup for testing the alignment of the microscope objectives by using the interfer-
ometric approach. The additional elements compared to the configuration for image acquisition
are the non-polarizing beam splitter cube, the screen and the reflectors for the two arms of the
interferometer. As the interference pattern on the screen is determined by the difference of the
two interferometer arms, the properties of the incident laser beam play only a minor role.

method only checks for relative alignment of the system and correct positioning
with respect to the atoms has to be verified separately. If the back reflectors of
the interferometer arms have different spherical surface curvatures, the optimal
focal setting obtained with this approach is inaccurate and should be confirmed
independently. The possibility to test the alignment of the microscope objectives
with a Twyman-Green interferometer is quite unique to our experiment, as almost
all other quantum gas microscope machines use only one microscope objective.

• Atom noise: A completely different approach to test the imaging quality is to look
at spatial density fluctuations of the atom cloud [52]. The higher the resolution,
the more spatial density fluctuations will be visible on the imaged clouds. This
method tests the alignment of the lower microscope objective and the telephoto
lens by directly measuring the resolution on the object which is supposed to be
imaged. A possible approach would be to prepare a warm gas of atoms with very
small intrinsic length scales (e.g. de Broglie wavelength) which are smaller than the
diffraction-limited resolution of the microscope. The spatial density fluctuations in
the sample are then present on the small intrinsic length scale. The autocorrelation
matrix of an acquired image of the atom cloud will show a central peak. This peak
is broadened by the PSF of the imaging system and can be used to determine the
resolution. Care has to be taken that no density correlations in the atom cloud
itself are responsible for the broadening of the central peak of the autocorrelation
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(a) (b) (c)

Figure 3.16: Interference patterns obtained with the properly aligned optical system by using
the Twyman-Green interferometer (a) with incident light with a wavelength of 671 nm. A tilted
reflector of the reference arm creates a characteristic stripe pattern (b,c). The total wavefront
deviation is approximately 1 λ (absolute) after passing each microscope objective twice. This
indicates that the system will operate close to diffraction-limited resolution if used for imaging.
The remaining wavefront deviation seems to be mainly due to coma and higher order aberrations.

matrix. This method has not been applied to our experiment yet.

• Single-atom light source: The resolution of an imaging system is determined
by its PSF. Thus the most direct way to determine the resolution is to look at
the image of a point-like light source. Basically our machine is designed such that
single-site resolution experiments in optical lattices can be performed. In such an
experiment, a low filling of the lattice and strong spatial pinning of the atoms would
ideally be suited to look at the PSF directly. This has not been done yet in our
machine. If the machine should be used to perform optical lattice experiments in
the future this method will probably be the most convenient technique to determine
the performance of our high resolution imaging system.

For given experimental settings in our machine also other measuring and optimization
methods become available. For example, if the upper microscope is used to create a
highly focused beam which serves as an attractive dipole trap, it is possible to monitor
the effect of that trap on a flat cloud of atoms from the side. The observed “suction”-effect
can then be used to adjust the focus of the upper microscope objective as shown in Fig.
3.17.

3.1.6 Image acquisition and density retrieval

The absorption images which are acquired by the camera have to be processed to retrieve
the density distribution of the atom cloud. A typical image of an atom cloud acquired in
our experiment is dominated by features which are caused by the beam that is used to
illuminate the atoms. One of such pictures is shown in Fig. 3.18 (a). Four pictures are
acquired in total to retrieve the actual density distribution.
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(a) (b) (c)

Figure 3.17: Images of atom clouds imaged from the side inside the science cell. A focussed
red-detuned laser beam is shone onto the cloud via the upper microscope objective and pulls a
fraction of the atoms out of the initial cloud. In Fig. (b) the beam’s waist is located 0.8 µm below
the atom plane. In Fig. (c) the waist is inside the atom cloud. Fig. (a) shows an undisturbed
cloud. The images are adopted from Ref. [51].

1. One picture of the atoms. This picture contains the absorption information and all
the features of the imaging beam.

2. One picture of the imaging beam. This picture is acquired a few milliseconds after
the first picture. It only shows the imaging beam. The ratio between the first
two pictures yields the optical density of the atom cloud. The kinetic mode of the
camera12 is used to take the two pictures in fast succession. Thus it is unlikely that
optical elements drift during the time between the two acquisitions. Therefore, any
fringes caused by interference effects can be reliably identified and removed by the
analysis.

3. Two pictures without atoms and imaging light. These two “dark” pictures are
acquired in the same way as the previous ones and are used to account for any
pixel and stray light effects.

The pictures can be converted into “real” column-density information by using the mod-
ified Beer-Lambert law presented in Ref. [53]:

ñ =
1

σ

(
−α log

(
IAtom
IBright

)
+
IBright − IAtom

s

)
. (3.10)

Here IAtom is the light intensity of the picture which contains the shadow image of the
atoms. The intensity can be calculated from the corresponding CCD counts, known mag-
nification of the system, absorption of the optical elements, quantum efficiency, pixel size,

12In this mode, the excitations created in the CCD segments by taking the first picture are shifted
to a covered area of the sensor instead of being read out. This shift is performed fast and the second
picture can be acquired quickly after the first one. Afterwards, both pictures, which are now stored on
the sensor, are read out.
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(a) (b)

Figure 3.18: Illustration of the density retrieval process. Figure (a) is an absorption picture as it
is captured by the camera. It is dominated by the features of the imaging beam which illuminates
the sample. Figure (b) shows the retrieved line-of-sight integrated density distribution.

CCD sensitivity of the camera and the illumination time. IBright is the corresponding in-
tensity of the second picture which is acquired without the atom cloud. The photon-atom
scattering cross section σ = 3λ2/(2π) is determined by the wavelength λ of the resonant
imaging light. The saturation intensity of the imaging transition used is s = 25.4W/m2

(6Li, D2 line) [19]. The dimensionless parameter α accounts for any imperfections of the
imaging process, like imperfect polarisation or not entirely closed atomic transitions. We
estimate it to be α ≈ 1.1 in our experiments. If the saturation is low, the second term
in Eq. 3.10 can be neglected. In the remaining part, the constants which connect the
intensities IAtom and IBright with the corresponding CCD counts cancel each other which
significantly simplifies the calibration.

Equation 3.10 thus might suggest that the best way of imaging would be to use long
duration, low intensity light pulses for absorption imaging in order to keep the saturation
low. This is not entirely true, as long pulses cause blurring of the retrieved density
distribution [49, 54]. The reason is that the atoms acquire a certain momentum for
every absorbed imaging photon. Therefore, they are ejected out of the depth of field,
if the illumination time is too long. This is particular significant in case of lithium, as
it is a rather light atom. A suitable compromise between reduction of this blurring and
saturation of the imaging transition is to work with approximately unity saturation.

Due to the low mass of lithium, the acceleration experienced by the atoms during
illumination is significant. After approximately 40 absorption and re-emission events, the
Doppler shift becomes larger than the transition linewidth and the atoms turn dark13.
This is particularly important for fluorescence imaging with low atom numbers, e.g. in
an optical lattice experiment. Here a strong pinning lattice combined with simultaneous

13The Doppler shift equals 3MHz for a velocity of 2ms−1 which is half the linewidth of the imaging
transition. The recoil velocity for a wavelength of 671 nm is ∼ 0.1ms−1.

81



3 FROM A COLD GAS TO A FLAT GAS

cooling, e.g. optical molasses or Raman side-band cooling, during the imaging process
seems to be the only available solution, see e.g. Ref. [41].

The image acquisition process always integrates along the line-of-sight of the optics
and thus only the column density can be retrieved. To obtain information about the
three dimensional density distribution additional knowledge about the trap geometry
and further processing is necessary, e.g. an inverse Abel transformation. For a two-
dimensional sample, which is a design goal of our machine, local density retrieval is
obviously not an issue.
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3.2 Setup II: Realisation of a flat sample

3.2 Setup II: Realisation of a flat sample

The high resolution imaging system can only develop its full potential if the imaged
object is flat. The two reasons are a short depth of field and the (optical) integration
along the imaging axis. This section describes our approach to create a flat cloud suitable
for the highly resolving optics presented in the previous section. The preparation of a flat
cloud is also an essential prerequisite for the realisation of single-layer, two-dimensional
ultracold clouds which is presented in chapter 6. The corresponding optical system which
is shown here was largely developed in the course of the master’s thesis of Klaus Hueck
[55].

3.2.1 Squeeze trap

The shape of an ultracold gas cloud is primarily determined by the parameters of its
confining trap and the atom number. Internal properties like interaction or temperature
are in most cases only a small correction to the shape determined by the trap. Hence, the
realisation of a flat atom cloud is favourably approached by creating a suitable trapping
potential. We use an optical dipole trap, called the squeeze trap, for this purpose. A
highly asymmetric beam waist is realized by shining in a red-detuned laser beam which is
tightly focused in the vertical direction and wide in the horizontal one. The aspect ratio
of the two radii of the elliptical waist14 is wz/wx ≈ 400 µm/10 µm = 40. The laser which
creates the beam for the trap is the same as the one used for the transport dipole trap. It
operates at a wavelength of 1064 nm. The extend of clouds confined within this squeeze
trap is comparable to the depth of field of our high resolution imaging system. However,
the confinement is not strong enough to create a 2D gas for typical atom numbers. The
main features of the squeeze trap are the following:

• High aspect ratio of the beam waist.

• Similar trap frequencies in the two radial directions.

• Shone into the science cell via one of the CF16 viewports on the side of the cell.

• High stability with respect to the microscope objective used for the high resolution
imaging.

• Possibility to conveniently adjust the beam waist position.

• Stability of the beam power and the possibility of rapid power ramps, e.g. for
evaporation.

A photograph of the trap setup can be seen in Fig. 3.19.
The achievable aspect ratio of the beam waist depends primarily on how tightly

the beam can be focussed in the vertical direction. The waist size is limited by the
141/e2 radius, intensity
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numerical aperture of the optical system and by aberrations introduced by misalignment
and lens quality. The manufacturing quality of spherical lenses is typically better than
that of cylindrical ones especially in the direction where the cylindrical lenses are curved.
Therefore, the idea behind the design is to create a high-quality symmetric beam waist
by using only spherical lenses and then introduce one cylindrical lens to horizontally
widen the spot in the focal plane15. Aberrations are thus reduced in the more sensitive
direction. A beam waist16 of 8 µm could be confirmed by measuring the beam divergence
in a test setup [55]. After the integration into the experiment, the waist deteriorated
slightly and the vertical size is now approximately 10 µm in radius.

The divergence of the trapping beam in the highly focused direction is responsible for
the trap exerting reasonable longitudinal confinement forces as well. The corresponding
length scale is the Rayleigh length which is approximately 200 µm for a beam waist radius
of 8 µm. To fulfil the requirement of radially symmetric trapping in the two weakly
confined directions, the beam width in the weakly focused direction has to be adjusted to
match the Rayleigh length of the strongly diverging direction of the trapping beam. The
horizontal spotsize17 of 370 µm which is created in our setup leads to a circular trapping
region in the horizontal plane. A perfectly symmetrical trapping potential cannot be
created, as the beam has a Gaussian intensity profile in one direction and a 1/(1 + x2)
dependence along the propagation axis due to the beam divergence.

The whole optical setup for the squeeze trap has to be very stable with respect to
the high resolution imaging system and it has to tolerate rapid magnetic field changes.
This is particularly important for our approach to create single-layer two-dimensional
gases as described in chapter 6. Therefore, all optical components are mounted on a
non-conductive breadboard18 which is placed around the science cell. The breadboard
has no direct physical connection to either the vacuum chamber or the magnetic field
coil support structure. The quadrant photodiode which is used to stabilize the position
of the transport dipole trap is mounted on that breadboard as well, which ensures a
good stability of the transport dipole trap with respect to the squeeze trap. This is
particularly important for an efficient transfer of atoms from the transport trap into the
squeeze trap during the experimental sequence. All the components used in the vicinity
of the magnetic field coils have been selected for minimal magnetic response. The used
materials are polymers or aluminium and minimal amounts of high-quality stainless steel,
where it could not be avoided.

The installation space available for the optics around the science cell and in between
the large magnetic field coils is quite limited. In fact, many of the mounts for the optical
components had to be custom built to be able to place them on the breadboard. The
limited space makes it almost impossible to adjust any of the components by hand. They
were aligned on the breadboard prior to its integration into the machine and afterwards

15Thanks to Christoph Becker for the idea
161/e2 radius, intensity
171/e2 radius, intensity
18Erhard Hippe, EP GC 201
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not moved any more. To obtain a certain degree of adjustability two piezo controlled
elements where introduced into the setup as shown in Fig. 3.19. The last spherical lens
is mounted on a remote controllable translation stage. Motion of this stage shifts the
position of the squeeze trap centre along the beam direction without changing its waist
dimensions. Additionally, one of the turning mirrors is mounted on a two-axes piezo
controllable mirror holder. This allows to move the beam waist in the plane perpendicular
to the beam propagation.

It is possible to image trapped atoms or the beam of the squeeze trap itself to monitor
the position of the trap centre. The latter is advantageous to check the trap position
perpendicular to the beam’s propagation direction, as it is independent of any magnetic
forces trapped atoms might experience in addition to the dipole force. The focal shift
of the imaging system at different wavelengths has to be taken into consideration when
observing the beam waist position.

As during a typical experimental sequence evaporative cooling is performed within the
squeeze trap, a mechanism is needed to control the beam power. A photodiode measures
the actual beam power and feeds a proportional-integral (PI) controller. The created
control signal acts on an AOM which regulates the beam power. The reference signal for
the PI controller is created by our experiment control computer. Regulation speeds of
17 kHz (90◦ point) are reached with this control loop.

3.2.2 Performance

Sequence and typical parameters

A typical experimental sequence which employs the squeeze trap works as follows. First,
an atom cloud is prepared in the transport dipole trap inside the science cell as described
in chapter 2. The shape of the trapping potentials of the two traps differ significantly
from each other. Therefore, it is expected that the transfer process from the transport
trap into the squeeze trap induces considerable heating. Hence, the optimal way to cool
the gas is to delay the evaporation as long as possible. The final evaporation of the
transport dipole trap is chosen just deep enough to ensure that the squeeze trap can
accept the cloud with a good transfer efficiency. After the transfer is completed, the
transport dipole trap is switched off and the subsequent evaporative cooling is performed
by lowering the beam power of the squeeze trap. The power is ramped down exponentially
to achieve optimal cooling performance. It is easy to reach degeneracy in this trap and
create ultracold gases with adjustable interaction by utilizing the Feshbach resonance.
Exemplary power values and other parameters related to the squeeze trap are listed in
Tab. 3.2 on page 90.

To understand the cloud’s shape an additional magnetic confinement has to be con-
sidered. The magnetic coils which create the field to address the Feshbach resonance
are not in an exact Helmholtz configuration which results in trapping of the atoms in
the radial direction and anti-trapping in the vertical direction. The anti-confinement is
negligible in most cases, as the trap frequency of the squeeze trap clearly dominates in
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power control

Fibre coupler

Piezo controlled
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Piezo controlled
mirror holder

Position of the
atom cloud

Figure 3.19: A photograph of the squeeze trap setup before integration to the experiment.
All components of the squeeze trap are highlighted. The piezo controlled elements allow for
convenient adjustment of the beam focus after the breadboard is integrated to the experiment.
The photodiode used for power monitoring can be seen in the background. The picture is adopted
from Ref. [55].
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(a) 685Gauss (b) 835Gauss (c) 541Gauss (d) 685Gauss

Figure 3.20: Examples of density distributions in the squeeze trap as they can be seen by
our high resolution imaging system (a), (b), (d). The different applied magnetic fields clearly
influence the shape of the cloud due to the change of interaction strength between the atoms
(a), (b). The power of the squeeze beam is 32mW for both images. Sub-figure (c) shows a cloud
which is imaged from the side at a squeeze beam power of 20mW. Here, the spatial extend in
the vertical direction, which is visible in the picture, is determined by the imaging resolution.
The additional stripes which can be seen above and below the atom cloud are due to diffraction
of the imaging light caused by the cloud. Sub-figure (d) is an illustration how imperfections in
the beam profile of the squeeze trap affect the cloud’s shape. To obtain the image the squeeze
power was first lowered to 20mW and afterwards increased to 200mW. The colour scale has
been adjusted separately for each of the figures.

the vertical direction, but the radial confinement becomes significant for low powers of
the squeeze trapping beam. Thus, the shape of the atom cloud becomes more spherical
for deep evaporation.

After the gas is prepared in the squeeze trap, the further manipulation depends on
the particular experiment which is planned to be performed on the atoms. It is possible
to experiment with the atoms directly in the squeeze trap (see for example chapters 4
and 5) or to continue the preparation and create a two-dimensional confinement (see
chapter 6). In any case, the experimental cycle will end with an imaging sequence and
the squeeze trap is suitable to make use of the high resolution imaging system. Examples
of acquired density distributions can be seen in Fig. 3.20. Especially for high beam
powers the cloud shape becomes non-circular and shows more complicated features. This
is due to imperfections of the squeeze beam and has to be considered when performing
experiments on the cloud. Typical atom numbers that can be achieved are 25000 per
spin state for a molecular BEC, with a condensate fraction of approximately 90% or an
ultracold Fermi gas at a temperature of T/TF ≈ 0.07 where TF is the Fermi temperature
of a non interacting Fermi gas [56]. The achieved lifetime of an ultracold gas on the
Feshbach resonance is approximately 5 s. For a molecular BEC these lifetimes decrease
significantly, most probably due to de-excitation processes of the Feshbach molecules, see
Fig. 3.21.

A considerable drift of the position of the squeeze trap centre was observed after the
machine is switched on in the morning. The time scale of this drift was several hours. The
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Figure 3.21: Lifetime of an ultracold gas cloud confined in the squeeze trap depending on the
magnetic field strength. At low magnetic fields, the gas forms a molecular BEC and the lifetime
decreases as the formed molecules start to de-excite into lower vibrational and rotational states.
The released energy leads to the observed atom loss. The lifetimes where recorded at two different
final evaporation depths in the squeeze trap: at 20mW (black dots) and at 50mW (red squares).

cause could be identified to be a thermalisation effect of the whole optical table, mainly
caused by dissipated heat of power supplies and high current electric devices placed below
the table. The heat dissipated by the magnetic field coils around the vacuum chamber
has a certain influence on thermalisation as well. This demonstrates the sensitivity of
the machine even though it is designed and constructed as rigid and stable as possible.
The thermalisation problem could be solved by an active insulation layer below the table
and an auxiliary heating system for the coils which pre-heats the apparatus a couple of
hours before the machine is switched on.

Trap frequencies

As mentioned above, the trap frequencies of the squeeze trap are the result of a combina-
tion of optical and magnetic trapping. Due to the configuration of the coils the magnetic
trap is confining in the radial direction and anti-confining in the vertical direction. The
magnetic radial trapping frequency at a field strength of 835Gauss is ωr,mag ≈ 2π ·29Hz.
Due to the Gauss law for magnetic fields ~∇· ~B = 0 the frequency in the vertical direction
is ωz,mag ≈ 2πi · 58Hz. The maximal achievable optical trap frequencies are approxi-
mately ωr,opt = 80Hz and ωz,opt = 3800Hz at a beam power of 1W in the squeeze trap.
The trapping frequencies caused by the magnetic field and the dipole trap have to be
added to obtain the characteristics of the complete confining potential.
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3.2 Setup II: Realisation of a flat sample

Trap frequencies add quadratically, i.e. ω =
√
ω2
mag + ω2

opt, which means that the
magnetic trap can be neglected as long as the beam power in the squeeze trap is high.
However, after the evaporative cooling is performed by lowering the optical trap depth
the magnetic trap becomes more influential and can even dominate the radial trapping
direction. This has considerable impact on the flatness of the trapped cloud. A typical
example is a cloud with 10000 atoms per spin state at a magnetic field of 684Gauss
confined in the squeeze trap operating at 20mW. The extent (radius) of the cloud in
this configuration is 2.3 µm in the vertical and 38 µm in the radial direction. The ratio
of these two radii is 16.5, which is significantly less than the aspect ratio of the squeeze
trapping beam waist (∼ 40), reflecting the influence of the magnetic field.

For many applications it is important to have precise information of the actual trap-
ping frequencies. In the following, I present two methods to measure the trapping fre-
quencies in the radial and in the vertical direction.

The vertical trapping frequency of the squeeze trap can be measured via parametric
heating [29]. A typical measurement curve can be seen in Fig. 3.22. For this mea-
surement, the power of the squeeze beam is slightly modulated for a certain time and
afterwards the atom number is recorded. Due to the power modulation, a breathing mode
is excited and finally leads to atom loss which can be observed. For a non-interacting
gas the frequency of this mode is exactly twice the trap frequency ωbreath = 2 · ωtrap.
In the case of an interacting gas the dynamics become more complicated which affects
the oscillation frequency of the breathing mode. Directly on the resonance the value is
known for a very oblate gas [57] and can be used to deduce the underlying trap frequency:
ωbreath,resonace =

√
3 · ωtrap19.

The radial trap frequency has to be determined by another approach. The parametric
heating rate is proportional to the fourth power of the resonance frequency rendering it
non-detectable for the small trap frequency in the radial direction. However, it is possible
to excite centre-of-mass oscillations by pushing the cloud and to observe its position after
a certain waiting time. This measurement directly yields the trapping frequency and is
independent of the interaction and other internal parameters of the atom cloud. A good
method to execute the initial push of the cloud is to quickly switch on the 2D lattice
which should be well misaligned with respect to the squeeze trap for this purpose. An
example of a measurement performed with this approach is shown in Fig. 3.23.

19One might expect that the breathing mode frequency on resonance depends on the Bertsch parameter.
However, it can be shown that the collective mode frequencies in a harmonic trap depend only on the
power of the exponent γ in the polytropic equation of state µ ∝ nγ [57]. A general analysis (see section
4.3.4) shows that γ = 2/3 independent of the details of the equation of state.
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Figure 3.22: Atom loss in the squeeze trap due to parametric heating. The trap power is
slightly modulated and atom loss sets in as soon as the breathing mode is excited. The data is
obtained by averaging three measurements for each modulation frequency. The error bars are
the standard deviation of the averaging. The red curve is a Lorentzian fit to the data yielding a
maximum atom loss for a modulation frequency of 2004Hz. The measurement is performed at
a magnetic field of 835Gauss, close to the Feshbach resonance. The beam power in the squeeze
trap is 100mW and it is modulated with an amplitude of 2mW for 3 s.

Description Value

Squeeze trap, wavelength 1064nm
Squeeze trap, spotsize at beam waist (1/e2 radius, intensity) 10 µm× 370 µm
Squeeze trap, typical beam power for loading 400mW
Squeeze trap, trap frequencies for loading 68Hz× 68Hz× 2300Hz
Squeeze trap, trap frequencies (optical) at 20mW 15Hz× 15Hz× 500Hz
Magnetic trap, trap frequencies on Feshbach resonance 29Hz× 29Hz× 58Hz · i
Squeeze and magnetic trap, trap frequencies at 20mW on Fes-
hbach resonance

32Hz× 32Hz× 500Hz

Squeeze trap, trap depth for loading 4 µK
Squeeze trap, Regulation speed of the PI power control (90◦

point)
17 kHz

Table 3.2: Parameters and reference values for the squeeze trap.
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Figure 3.23: Radial centre of mass oscillations of the atom cloud in the squeeze trap. The
(misaligned) 2D lattice is switched on rapidly to initiate the oscillations. The data is acquired
at a magnetic field of 835Gauss, a beam power of 20mW in the squeeze trap and 700mW in the
2D lattice. The solid line is a sine fit to the data and yields an oscillation frequency of 34.2Hz
which directly corresponds to the radial trap frequency.
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4 The speed of sound across the BEC-BCS
crossover

4.1 Introduction

When the interaction between the constituents of an ultracold fermionic gas is tuned
from attractive to repulsive the behaviour of the gas changes dramatically. Even the
quantum statistic is altered from fermionic to bosonic accompanied by such intriguing
consequences as the formation of a molecular BEC. In the course of this fundamental
change many properties of the gas are modified. Amongst those is the speed of sound
which is essentially zero in the non-interacting BEC limit and on the order of the Fermi
velocity in a Fermi gas. The exact behaviour close to the resonance is unknown as there
is no precise knowledge of the equation of state in this regime1. The properties of sound
propagation are determined by the type of the possible excitations in the gas. This makes
a speed of sound measurement in the BEC-BCS crossover particularly interesting as the
nature of the excitations in the strongly interacting regime is still unknown. It is even
unclear if the gas can be described by quasi-particles at all. Thus the measurement of
the speed of sound can serve as a benchmark for theories which describe the ultracold
gas in the crossover.

Moreover the propagation of sound modes is strongly connected to the presence of
superfluidity in the system. At low temperatures, an interacting Fermi gas is superfluid
and in the case of a molecular BEC the speed of sound marks an upper limit to the
superfluid critical velocity. The first direct measurement of the speed of sound in an
ultracold gas was done in the Ketterle group [59] and it was mapped out over the whole
crossover in a fermionic system in Ref. [60]. There have been also measurements of the
critical velocity for superfluidity, e.g in Ref. [61], but so far there is no experimental
investigation of the speed of sound and the critical velocity in the same system. Such a
measurement, which compares the two velocities, is well suited to give new insights into
strongly interacting Fermi gases.

In this chapter I present our measurements of the speed of sound in a strongly in-
teracting gas including a theoretical description. The measurements of the superfluid
critical velocity can then be found in chapter 5.

1There is an exception directly on the resonance where the s-wave scattering length diverges. For this
particular point there exists a measurement of the equation of state published in Ref. [58].
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4 THE SPEED OF SOUND ACROSS THE BEC-BCS CROSSOVER

Figure 4.1: A density wave propagating in an ultracold atom cloud after its excitation by a
laser pulse in the cloud centre. Its radial propagation speed is the speed of first sound. The
measurement was performed at a magnetic field strength of 695Gauss on the BEC side of the
Feshbach resonance.

4.2 Experiment

Measurements of the speed of sound have been published in references [59] and [60]. In
both experiments the medium for the sound waves is an elongated ultracold gas. A blue
detuned laser beam is utilized to introduce a local density variation in the central region
of the trap. After the laser is switched of a density wave starts to propagate through
the cloud which can be observed at different times. The extracted propagation speed is
the speed of sound. Our measurements are performed in a very oblate cloud of ultracold
fermions which are prepared as described in chapter 3. The excitation is performed with
a red-detuned laser and the sound wave spreads radially from the centre of the cloud. To
measure the speed of sound at different interaction strengths we tune the magnetic field
to the desired value before the excitation of the sound wave.

4.2.1 Our measurement

To excite a sound wave we focus a red-detuned laser beam with a wavelength of 780 nm
into the centre of the cloud and linearly ramp up its power within 100ms before holding
it for 100ms and then quickly switching it off. The maximum power of the beam is
chosen between 7 µW and 40 µW depending on the interaction strength. The power was
chosen higher on the BCS side of the Feshbach resonance compared to the BEC side
to create a density wave of similar relative amplitude after the atoms are released from
the excitation beam. The procedure creates a radial symmetric density modulation with
a relative amplitude of approximately 30% that moves outwards (see Fig. 4.1). We
take pictures after a certain time τ after the modulation was created and subtract the
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Figure 4.2: Analysis of the absorption images 4.1. The radial position of the wave maximum is
plotted versus the time after the wave was excited. In this example the extracted speed of sound
is 6.5mms−1.

density distribution of an undisturbed cloud. After radial averaging the positions of the
maxima and minima of the density wave are identified and can be used to extract the
speed at which the modulation is moving as shown in 4.2. Similar to Ref. [60] this
velocity is identified with the speed of first sound u1. Its propagation speed depends on
the interaction strength 1/kNaA where aA is the atom-atom s-wave scattering length and
kN the Fermi wave vector of a non-interacting Fermi gas2. The latter is defined via

~2k2
N

2m
= ~ω̄ (6N)1/3 (4.1)

where m is the mass of a 6Li atom, ω̄ = (ωxωyωz)
1/3 is the mean trap frequency and

N = N↑ = N↓ the total atom number in a single hyperfine state. We only include
measurements in the central region of the cloud where the column density is almost
identical to the column density in the trap centre. Therefore, the reduced density in the
outer regions of the cloud does not influence the measured speed of sound. The results
of the experiment are shown in Fig. 4.3. In the figure the speed of sound is plotted
in units of the Fermi velocity vN = ~kN/m. In general the propagation speed of the
sound wave depends on the local density. However, if the oblate cloud is flat compared
to the wavelength of the sound wave and in a entirely hydrodynamic regime it is the

2The sub-index N indicates that the Fermi wavenumber kN is defined via the total atom number
rather then via the density

(
k3n/6π

2 = n
)
. We use kN to plot our data as we have direct experimental

access to the particle number but not to the density. In the limit of a non-interacting Fermi gas the two
definitions are identical kn = kN . See chapter 4.3.4 for further details.
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Figure 4.3: The speed of sound as a function of the interaction strength across the BEC-BCS
crossover. The points are our measured data and the lines are theory curves which are explained
in section 4.3. The two x axis use two different definitions for the Fermi wavenumber. For more
details see section 4.3.4

average density along the strongly confined direction which determines the propagation
speed [62, 63]. In the case that the cloud is not hydrodynamic in the strongly confined
direction, i.e. the mean free path of the particles is longer than the cloud thickness,
the observed speed of sound is determined by the density in the central layer. The two
curves in the figure represent the theoretical prediction for the speed of sound in the two
situations and are in good agreement with our measurement.

4.2.2 Dependence on excitation strength

The theory curves in Fig 4.3 assume that the amplitude of the density wave is small.
For large amplitudes the speed of sound can be expected to change. To make sure that
we work in the small amplitude limit, we performed measurements of the speed of sound
with varying beam powers of the excitation laser while all other experimental parameters
where held constant. The results can be seen in Fig. 4.4. The plot suggests that the speed
of sound for an arbitrarily small perturbation is within the error bars of our observations
at low excitation beam powers. The data points in Fig. 4.3 where all recorded in this
low power regime which is described by the theory presented in section 4.3.
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Figure 4.4: Measured speed of sound as a function of the beam power of the excitation laser.
The measurements have been performed at an interaction strength of −1/kNaA = −5.2.

4.2.3 Dependence on the excitation beam diameter

To exclude the possibility that the measured sound velocities depend on the beam di-
ameter of the excitation beam we performed measurements with different beam sizes,
ranging from 1.5 µm to 7.1 µm3, and otherwise constant experimental parameters. We
observed no influence of the beam diameter on the measured propagation speed of the
density wave.

31/e2 radius, intensity
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4.3 Theory

This section is intended to give a theoretical overview on the speed of sound in superfluid
ultracold Fermi gases in the crossover from the BEC to the BCS regime. Main results are
the curves for the speed of sound shown in Fig. 4.3. As sound waves are a thermodynamic
phenomenon we approach the theoretical description from a thermodynamic point of
view. For simplicity we consider sound modes with frequency ω in a homogeneous gas
and in the hydrodynamic limit τω � 1. Here τ is the collision time of the constituents
of the gas. The presence of a superfluid density in the system is an additional degree
of freedom and has the remarkable consequence that two different sound modes arise
named first and second sound. A non-superfluid gas only supports first sound. At very
low temperatures first sound describes a density wave whereas second sound is a pure
temperature wave. However, for finite temperatures and interaction strengths the nature
of first and second sound is a mixture of both density and temperature waves.

To derive the speed of sound we proceed along the lines of the paper of H. Heiselberg
on sound modes in the BCS-BEC crossover [64]. We first derive a general formula for the
speed of sound in a homogeneous system based on mass conservation and the acceleration
of a superfluid due to a gradient in the chemical potential. We continue in giving explicit
expressions for the speed of sound in the BEC, BCS and in the crossover regime. In the
weakly interacting limits analytical expressions are available whereas quantum Monte
Carlo data are the basis for our calculations in the strongly correlated regime. First the
zero temperature situation is discussed and thereafter we consider the influence of finite
temperatures. An important result is that the modification of the speed of sound due to
finite temperature is small in the experiments presented in this thesis. The last part of
this section then deals with additional effects which are present in a trapped system.

4.3.1 First and second sound

We follow the lines of references [64, 65] to derive a general expression for the speed of
sound. The cold gas has to conserve its mass which leads to the continuity equation

∂ρ

∂t
+ ~∇ ·~j = 0 (4.2)

with the mass density ρ = ρSF + ρN and the mass current density ~j = ρSF~vSF +
ρN~vN . The superfluid (normal) mass density is given by ρSF (ρN ) and the velocity of
the superfluid (normal) part by ~vSF (~vN ). If we neglect friction and non-linear effects
the time derivative of the mass current is

∂~j

∂t
= −~∇p (4.3)

and thus
∂2ρ

∂t2
−∇2p = 0. (4.4)
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Here p is the pressure. Equation 4.4 is the first relation required to determine the speed
of the sound waves. The second relation is derived by considering the acceleration of the
superfluid fraction of the gas due to a gradient of the chemical potential:

m
∂~vSF
∂t

= −~∇µ. (4.5)

Here we again neglect non-linear effects which restricts the calculations to small ampli-
tudes of the sound modes. Under consideration of the Gibbs-Duhem relation Eq. 4.5 can
be rewritten as (see Ref. [65] for details):

∂2s

∂t2
=
ρSF
ρN

s2∇2T (4.6)

with the entropy per unit mass s = S/(Nm), the total entropy S, the total particle
number N and the temperature T .

To obtain the sound modes we consider small variations in density, temperature,
pressure and entropy of the form ei(~k~r−ωt). We choose the fluctuations in density δρ
and in temperature δT as independent variables. Whereas the changes of pressure and
entropy are determined by equations 4.4 and 4.6. This procedure yields a condition for
the phase velocity of the fluctuations u = ω

k which is the speed of sound. With the ansatz
of plane wave fluctuations we obtain from Eq. 4.4

ω2δρ− k2

[(
∂p

∂ρ

)
T

δρ+

(
∂p

∂T

)
ρ

δT

]
= 0 (4.7)

and from Eq. 4.6

ω2

[(
∂s

∂ρ

)
T

δρ+

(
∂s

∂T

)
ρ

δT

]
− ρSF

ρN
s2k2δT = 0. (4.8)

To simplify the last two equations we introduce c2
S =

(
∂p
∂ρ

)
s
, c2

T =
(
∂p
∂ρ

)
T
, c2

2 = ρSF s
2T

ρN cV

and cV = T
(
∂s
∂T

)
ρ
. The quantity cS is the adiabatic speed of sound, cT is isothermal

speed of sound, c2 the “thermal” speed of sound and cV is the specific heat per unit mass.
Furthermore, we need to derive the following relation between the adiabatic and the

isothermal speed of sound:

c2
S − c2

T =

(
∂s

∂ρ

)2

T

ρ2T

cV
. (4.9)
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Equation 4.9 follows from the Maxwell relations:

−
(
∂p

∂V

)
S

=

(
∂p

∂S

)
V

(
∂S

∂V

)
p

=

(
∂p

∂S

)
V

[(
∂T

∂V

)
p

(
∂S

∂T

)
V

+

(
∂p

∂T

)
V

]

=

(
∂p

∂S

)
V

(
∂T

∂V

)
p

(
∂S

∂T

)
V

+

(
∂p

∂S

)
V

(
∂p

∂T

)
V

=

(
∂p

∂T

)
V

(
∂T

∂V

)
p

+

(
∂T

∂S

)
V

(
∂p

∂T

)2

V

= −
(
∂p

∂V

)
T

+

(
∂T

∂S

)
V

(
∂S

∂V

)2

T

(4.10)

where V is the Volume of the system. The first and the last expression in Eq. 4.10
written in terms of ρ = Nm

V ( ∂∂ρ = −Nm
ρ2

∂
∂V ) and s = S

Nm yield Eq. 4.9.
Equations 4.7 and 4.8 can now be rewritten as:

(
u2 − c2

T

)
δρ−

(
∂p

∂T

)
ρ

δT = 0

u2
(
c2
T − c2

S

)( ∂p
∂T

)−1

ρ

δρ+
(
u2 − c2

2

)
δT = 0. (4.11)

The linear system of equations 4.11 has non-trivial solutions for δρ and δT only if the
determinant of the coefficient matrix vanishes. Hence, we demand(

u2 − c2
T

) (
u2 − c2

2

)
+ u2

(
c2
T − c2

S

)
= 0. (4.12)

The two solutions of Eq. 4.12 are called first sound (u1) and second sound (u2) and are
given by

u2
1/2 =

c2
S + c2

2

2
±

√(
c2
S + c2

2

2

)2

− c2
T c

2
2 (4.13)

c2
S =

(
∂p

∂ρ

)
s

, c2
T =

(
∂p

∂ρ

)
T

, c2
2 =

ρSF s
2T

ρNcV
, cV = T

(
∂s

∂T

)
ρ

(4.14)

where u1 corresponds to the positive sign and u2 to the negative sign. The quantities
cS , cT , c2 and cV are given again for convenience4. Equation 4.13 expresses the speed of
sound as a function of thermodynamic quantities. Thus, we concentrate our attention on
the energy and entropy of the cold gas in the following sections. We derive expressions

4At zero temperature the isothermal speed of sound is often written as c2T=0 =
√

n
m

(
∂µ
∂n

)
T
. The

expression can be derived with the Gibbs-Duhem equation.
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for the speed of sound as a function of the interaction strength and the temperature of
the gas. Already at this point we can deduce that a gas above the critical temperature
for superfluidity features only first sound as the coefficient c2 vanishes and therefore
u2 = 0. In the following we focus on the first sound as this is the quantity we measured
in the experiment, however the speed of second sound is discussed as well wherever it is
convenient.

4.3.2 Speed of sound at zero temperature

The experiments described in this thesis are performed on fermionic lithium with atoms
of mass m present in two different hyperfine spin configurations. A molecular BEC of
dimers with mass mD = 2m can be formed if the scattering length aA is positive. The
scattering length between two dimers aD is different from the scattering length between
the atoms. In this thesis I use the result aD = 0.6aA which was obtained from quantum
Monte Carlo [66] and four-body calculations [7]. The interaction is characterised by the
dimensionless quantity x = 1/kFaA. The BEC regime is characterised by x > 1 and a
dimer density nD, the BCS regime by x < 1 and the atom densities n↑ and n↓ of the two
hyperfine states. For |x| < 1 the gas features strong interactions and its description is
difficult. The Fermi wavenumber is defined by5 n↑ = n↓ = nD =

k3F
6π2 .

There is a general statement we can make which greatly simplifies the treatment of
the speed of sound at zero temperature. If the dispersion relation of the excitations
of the gas is described by a power law it implies u1 = cT and u2 = c2. According to
Ref. [64] a dispersion relation E(k) ∝ kα leads to an entropy and a heat capacity which
follow a power law as well: S ∝ cV ∝ T 3/α and the non-superfluid fraction is ρN/ρ ∝
(T/TC)(5/α)−1. Equation 4.9 then implies c2

S − c2
T ∝ T (3/α)+1 and c2 ∝ (ρS/ρ)T 2−(2/α).

In the limit T → 0 it follows from Eq. 4.13 that u1 = cT and u2 = c2. Furthermore,
if the dispersion relation is linear (α = 1), which corresponds to phonons as they are
present in the BEC regime, u2 might have a finite value at zero temperature. However,
for excitations with the character of free particles (α = 2) we can conclude u2(T = 0) = 0.

Weakly interacting BEC

The limiting case of a non-interacting BEC (1/kFaA →∞) at zero temperature is trivial
and leads to u1/2 = 0. Therefore, the first case we consider is an interacting Bose
condensed gas with interaction parameter x = 1/kFaA � 1. The energy of the gas is
given by [65]:

E =
N2
DU0

2V
. (4.15)

with the interaction between two dimers of the superfluid U0 = 4π~2aD/mD and the
total dimer number ND. Here we assumed that the total energy is dominated by the
interaction energy and the kinetic contribution can be neglected. This approximation

5Note, that kF equals kn in Fig. 4.3. For more details see section 4.3.4.
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is well justified for the experiments described in this thesis and becomes exact in a
homogeneous sample with infinite system size at T = 0 and x → +∞. However, Eq.
4.15 neglects the contribution which originates from the binding energy of the dimers as
it does not contribute to the dynamics of the cold gas. We obtain for the pressure of the
gas:

p = −∂E
∂V

=
N2
DU0

2V 2
=
n2
DU0

2
=
ρ2U0

2m2
D

(4.16)

and thus for the isothermal speed of sound:

c2
T =

(
∂p

∂ρ

)
T

=
ρU0

m2
D

. (4.17)

The values for cS and c2 are deduced from the entropy of the gas which vanishes at zero
temperature. Therefore, we consider the entropy of a gas at low but non-zero temperature
and take the limit T → 0 at the end of the calculation. For low temperatures the entropy
per unit mass is given by [65]

s =
1

T

ρN
ρ

ρU0

m2
D

(4.18)

which varies as T 3 as the normal density is

ρN =
2π2

45

(kBT )4

~3

(
ρU0

m2
D

)5/2

. (4.19)

From the expressions 4.9 and 4.14 we obtain:

c2
S − c2

T =
25

12
sT

c2
2 =

1

3

ρSF
ρ

ρU0

m2
D

. (4.20)

In the limit T → 0, the superfluid density equals the normal density which implies
cS = cT and c2 = cT /

√
3. Finally, Eq. 4.13 yields the expression for the speed of the

first and second sound of a weakly interacting BEC at zero temperature:

u1 = cT =

√
nDU0

mD

u2 = c2 =
cT√

3
=

√
nDU0

3mD
. (4.21)

In the case of the weakly interacting BEC in the limit T → 0 we see from the system of
linear equations 4.11 that cS = cT and u 6= c2 implies δT = 0 whereas δρ is arbitrary.
Therefore, we conclude that under these conditions first sound is a pure density modu-
lation without any temperature variation. In a similar fashion one can see that second
sound is a pure temperature modulation with the density kept constant. As u1, given
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by Eq. 4.21, is identical to the propagation speed of Bogoliubov excitations we see that
first sound corresponds to phonons. As thermal energy in the BEC is carried by those
excitations, second sound can be identified with oscillations of the phonon density.

Later it will prove useful to write the speed of sound given in Eq. 4.21 in units of the
Fermi velocity vF = ~kF /m and as a function of kFaA. Note, that we use the atom mass
m = mD/2 instead of the dimer mass and the atom-atom scattering length aD = 0.6aA
[7] instead of the dimer-dimer scattering length to allow a comparison of the results to
those obtained in the BCS regime.

u1 = vF

√
1

6π

aD
aA

√
kFaA ≈ 0.178vF

√
kFaA

u2 = vF

√
1

18π

aD
aA

√
kFaA ≈ 0.103vF

√
kFaA (4.22)

See Fig. 4.6 on page 108 for a plot of the speed of first sound given by Eq. 4.22.

BEC extension towards the resonance

If the interactions become stronger, higher order effects in the description of the gas
become more important. The next order correction to the energy given in Eq. 4.15 is
[67]:

E =
N2
DU0

2V 2

(
1 +

128a3
D

15
√
π

(
ND

V

)1/2

+ . . .

)
. (4.23)

For the corresponding pressure we obtain:

p = −∂E
∂V

=
ρ2U0

2m2
D

(
1 +

64

5
√
π

(
ρa3

D

mD

)1/2
)

(4.24)

and for the isothermal speed of sound:

c2
T =

(
∂p

∂ρ

)
T

=
ρU0

m2
D

(
1 +

32√
π

(
ρa3

D

mD

)1/2
)

=
ρU0

m2
D

(
1 +

32√
6π3

(kFaD)3

)
(4.25)

In the zero temperature limit Eq. 4.9 yields cS = cT and Eq. 4.13, for the first speed of
sound, simplifies to

u1 = cT =

[
nDU0

mD

(
1 +

32√
6π3

(kFaD)3

)]1/2

= vF

√
1

6π

aD
aA

√
kFaA

[
1 +

32√
6π3

(
aD
aA

)3

(kFaA)3

]1/2

≈ 0.178vF

[
kFaA + 0.507 (kFaA)4

]1/2
. (4.26)

103



4 THE SPEED OF SOUND ACROSS THE BEC-BCS CROSSOVER

The speed of first sound given in Eq. 4.26 is plotted as a function of 1/kFaA in Fig. 4.6.

Non-interacting Fermi gas

In contrast to a non-interacting BEC at T = 0, a non-interacting Fermi gas at zero
temperature is not trivial as the energy of the Fermi gas is finite due to Pauli blocking.
The energy of the gas is given by [68]:

E = N
3

5
EF . (4.27)

Here N is the number of atoms in a single hyperfine state. If the gas consists of atoms in
several spin states the corresponding populations can be treated separately since there is
no interaction between them. In the experiments presented in this thesis two hyperfine
states are populated in equal numbers N = N↑ = N↓. The Fermi energy is EF =
~2k2

F /(2m) with the atom mass m and the Fermi wave number defined by n = n↑ =
n↓ = k3

F /(6π
2). For the pressure of the gas we obtain

p = −∂E
∂V

= n
2

5
EF . (4.28)

As in the case of a BEC it can be argued that u1 = cT which yields for the speed of first
sound:

u1 = cT =

√(
∂p

∂ρ

)
T

= vF
1√
3
. (4.29)

See Fig. 4.6 for a plot of the result given in Eq. 4.29. As a non-interacting Fermi gas has
no superfluid density there is no second sound, u2 = c2 = 0. As in the zero temperature
BEC first sound is a pure density wave whereas second sound would be a thermal wave
corresponding to variations in the density of excitations. The excitations in the Fermi
gas at low temperature are free particles which do not interact and do not obey any Pauli
principle. Therefore, any local excess of excitations does not cause a restoring force and
the time scale of the corresponding oscillation diverges.

BCS extension towards the resonance

The two component Fermi gases, which we create in our experimental apparatus, experi-
ence a finite interaction. Two atoms in the same hyperfine state do not scatter due to the
Pauli principle whereas two atoms in different hyperfine states can undergo scattering
events characterised by the s-wave scattering length aA. Lee and Yang calculated how
the interactions change the energy of the gas [69]:

E = N
3

5
EF

(
1 +

10

9π
(kFaA) +

4 (11− 2 ln 2)

21π2
(kFaA)2 + . . .

)
. (4.30)
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The pressure which follows from Eq. 4.30 is

p = −∂E
∂V

=
2

5
nEF +

2

3π
nEFkFaA +

16 (11− 2 ln 2)

105π2
nEF (kFaA)2 . (4.31)

The isothermal speed of sound which corresponds to this pressure is given by the following
expression:

c2
T = v2

F

1

3

(
1 +

2

π
kFaA +

8 (11− 2 ln 2)

15π2
(kFaA)2

)
≈ v2

F

1

3

(
1 + 0.637kFaA + 0.520 (kFaA)2

)
. (4.32)

As before, u1 = cT and u2 = c2 in the limit T → 0 and therefore

u1 = vF
1√
3

[
1 +

2

π
kFaA +

8 (11− 2 ln 2)

15π2
(kFaA)2

]1/2

. (4.33)

See Fig. 4.6 for a plot of the speed of first sound given by Eq. 4.33. The speed of second
sound is much smaller than the speed of first sound but non-zero, 0 < u2 � u1. This
allows for a smooth transition from the BCS to the BEC limit without any discontinuities
in the speed of second sound. The physical mechanism is most likely based on the small
interaction which supports the formation of weakly bound pairs. Those pairs should have
a linear dispersion relation at low momenta similar to the dispersion relation in a BEC
where c2 = u2 is non-zero.

Crossover

The calculation of the speed of sound in the crossover from the BEC to the BCS regime
is difficult. Especially in the strongly correlated regime |1/kFaA| < 1 much is unknown.
However, there are zero temperature quantum Monte Carlo simulations [66, 70, 71] and
the known limits at |1/kFaA| � 1. In general the energy per atom at zero temperature,
after subtracting the binding energy EB, can be written as

E

N
− EB

2
=

3

5
EF ε(x) (4.34)

with x = 1/kFaA. The binding energy is a function of the scattering length aA and has no
contribution to the speed of sound so we can neglect it in our considerations. Equations
4.23 and 4.30 are defining ε(x) in the limiting cases of a BEC and a BCS superfluid. In
the BEC case x� 1 one obtains

ε(x) =
5

18π

1

x

aD
aA

(
1 +

128

15
√

6π3

1

x3/2
+ . . .

)
. (4.35)

And for the BCS superfluid x� −1:

ε(x) = 1 +
10

9π

1

x
+

4 (11− 2 ln 2)

21π2

1

x2
+ . . . . (4.36)
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Parameter BEC value (x > 0) BCS value (x < 0)

α1 0.4200 0.4200
α2 0.2674 0.3692
α3 5.0400 1.0440

β1 0.1126 1.4328
β2 0.4552 0.5523

Table 4.1: Parameters of the equation of state 4.37 [72].
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0.8
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−6 −4 −2 0 2 4 6

ε

x = 1/kFaA

Figure 4.5: The energy per particle ε(x) as defined in Eq. 4.34, with x = 1/kFaA. The dots are
the fixed-node Monte Carlo data of Ref. [66] and the solid line is the function 4.37 as proposed
in Ref. [72]. The dashed lines are the expansions 4.35 and 4.36 with aD = 0.6aA.

Equations 4.35 and 4.36 are only valid in their respective limits and become inaccurate
as the interaction parameter x approaches zero, see Fig. 4.5.

The data for ε(x), which could be obtained by the Monte Carlo calculations [66], is
be well fitted with an analytical formula proposed by Manini and Salasnich [72] (see also
Fig. 4.5):

ε(x) = α1 − α2 arctan

(
α3x

β1 + |x|
β2 + |x|

)
. (4.37)

There are two sets of parameters for Eq. 4.37, one for x < 0 and a different one for
x > 0. The values are given in Tab. 4.1 and chosen such that equations 4.35 and 4.36
are recovered in the limiting cases |x| � 1.

For our purposes, the main advantage of an analytic fit function to the QMC data
across the Feshbach resonance is that it allows us to calculate an analytic expression for
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the speed of first sound. As before we can argue that u1 = cT in the zero temperature
limit. If we use the general expression 4.34 for the energy, we can derive the pressure of
the gas

p = −∂E
∂V

=
2

5
nEF ε(x)− 1

5
nEFxε

′(x) (4.38)

with ε′(x) = ∂ε(x)
∂x and ∂

∂V = x
3V

∂
∂x . By using

(
∂
∂ρ

)
T

= − 1
3ρx

(
∂
∂x

)
T
one obtains for the

speed of first sound:

u1 = cT =

(
∂p

∂ρ

)1/2

T

= vF

(
1

3
ε(x)− 1

5
xε′(x) +

1

30
x2ε′′(x)

)1/2

. (4.39)

The result given by Eq. 4.39 is shown in Fig. 4.6. The curve shows a noticeable kink
directly on resonance. This is an artefact of the equation of state 4.37 which uses different
sets parameters for x ≤ 0 and x ≥ 0. In reality there should be no discontinuities in the
derivatives of the equation of state as it is known that the BEC-BCS crossover does not
have the character of a phase transition.

There is also another crossover model which describes a smooth crossover from the
BEC to the BCS superfluid proposed by Eagles [73] and Leggett [74] which yields similar
results for the speed of sound as those shown in Fig. 4.6. However, the model predicts the
dimer-dimer scattering length to be aD,Leggett = 2aA which is not correct. As an extension
of the BCS theory it naturally is accurate for 1/kFaA � −1 and it also reproduces the
known BEC limit correctly if the scattering length and mass are set to aD = 0.6aA and
mD = 2m. However, it remains unclear how the changing scattering length and the
changing mass have to be treated in the strongly interacting regime |1/kFaA| < 1. More
details on this approach are elaborated in the master’s thesis of Klaus Hueck [55].

Directly on resonance

Directly on the Feshbach resonance the scattering length aA diverges and thus cannot be
a relevant quantity for determining the behaviour of the gas. If the scattering length is
no longer part of the description the only parameters which are still available are those
of the non-interacting gas. This implies that the speed of sound has to be proportional
to the Fermi velocity, similar to the case of a non-interacting BCS superfluid (Eq. 4.29).
However, this argumentation does not give any indication about the proportionality con-
stants, which can be different from the non-interacting situation. The speed of sound
directly on resonance (x = 1/kFaA = 0) is given by Eq. 4.39:

u1 = vF

√
ε(0)

3
. (4.40)

The quantity ε(0) is referred to as Bertsch parameter and sometimes also written as
β(0) = ε(0) − 1. The Bertsch parameter is an important quantity which correlates
many properties of the gas on the Feshbach resonance at zero temperature to those of
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Figure 4.6: The speed of first sound in units of the Fermi velocity across the BEC-BCS crossover
for zero temperature. The black curve is the result of Eq. 4.39 with the energy given by Eq.
4.37. In green is the result of the non-interacting Fermi gas, Eq. 4.29 and in red the BCS result
including weak interaction, Eq. 4.33. The results for the weakly interacting BEC are shown in
grey (Eq. 4.22) and blue (Eq. 4.26). The figure illustrates that the BCS extension is accurate
for 1/kFaA . −1.5 and the BEC extension for 1/kFaA & 1 which corresponds to 1/kFaD & 0.6.
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a non-interacting gas. Different theoretical approaches calculate different values for the
Bertsch parameter ranging from ε(0) = 0.358 to ε(0) = 0.42 [70, 71, 75, 76, 77, 78, 79].
Experimental measurements were e.g. performed in references [80] (ε(0) = 0.27), [58]
(ε(0) = 0.376), [81] (ε(0) = 0.51) and [82] (ε(0) = 0.74). The experimental determination
is difficult since it requires an extrapolation to zero temperature. In this thesis I use
ε(0) = 0.42 since it is in agreement with the equation of state given by Eq. 4.37 and Tab.
4.1 which can be applied in the whole crossover region.

4.3.3 Speed of sound at finite temperature

In the previous section we considered a superfluid gas at zero temperature which simplified
the derivation of the speed of sound significantly. In this section the influence of a finite
temperature is presented. We find that the relevant scale at which temperature effects
become significant is the mean field temperature kBT ∗ = nU0 on the BEC side and the
Fermi temperature kBTF = EF on the BCS side. Since in the experiments presented
in this thesis the temperature is low compared to the Fermi temperature the effects on
the speed of sound in the BCS regime can be neglected. In the far BEC limit the mean
field temperature becomes small which implies that thermal effects have in principle to
be considered for weak interactions. However, the range of interactions we access in our
experiments are such that the influence of temperature on the speed of first sound is
small.

In contrast to the zero temperature situation, the mixing term c2
T − c2

S in Eq. 4.11
does not vanish at finite temperatures. Therefore, first and second sound feature both
density and temperature oscillations. This coupling was utilized in the recent observation
of second sound in a strongly interacting Fermi gas [83].

In this section we derive the speed of sound first for a non-interacting BEC and then
include weak interactions. Thereafter, we treat the Fermi gas and the crossover region.

Non-interacting BEC

At finite temperature even a non-interacting BEC shows a non-trivial speed of sound
which we derive in this section. According to [65] the energy and pressure in a non-
interacting Bose gas below the critical temperature

Tc =
2π~2

mDkB

(
nD

ζ(3/2)

)2/3

≈ 0.218
EF
kB

(4.41)

is given by

E = NkB
9

10
σT

ρN
ρ

p = ζ (5/2)
( mD

2π~2

)3/2
(kBT )5/2 (4.42)
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which is independent of the density. Therefore, the isothermal speed of sound is c2
T =(

∂p
∂ρ

)
T

= 0. The entropy per unit mass is given by

s =
S

NDmD
=

3σkB
2mD

ρN
ρ

=
3σkB
2mD

(
T

Tc

)3/2

(4.43)

with σ = 5ζ(5/2)
3ζ(3/2) ≈ 0.856. We see that the entropy is only carried by the normal compo-

nent of the gas as one can expect. For the heat capacity cV and the quantities c2 and
c2
S − c2

T we obtain:

cV = T

(
∂s

∂T

)
ρ

=
3

2
s =

9σkB
4mD

ρN
ρ

c2
2 =

ρSF s
2T

ρNcV
= σ

kBT

mD

ρSF
ρ

c2
S − c2

T =

(
∂s

∂ρ

)2

T

ρ2T

cV
= σ

kBT

mD

ρN
ρ

(4.44)

where
(
∂s
∂ρ

)
T

= − s
ρ . By using ρ = ρSF + ρN we see that

c2
S + c2

2 =
(
c2
S − c2

T

)
+ c2

2 + c2
T = σ

kBT

mD
. (4.45)

With Eq. 4.13 we conclude:

u1 =

√
σ
kBT

mD
= vF

√
σ

4

T

TF
u2 = 0 (4.46)

with the Fermi temperature kBTF = EF . We see that in the non-interacting limit
the second sound vanishes. This can be understood by keeping in mind that without
interactions there is no restoring force for a local excess in superfluid density. Therefore,
the additional degree of freedom introduced to the system by having a superfluid density
cannot participate in the propagation of sound modes. Note, that the speed of sound
given in Eq. 4.46 cannot be written in units of the Fermi velocity vF and only as a
function of 1/kFaA. This is a substantial difference to the zero temperature limit in
section 4.3.2.

Weakly interacting BEC

To judge the influence of a finite temperature in the case of a weakly interacting BEC
I follow the arguments given by Heiselberg in Ref. [64]. The dispersion relation of an
interacting BEC is first linear for low momenta k and becomes parabolic for larger k. The
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linear part is caused by the interaction nU0 and is important for energies (and temper-
atures) lower than the mean field energy kBT . kBT

∗ = nU0. For higher temperatures
the parabolic part has to be considered. The critical temperature of the BEC is given
by Eq. 4.41 which does not change much under the influence of weak interactions [84].
Thus, we can write

T ∗

Tc
= 2 (ζ (3/2))2/3 1

(6π2)1/3
kFaD ≈ kFaD. (4.47)

Typical temperatures which are achieved in the experiment are on the order of half the
critical temperature T ≈ Tc/2. The phononic excitations are therefore dominant as soon
as the interactions are strong enough, 1/kFaA . 1 (with aD = 0.6aA). However, this
is a regime where the theory of a weakly interacting BEC is inaccurate as can be seen
for example in Fig. 4.5. In the regime where the theory of a weakly interacting BEC is
valid, 1/kFa� 1, we thus have to consider the quadratic part of the dispersion relation.
Hence the entropy in Eq. 4.43 remains valid as well as the results given by the equations
4.44. We conclude:

c2
S + c2

2 = σ
kBT

mD
+ c2

T . (4.48)

We saw from Eq. 4.42 that the thermal contribution to the pressure pT is independent
from the density and thus does not contribute to the isothermal speed of sound c2

T =
(∂p/∂ρ)T . However, the pressure also has a contribution which has its origin in the
interaction energy:

Eint =
N2
DU0

2V

(
1 +

ρN
ρ

)
. (4.49)

The part ρN/ρ reflects that thermal atoms interact twice as strong compared to atoms
in the ground state. This additional term is proportional to the entropy and thus does
not contribute to the pressure of the gas:

p = −
(
∂E

∂V

)
S

=
ρ2U0

2m2
D

+ pT . (4.50)

The isothermal speed of sound is then the same as in the zero temperature situation (Eq.
4.17)

c2
T =

(
∂p

∂ρ

)
T

=
ρU0

m2
D

(4.51)

and the speed of sound follows from Eq. 4.13:

u2
1/2 =

1

2

(
σkBT

mD
+ c2

T

)
±

√(
1

2

(
σkBT

mD
+ c2

T

))2

− σkBT

mD

ρSF
ρ
c2
T (4.52)

with cT given by Eq. 4.23. Equation 4.52 shows that the relevant scale for temperature
effects is the mean field temperature kBT ∗ = nU0. In a typical molecular BEC realized
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in our experiments we have T/Tc ≈ 0.5. Under such conditions, we can approximate the
speed of first sound:

u1 ≈
√
σ
kBT

mD
+ c2

T . (4.53)

The error to the complete expression 4.52 at T/Tc ≈ 0.5 is approximately 10% for
1/kFaA ≈ 2.2 and less for other interaction strengths. In the BEC limit, 1/kFaA � 1,
expression 4.53 is exact as the superfluid fraction becomes negligible.

Interestingly, Eq. 4.51 shows that the isothermal speed of sound is a function of
the total density ρ instead of just the superfluid density ρS . In the zero temperature
situation (Eq. 4.17) we identified cT with Bogoliubov phonons which are a result of the
Gross-Pitaevskii equation and are thus strongly connected to the density of the superfluid
fraction of the gas. This discrepancy can be explained by noting that the Gross-Pitaevskii
equation does not account for finite temperature effects.

Degenerate non-interacting Fermi gas

The speed of sound in the non-interacting Fermi gas at finite temperature is more com-
plicated as in the case of a non-interacting Bose gas. In the Fermi gas the combination
of Pauli blocking and temperature implies that the pressure as well as the entropy con-
tribute to the speed of sound. The non-interacting Fermi gas has no superfluid density
and hence c2 = 0. Thus, Eq. 4.13 simplifies to u1 = cS and u2 = 0. The energy and
entropy of the gas are [68]:

E =
3

5
NEF

(
1 +

5π2

12

(
T

TF

)2

+ . . .

)
(4.54)

and

S = kBN
π2

2

T

TF
. (4.55)

The pressure which follows from Eq. 4.54 is

p = −
(
∂E

∂V

)
S

=
2

5
nEF

(
1 +

5π2

12

(
T

TF

)2
)

(4.56)

which leads to the isothermal speed of sound:

c2
T =

(
∂p

∂ρ

)
T

=
1

3
v2
F

(
1 +

π2

12

(
T

TF

)2
)
. (4.57)
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As the entropy given by Eq. 4.55 is linear in temperature we see cV = s = kB
m

π2

2
T
TF

which
can be used to calculate cS with the help of Eq. 4.9:

c2
S = c2

S − c2
T + c2

T =

(
∂s

∂ρ

)2

T

ρ2T

cV
+ c2

T =
4

9
sT + c2

T

=
1

3
v2
F

(
1 +

5π2

12

(
T

TF

)2
)
. (4.58)

The same result can be obtained by directly calculating c2
S =

(
∂p
∂ρ

)
s
. Finally, the expres-

sion for the speed of first sound is

u1 = cS = vF
1√
3

(
1 +

5π2

12

(
T

TF

)2
)1/2

. (4.59)

The modification to the zero temperature case, given by Eq. 4.29, is small for T
TF
�√

12
5π2 ≈ 0.493.

Weakly interacting BCS superfluid

In the case of a BCS superfluid we require T < TC . The critical temperature is a function
of the gap ∆ which itself is an exponential function of the interaction parameter 1/kFaA
[1]:

TC ≈ 0.57
∆

kB
≈ 0.61

EF
kB

e
π

2kF aA . (4.60)

Hence, for weak interactions we demand T � TF . Equation 4.59 shows that the relevant
scale for temperature effects on the speed of first sound is the Fermi temperature and
thus can be neglected. Therefore, Eq. 4.33 remains valid and u2 ≈ c2 � u1. The speed
of second sound was calculated in Ref. [64]. It is zero for T = 0 and T = Tc and shows
a broad maximum around T = 0.7Tc. The value of the maximum is approximately

max (u2) ≈ 0.57
kBT

EF
vF (4.61)

which contains the small parameter kBT/EF < kBTC/EF � 1.

Crossover

The determination of the speed of sound in a gas with strong interactions |1/kFa| < 1 and
finite temperature is difficult since the type of the excitation and thus also the entropy
is unknown. However, directly on resonance 1/kFa = 0 there is a measurement of the
entropy by the Zwierlein group [58]. At high temperatures (T/TF & 0.17) the entropy is
that of a non-interacting Fermi gas whereas for lower temperatures the entropy rapidly

113



4 THE SPEED OF SOUND ACROSS THE BEC-BCS CROSSOVER

drops which the authors of the paper interpret as a change in the nature of the excitations
from free particles to phonons. We can therefore assume that the modification of the speed
of sound due to temperature is a combination of the effects in a BEC (Eq. 4.52) and those
of a Fermi gas (Eq. 4.59). In our experimental realisation the temperature effects are
small in the two limits hence we expect them to be small in the BEC-BCS crossover as
well. Reference [64] shows an approximation of the speed of sound at finite temperature
which is only slightly different from the zero temperature result for T/TC ≤ 0.75

4.3.4 Influence of the trap

To calculate the speed of sound in a trapped system, the local density approximation can
be applied. For the experiments we performed on the speed of sound this approximation
is well justified as the changes in density (i.e. the wavelength of the sound wave) are long
compared to the healing length of the gas. For each position in the cloud, the (local)
speed of sound can then be calculated by using the local density and the formulas given
in Tab. 4.2 on page 122. However, there are two additional points which have to be
considered when comparing our measured data to the theoretical predictions:

• In the experiment it is only possible to measure integrated column densities. Hence,
there is no direct access to kF . A convenient strategy is to work with the Fermi
number kN of a non-interacting Fermi gas which is easily related to the total particle
number via ~2k2N

2m = ~ω̄ (6N)1/3. The relation between kFaA and kNaA can be
derived via the equation of state.

• In a very oblate cloud the circular sound wave moves outwards in an effective density
which is the average density along the strongly confined direction as long as the
system is hydrodynamic.

Fermi wavenumber of a non-interacting Fermi gas

Our measurements of the speed of sound in a strongly interacting Fermi gas are performed
in a trapped and very oblate, but three-dimensional, gas. The images we record of the
samples show a density which is integrated along the line-of-sight of the imaging optics.
Therefore, there is no direct access to the local density of atoms which would be necessary
to make a theoretical prediction for the speed of sound. To deal with this problem we
measure the total particle number and define the Fermi wave number of a non-interacting
gas via

~2k2
N

2m
= ~ω̄ (6N)1/3 . (4.62)

The quantity kN , defined by this equation, equals the real Fermi wave number (which is
a function of the density k3

F /
(
6π2
)

= n) only far in the BCS limit. On resonance and in
the BEC regime kF 6= kN . As kN can be easily extracted from the experiment we need
to derive the relation connecting kF and kN . To avoid confusion about the definition of
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the two Fermi wave numbers I will write kn := kF in the following to indicate that the
quantity is derived from the density n.

The chemical potential in the centre of the trap at a certain interaction strength
x = 1/knaA can be written as

µ0 = cnγ0 (4.63)

with the density in the trap centre n0, the constant c and the polytropic index γ > 0.
In the following I will show how to relate kn and kN using Eq. 4.63. In a harmonic trap
V (~x) = 1

2m
(
ω2
xx

2 + ω2
yy

2 + ω2
zz

2
)
the local chemical potential is µ (~r) = µ0−V (~x) which

leads to the following density distribution:

n(~x) = n0 max

(
1− x2

R2
x

− y2

R2
y

− z2

R2
z

, 0

)1/γ

. (4.64)

Here Ri is the Thomas Fermi radius in the direction i ∈ {x, y, z}:

Ri =

√
2µ0

mω2
i

. (4.65)

The central chemical potential µ0 is fixed by the total particle number:

N =

∫
n(~x) dV. (4.66)

Equation 4.66 evaluated with the density distribution given by Eq. 4.64 yields

N = n0πRxRyRz
Γ(1 + 1/γ)

Γ(5/2 + 1/γ)
. (4.67)

with the gamma function Γ(x) =
∫∞

0 tx−1e−t dt. The condition µ(~x) = 0 for ~x ∈{
(x, y, z)| x2

R2
x

+ y2

R2
y

+ z2

R2
z

= 1
}
fixes the radii Ri. Equation 4.67 connects the total particle

number N with peak density in the cloud centre n0. Therefore, we can relate the Fermi
wave number of a non-interacting Fermi gas kN to the Fermi wavenumber k3

n = 6π2n0:

~2k2
N

2m
= ~ω̄(6N)1/3 = ~kn

√
2µ0

m

(
Γ (1 + 1/γ)√
πΓ (5/2 + 1/γ)

)1/3

=
~2k2

n

m

√
µ0

En

(
Γ (1 + 1/γ)√
πΓ (5/2 + 1/γ)

)1/3

(4.68)

with the mean trap frequency ω̄3 = ωxωyωz and the local Fermi energy in the trap centre
En = ~2k2n

2m .
The two unknown parameters in Eq. 4.68, µ0 and γ, need to be determined with the

equation of state. If we write the energy per particle in the trap centre in the general
form given by Eq. 4.34, E0

N = 3
5Enε(x), the chemical potential is

µ0 =
∂E0

∂N
= En

(
ε(x)− 1

5
xε′(x)

)
, (4.69)
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where ∂
∂N = − x

3N
∂
∂x . The comparison of equations 4.63 and 4.69 yields an expression for

the exponent γ as a function of the interaction strength x:

γ =
∂ lnµ0(x)

∂ lnn0
= −1

3
x
∂

∂x
lnµ0(x) =

2

3
− 1

3
x

4
5ε
′(x)− 1

5xε
′′(x)

ε(x)− 1
5xε
′(x)

. (4.70)

A plot of γ as a function of the interaction parameter is shown in Fig 4.7 based on ε(x)
given by Eq. 4.37. The relation between kn and kN is obtained by combining equations
4.68 and 4.69:

kN = kn
√

2

(
ε(x)− 1

5
xε′(x)

)1/4( Γ (1 + 1/γ)√
πΓ (5/2 + 1/γ)

)1/6

. (4.71)

In Fig. 4.8 a plot of 1/kNaA as a function of x = 1/knaA is shown by assuming that ε(x)
is given by Eq. 4.37. Figure 4.9 shows the ratio kN/kn as a function of the interaction
strength. Note, that the ratio of the corresponding Fermi velocities, vN = ~kN

m and
vn = ~kn

m , equals the ratio of the Fermi wavenumbers vN
vn

= kN
kn

.
As the energy per particle is known for a BEC and for a free Fermi gas we can give

the expressions in those limits as well as for a gas directly on resonance:

• Weakly interacting BEC: For x � 1 the chemical potential is given by µ0 =
n0U0 and therefore γ = 16. To first order in 1/x the quantity ε(x) is given by (see
also Eq. 4.35)

ε(x) =
5

18π

1

x
. (4.72)

According to Eq. 4.71 the relation between kn and kN is then:

kN = kn
√

2

(
1

3πx

aD
aA

)1/4( 8

15π

)1/6

≈ 0.5286 · kn
1

x1/4
(4.73)

and therefore
1

kNaA
≈ 1.8918 ·

(
1

knaA

)5/4

(4.74)

• Non-interacting Fermi gas In the limit x → −∞ the energy per particle is
E
N = 3

5En and therefore ε(x) = 1. It follows from Eq. 4.70 that γ = 2/3 and
therefore

kN = kn (4.75)

as expected.

6The same result is obtained by using the first order in 1/x of Eq. 4.35 in Eq. 4.70
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Figure 4.7: The exponent γ as given by Eq. 4.70 which determines the chemical potential in
Eq. 4.63 as a function of the interaction parameter x = 1/knaA. The solid line follows from the
equation of state given by Eq. 4.37. The dashed lines are the limits in the BEC (γ = 1) and
BCS γ = 2/3 regimes. The mark at x = 0 is the value on resonance where the chemical potential
behaves similar to that of a non-interacting Fermi gas.

• Resonant Fermi gas: For x = 0 equations 4.70 and 4.71 greatly simplify and
yield γ = 2/3 and

kN = knε(0)1/4 ≈ 0.805 · kn (4.76)

with the Bertsch parameter ε(0) ≈ 0.42. The fact that the parameter γ is the same
as in the limit of a free Fermi gas strengthens the intuition that a resonant Fermi
gas behaves similar to a non-interacting Fermi gas in many aspects.

Effective density in the strongly confined direction

To understand the propagation of sound modes in very oblate trapped clouds we have
to consider another effect that modifies the speed of sound. In our experiments the
wavelength of the sound mode is larger than the spatial extend of the cloud in the strongly
confined direction, λ > Rz. As long as the gas is hydrodynamic in the z-direction the
propagation of the density wave is two-dimensional. There is no propagation in the z-
direction and the propagation speed in radial direction can be expected to be a function of
the average density n̄(x, y) along the z-direction. The same effect was encountered in the
speed of sound measurements in Ref. [60] which were performed in a cigar shaped cloud.
There the radially averaged density is determining the one-dimensional propagation of
the sound wave. More profound theoretical studies of this effect have been published in
references [62] and [63].
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Figure 4.8: The interaction strength 1/kNaA in terms of the Fermi wavenumber of a non-
interacting Fermi gas kN as function of 1/kna. The Fermi wavenumber kn is a function of the
central density whereas kN is deduced from the total particle number in the trap. The relation
between the two is required to compare the theoretical predictions of the speed of sound (which
is a function of 1/kna) to the experimentally measured values. In the experiment only kN is
directly accessible. The solid line assumes the equation of state 4.37. The dashed lines are the
BEC and BCS limits given by equations 4.74 and 4.75.
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Figure 4.9: The ratio of the Fermi wavenumber of a non-interacting Fermi gas and the Fermi
wavenumber kN/kn as a function of the interaction parameter x = 1/knaA. The solid line
assumes the equation of state 4.37. The dashed lines are the BEC and BCS limits given by
equations 4.74 and 4.75.
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For the case of a two-dimensional sound propagation in a cloud with a density distri-
bution given by Eq. 4.64 the averaged density in the cloud centre (x, y) = (0, 0) is given
by

n̄0 =
1

2Rz

∫ Rz

−Rz
n(0, 0, z) dz = n0

√
π

2

Γ (1 + 1/γ)

Γ (3/2 + 1/γ)
. (4.77)

Equation 4.77 simplifies to n̄0 = 2
3n0 in the BEC limit (γ = 1) and to n̄0 = 3π

16n0 in the
BCS limit (γ = 2

3). With n0 = k3n
6π2 Eq. 4.77 translates to

k̄n = kn

(√
π

2

Γ (1 + 1/γ)

Γ (3/2 + 1/γ)

)1/3

, (4.78)

where we defined the Fermi wavenumber k̄n which corresponds to the averaged central
density n̄0. A plot of the speed of sound including the averaging effect as a function of
the Fermi wavenumber of a non-interacting Fermi gas kN is shown in Figure 4.10. The
kink of the curves directly on resonance is an artefact of the equation of state 4.37.

The averaging effect described above can only play a role as long as the interaction
is large enough such that the gas is hydrodynamic in the strongly confined direction.
According to Ref. [85] this is the case as long as the spatial extend of the system 2Rz is
larger than the collisional mean free path l ≈ 1

n̄A with the s-wave scattering cross section7

A = 8πa2.
For most of our measurements of the speed of sound the mean free path l and the

system size Rz were comparable to each other. It is therefore not clear if the averaged or
the peak density should be used to describe the speed of sound and the measured data
points should be in between the two predictions. However, for the measurements closer
to the Feshbach resonance the gas was further in the hydrodynamic regime as for those
measurements with weaker interactions. This argument is in good agreement with the
experimental results shown in Fig. 4.3.

7The scattering length a is given by aD for a BEC and by aA in the BCS regime.
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Figure 4.10: The speed of first sound at zero temperature in the trap centre in units of the
Fermi velocity of a non-interacting Fermi gas vN as a function of −1/kNaA. The upper x axis
shows the corresponding value of −1/knaA, see also Fig. 4.8. The negative sign is chosen to make
the plot more intuitive for experiments with 6Li where the BEC is realized at low magnetic fields.
The green curve includes the averaging effect along the strongly confining direction whereas the
red curve assumes that the peak density is relevant for the speed of sound. Note, that both curves
are plotted in units of the local Fermi velocity vN in the trap centre which does not include any
averaging. The dashed lines are the analytic curves in the BEC and BCS limits with and without
averaging.
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4.4 Summary

We measured the speed of sound in the BEC-BCS crossover in a oblate ultracold fermionic
gas. The results are in good agreement with theory. The most important aspects of the
behaviour of the speed of sound in the crossover can be summarized as follows:

• In the BEC regime at zero temperature first and second sound are finite and are a
result of the mean field interaction energy nU0. The non-interacting BEC at T = 0
does not support first sound.

• In the BEC regime temperature effects become relevant for temperatures larger
than the mean field temperature T > T ∗ = nU0/kB.

• Speed of sound in a Fermi gas at zero temperature is an effect due to Pauli blocking
and interaction energy. Therefore, even the non-interacting Fermi gas supports the
first sound mode.

• The relevant scale for temperature effects on the speed of first sound in a Fermi gas
is the Fermi temperature.

• The calculation of the sound modes in the strongly interacting regime is difficult.
Monte Carlo simulations can give insights to the zero temperature situation. The
resulting speed of sound as a function of the interaction interpolates between the
two known limits on the BEC and the BCS side.

For the conditions which are realized in our experiment (T/TC ≈ 0.5 on the BEC side
and |1/kNaA| < 7), the temperature influence is small and can be neglected. The ex-
pressions for the speed of first sound in the different interaction regimes are shown again
in Tab. 4.2. If the speed of sound is measured in a very oblate atom cloud which is thin
compared to the wavelength of the sound wave and hydrodynamic in all directions it is
the average density along the strongly confined direction which determines the speed of
sound. Our data suggests that the measurements are performed in an interesting partially
hydrodynamic regime. Finally, due to experimental reasons, we plot the speed of sound
in units of the Fermi velocity of a non-interacting Fermi gas vN which is a function of the
total particle number. Similarly, the s-wave scattering length is compared to the Fermi
wavenumber of a non-interacting Fermi gas kN to quantify the interaction strength.
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Interaction Regime u1(T = 0) u1(T > 0)

Non-interacting BEC
x→ +∞

0
√
σ kBTmD

Weakly interacting BEC
x� 1

√
nDU0

mD
≈ 0.178vF

√
kFaA

√
nDU0

mD
+ σ kBTmD

Weakly interacting BEC
x > 1

√
nDU0

mD

(
1 + 32√

6π3

(
aD
aA

)3
(kFaA)

3

)
Strongly interacting gas
|x| < 1

vF

√
1
3ε(x)− 1

5xε
′(x) + 1

30x
2ε′′(x)

Resonant gas
x = 0

vF

√
ε(0)
3

Weakly interacting Fermi gas
x < −1

vF√
3

√
1 + 2

πkFaA + 8(11−2 ln 2)
15π2 (kFaA)

2

Non-interacting Fermi gas
x→ −∞

vF
1√
3

vF
1√
3

√
1 + 5π2

12

(
T
TF

)2
Table 4.2: Summary of the speed of first sound across the BEC-BCS crossover for zero and
finite temperature. The interaction parameter is defined as x = 1/kFaA, with k3F /(6π

2) = n. On
the BEC side the dimer mass and scattering length are mD = 2m and aD = 0.6aA where m is
the mass of a single atom, aA is the atom-atom scattering length and σ ≈ 0.856 In the strongly
correlated regime the parameter ε(x) describes the energy per particle of the gas and is given by
Eq. 4.37.
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5 The critical velocity across the BEC-BCS
crossover

5.1 Introduction to superfluidity

Superconductivity is amongst those physical phenomena which have the highest potential
impact on future technology. Superfluidity and superconductivity describe the astonish-
ing property of sustained particle currents on a macroscopic scale without friction and
their appearance is remarkably widespread, ranging from superfluid helium over the cores
of neutron stars to metallic and non-metallic superconductors [1, 86]. The flowing par-
ticles are all condensed in the same quantum wave function which allows them to flow
dissipationless over long times. Despite the tremendous efforts which have been put
into the development of theories to describe this astonishing behaviour the underlying
mechanisms are still not fully understood. On the one hand, there are several successful
theories specialised on the description of particular superfluid systems. Examples are
the Bogoliubov theory which describes the BEC state or the BCS theory which explains
conventional superconductors. On the other hand, the microscopic effects in superfluid
4He are not entirely understood and the situation is even more controversial for uncon-
ventional superconductors such as those in the cuprate family. One particular issue that
arises in the description of those systems is that they feature strong interactions which
make it difficult to describe their excitations as quasi-particles. Here experiments on ul-
tracold fermions are a unique and powerful tool to gain deeper understanding. They are
capable to probe the strongly interacting regime as well as the almost fully understood
BEC and BCS regimes. Therefore the experiments can be verified and calibrated in the
known limits and then used to investigate strongly correlated phenomena. Furthermore,
modern cold fermion experiments offer control over other properties like dimensionality
or lattice geometries which are likely to have significant importance in the creation of
superfluid states.

In this chapter, I present our measurements of the superfluid critical velocity across
the BEC-BCS crossover. Those measurements are the main result of this chapter and
shown in Fig. 5.4. The corresponding theory is presented and the experimental data for
the critical velocity is compared to the speed of sound which was discussed in chapter
4. We find that the critical velocity in the BEC regime does not behave as predicted by
simple mean field theory. Simulations which were performed by Vijay Singh and Ludwig
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Mathey were able to explain this discrepancy and are presented in the end of the chapter.
Part of this chapter will be published, the preprint reference is [87].

5.1.1 Theory and Landau’s criterion

The Landau criterion for superfluidity makes the connection between the excitation spec-
trum of a superfluid and the critical velocity. To derive it I will follow the arguments
given in Ref. [1]. Let us consider a rigid obstacle of large mass M moving at a velocity
~v trough a superfluid. The superfluid shall be at rest. For small ~v the flow around the
obstacle will be frictionless and the obstacle will not experience any drag force. Above
the critical velocity vc, a non-zero drag force will appear and reduce the kinetic energy of
the obstacle. This energy is dissipated into the surrounding fluid by creating excitations.
The process has to conserve the total momentum and the energy of the system. If one
such excitation has a momentum ~p and an energy ε(p) it will reduce the velocity of the
obstacle by ~δv. Therefore we conclude

1

2
M~v2 =

1

2
M
(
~v − ~δv

)2
+ ε(p) (5.1)

and
M~v = M

(
~v − ~δv

)
+ ~p. (5.2)

After elimination of ~δv and assuming that the massM is large these two equation simplify
to

~p · ~v = ε(p). (5.3)

Since |~p · ~v| ≤ pv the Landau velocity vL, which is the minimal velocity for creating
excitations, is given by

vL = min
p≥0

ε(p)

p
. (5.4)

The excitation spectrum for free particles is ε(p) ∝ p2 and therefore vL = 0. Hence,
a system with an excitation spectrum which allows for free particle motion cannot be
superfluid. Equation 5.4 could be experimentally confirmed by measuring the drag force
experienced by a moving ion in superfluid 4He [88]. The measured critical velocity of
vc = 46ms−1 (see Fig. 5.1) is in excellent agreement with the roton minimum [89] in
the excitation spectrum shown in Fig. 5.2 if pressure effects are taken into account. The
excitation spectrum itself could be obtained from neutron scattering experiments [90]. It
is worth mentioning that the nature of the roton excitation is not entirely known. Here
the study of superfluidity in ultracold gases might give the insights needed to develop a
more complete understanding.

In the following sections I will describe superfluidity in quantum gases in the limiting
cases of the BEC and the BCS theory. There, vc is predicted to be limited by the creation
of phonons (BEC) and the breaking of cooper pairs (BCS).
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Figure 5.1: Measurement of the drag force experienced by an ion moving through superfluid 4He
as published in Ref. [88]. Drag sets in as soon as the Landau critical velocity vL is reached (open
circles). Here vL = 46ms−1 was measured at a pressure of 25.3 bar close to the solidification
pressure. For comparison the drag force of helium in the normal fluid phase is shown as well
(solid line).
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Figure 5.2: Excitation spectrum of superfluid 4He obtained from neutron scattering experiments
at standard pressure (black dots) [90]. The red line illustrates the Landau critical velocity vL as
given in Eq. 5.4. Its slope is 58ms−1 and corresponds to the creation of rotons. The speed of
sound vS = 239ms−1 is significantly higher and can be extracted from the spectrum by a linear
fit from the origin to the low momenta excitations (green line).
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5.1.2 Superfluidity in a BEC

The ground state wave-function Ψ(~r) of an interacting BEC is well described by the mean
field equation named after Eugene P. Gross and Lev P. Pitaevskii:(

− ~2

2mD
∆ + V (~r) + U0 |Ψ(~r)|2

)
Ψ(~r) = µΨ(~r) (5.5)

Here mD is the mass of the constituent bosons, V (~r) is the confining potential and
U0 = 4π~2aD

mD
is the interaction parameter with the dimer-dimer s-wave scattering length

aD. The chemical potential µ has to be fixed such that the total particle number is
N =

∫
|Ψ|2. In order to obtain the superfluid critical velocity with Eq. 5.4 we have

to calculate the excitation spectrum of the system described by Eq. 5.5. With the
Bogoliubov approximation and in the case of a homogeneous system, i.e. for V (~r) = 0,
one obtains the following excitation spectrum

ε(k) =

√
~2k2

2mD

(
~2k2

2mD
+ 2U0n0

)
(5.6)

with the particle density nD = |Ψ|2. This spectrum is quadratic for large momenta ~k
similar to free particles. For small momenta the spectrum becomes linear

ε(k) =

√
nDU0

mD
~k, k �

√
4πaDU0 =

√
4U0nDmD

~
. (5.7)

It is this linear part of the excitation spectrum which is defining the Landau critical
velocity. Due to the linearity these low momenta excitations are usually refereed to as
phonons and the corresponding velocity is the speed of sound u1:

vL,BEC = u1 =

√
nDU0

mD
. (5.8)

This mean field treatment naturally does not account for beyond mean field effects like
vortex excitations. Under certain circumstances such beyond mean field excitations can
be excited prior to phonons and thus lower the Landau velocity. Section 5.3.1 gives an
overview on those excitations.

Temperature effects

The speed of sound gained from Bogoliubov theory (Eq. 5.8) coincides with the zero
temperature result of the thermodynamic approach (Eq. 4.21). We saw in the previous
chapter that finite temperature leads to an increase of the speed of sound whereas the
superfluid fraction of the gas decreases. As the temperature reaches the critical temper-
ature Tc, the critical velocity must vanish. Therefore we expect that finite temperatures
reduce the critical velocity. Consequentially speed of sound and critical velocity do not
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5.1 Introduction to superfluidity

coincide for T 6= 0. A simple approximation which we can make is to use only the
superfluid density nS in Eq. 5.8 to calculate the critical velocity which then is

vc =

√
nSU0

mD
(5.9)

with
nS
nD

= 1−
(
T

Tc

)α
(5.10)

where the exponent is α = 3/2 in a homogeneous system and α = 3 in a harmonically
trapped system. If we assume a (local) condensate fraction of nS

nD
≈ 0.9 in the cloud

centre in our experiments the finite temperature would cause a reduction of the critical
velocity of approximately 5% which is less than our statistical measurement error.

Second sound

We showed in section 4.3.3 that at finite temperatures and finite interaction strength
second sound is not just a temperature wave but also a density modulation propagating
in the atom cloud1. Therefore we expect that the moving obstacle in our experiment
can excite second sound at a velocity u2 prior to first sound and the critical velocity
should be given by u2 ≈ 1√

3
u1 in the BEC regime. However, we assume that the density

variation which is associated with a second sound wave is small and leads to small heating
rates which cannot be resolved by our experiment. In Ref. [91] the coupling of the second
sound mode to density variations is calculated for a unitary elongated Fermi gas, showing
that it is small at low temperatures. We are not aware of any detailed studies concerning
the superfluid critical velocity given by the speed of second sound.

5.1.3 BCS superfluidity

For −1/kNaA > 1 the superfluid is formed by loosely bound Cooper pairs according to
BCS theory. A mean-field description [6] is generally considered to give fairly accurate
results for weak interactions at T = 0. Then the lowest energy excitations is the breaking
of Cooper pairs. Applying the Landau criterion results in a critical pair breaking velocity
[92]

v2
pb =

√
∆2 + µ2 − µ

m
, (5.11)

which simplifies to

vpb ≈
∆

~kN
(5.12)

in the deep BCS limit. Following the mean field approach, we calculate the gap ∆ and the
chemical potential µ at T = 0 by solving the gap and the number equation numerically

1The direct observation of second sound in Ref. [83] is an experimental proof of this coupling.
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[93]. The resulting vpb is plotted in black in Fig. 5.4. For more details on this approach I
would like to refer the reader to Ref. [55]. The velocity which is obtained by this method
can be considered as an upper bound of the pair breaking velocity as it only takes into
account the density in the centre of the cloud. The stirring beam is also passing through
lower density regions along its line-of-sight. Therefore, the observed critical velocity can
be expected to be lower than the predicted value. We note that this approach does not
correctly account for higher order corrections of µ and ∆ in kNa [6].

Temperature effects

We do not take temperature effects into consideration when calculating the gap and the
critical velocity. However, for measurements further in the BCS regime the temperature
can easily approach the critical temperature and therefore reduce the energy gap. If
we assume a temperature in our samples of T/TF = 0.07 we conclude from Eq. 4.60
that there is no superfluid fraction for −1/knaA > 1.38. However, for T/Tc < 0.5 the
temperature dependence of the superfluid energy gap is negligible [94] and the critical
velocity is close to the zero temperature situation. At a temperature of T/TF = 0.07 this
limits our theoretical approach to −1/knaA < 0.94.

5.1.4 Superfluidity in the strongly correlated regime

For | − 1/knaA| < 1 mean field theories, like the Bogoliubov or the BCS theory, fail to
describe the critical velocity accurately due to the lack of known quasi-particle excitations.
However, mean-field BCS theory provides a closed form expression for the pair-breaking
velocity and the speed of sound is known as described in chapter 4. Therefore, the speed
of sound and the pair breaking mechanism mark upper limits to the critical velocity in
the strongly interacting regime. Still, it is not clear which type of excitation governs the
critical velocity in the | − 1/kFa| < 1 region.
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5.2 Measurement procedure

To perform the actual stirring experiment, a red-detuned laser beam is focused on the
gas which is prepared as described in chapter 3. The resulting attractive potential serves
as an obstacle whose motion and speed v is controlled by reflecting the beam from a
two-axis piezo controlled mirror2. It traces out a circular trajectory with a radius of
10 µm along lines of constant column density within the superfluid region of the gas. The
beam has a wavelength of 780 nm and is focused to a 1/e2 waist of 2.4 µm× 1.9 µm. This
size has to be compared to the relevant length scales for excitations of the atomic gas.
In the BEC regime this is the healing length which is ξ = 0.94 µm for our measurement
at −1/kFa ≈ −3.5. At unitary the interparticle distance n−1/3 ≈ 1.5 µm is relevant.
The power of the stirring beam is chosen such that the local column density is increased
by approximately 85%. Since the chemical potential µ for a constant column density
depends on the value of −1/kFaA where aA is the s-wave scattering length, the actual
beam power varies between 0.4 µW and 1.4 µW.

The stirring sequence proceeds as follows: First, aA is set to the desired value by
ramping the magnetic field to a value between 750Gauss and 890Gauss. After 50ms
thermalisation time the power of the already moving obstacle beam is linearly ramped
up within 10ms to avoid non-adiabatic effects. Next, the gas is stirred for 200ms before
the power of the obstacle beam is linearly ramped down in 5ms with the beam still being
kept in motion. After a thermalisation time of 100ms the magnetic field is ramped to
680Gauss in 100ms and an in-situ absorption image of the atoms is taken. The previously
mentioned condensate fractions were also measured at this field. For v = 0mms−1 we
observe no heating of the cloud caused by the obstacle potential itself. For each stirring
speed v we repeat this sequence typically ten times with identical settings and extract
the radially averaged, line-of-sight integrated density distribution ñ(r) from the mean of
those datasets. Since the gas is well in the BEC regime during the image acquisition, we
apply a bimodal fit and extract the central column densities ñ(0).

Above (below) a certain critical velocity vC we observe a (no) significant reduction
in the central column density ñ(0). As a function of stirring speed the behaviour of this
quantity exhibits a distinct kink, as shown in Fig. 5.3. We identify this kink as the onset
of heating at vC where superfluidity breaks down. The exact value of vC is extracted
from a fit with a continuous bilinear function which has a constant value of ñ0 below the
critical velocity vC and decreases linearly with slope A above:

ñ = ñ0 min (1, A (v − vc)) . (5.13)

2Physik Instrumente (PI), S-334.2SD1 with controller E-616.SS0G. We use the controller well above
the specified operation limits. The capacitance of the piezo mirror limits the bandwith to approximately
30Hz for the required large tilt angles. The resulting low pass behaviour could be compensated by using
larger set control voltages depending on the stirring frequency. Finally we were able to reach frequencies
of up to 200Hz for a 10µm stirring radius of the reflected laser beam in the atom cloud. At larger stirring
radii the achievable maximal frequency reduces.
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Figure 5.3: Data analysis for a measurement of the superfluid critical velocity. Below the
critical velocity of 4.8mms−1 the central density is not affected by the stirring procedure. Avove
the critical velocity we observe a reduction of the central density due to heating. The data shown
was recorded for a magnetic field strength of 849Gauss during the stirring time.

The free fit parameters are ñ0, vC and A. We were also able to confirm that stirring in a
thermal (non-superfluid) cloud results in a vanishing critical velocity. We determine the
critical velocities for different interaction strengths −1/kNaA throughout the BEC-BCS
crossover and plot them in units of the Fermi velocity vN in Fig. 5.4. This is the main
result of this chapter. The data shows a maximum of vC close to 1/kNaA = 0 and a
decrease towards the BEC and the BCS side of the resonance. In physical units the
values for the obtained critical velocities are between 1.7mms−1 and 6.3mms−1. The
qualitative behaviour of the data points is as expected as the critical velocity on the
BEC side should be given by the speed of sound which increases with the interaction
strength. On the BCS side pair breaking is the responsible mechanism for the critical
velocity. The pair binding energy is given by the gap ∆ which is exponentially small
with decreasing interaction. It is apparent that the measured critical velocity vc is far
less than the expectation. In the strongly correlated regime an explanation might be
given by yet unknown types of excitations. But also in the BEC regime the speed of
first sound u1 is significantly larger than the measured values of vc. There were several
previous measurements of the critical velocity in other research groups which observed a
similar behaviour.

5.2.1 Previous measurements

For weakly interacting BECs, the critical velocity should be given by the speed of first
sound u1. This has not been observed: Experiments found upper values for vc/u1 of
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Figure 5.4: Measurement results of the superfluid critical velocity (red dots) and the speed
of sound (black dots) as a function of the interaction strength −1/kNaA. The velocities are
given in units of the Fermi velocity vN . The upper x axis shows the corresponding value of
−1/knaA, see also Fig. 4.8. The red and green curves are the theoretical predictions for the
speed of sound as derived in chapter 4. The grey curve is the critical velocity caused by the
breaking of cooper pairs under the assumption that only the density in the centre of the cloud
is relevant. The discrepancy between the critical velocity and the speed of sound in the BEC
region (−1/kNaA < −1) is apparent. The error bars of the critical velocity are the fit errors of
the bilinear fit function 5.13. The crosses mark the critical velocities obtained by the simulations
presented in section 5.4.

approximately 10% for three- and 60% for two-dimensional dilute atomic BECs [95, 96,
97], respectively. For those experiments the spatial size of the perturbation was much
larger than the healing length ξ. In this case vortex rings (3D) or pairs (2D) are expected
to be excited rather than sound waves [98, 99].

In the strongly correlated regime the description in terms of weakly interacting quasi-
particles breaks down and to our knowledge no theoretical prediction for vC exists. Here,
experiments with ultracold Fermi gases are ideally suited to study superfluidity in the
BEC-BCS crossover, since the interaction strength can be tuned with Feshbach reso-
nances. In an experiment by the Ketterle group [61], the critical velocity was probed in
the strongly correlated regime with a moving optical lattice. At unitarity, they found
vC/vF = 0.25 which is 30% below the theory prediction for the speed of sound. Un-
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fortunately, in the corresponding publication no data is given to compare their results
with ours apart from the unitary point. Furthermore, their experiment did not allow for
a precise determination of the Fermi wavenumber kF , which would be necessary for a
substantive comparison to theory [100].

After we completed our measurements we became aware of recent work which was
performed in the group of Christoph Salomon where two superfluid clouds, one of 6Li
and one of 7Li, are oscillating through each other [101]. The relative motion of the two
clouds and the damping of the oscillation probe the critical velocity. They obtain a value
of vc = 0.42vF which is close to the speed of sound at unitary vs ≈ 0.45vF , where vF
denotes the Fermi velocity in the 6Li cloud. However, a theoretical shows that in their
particular measurement scenario heating is predicted to occur for a relative velocity that
equals the sum of the individual sound velocities of the two clouds [102]. The underlying
reason is, that in contrast to the assumption made for the Landau criterion, the mass of
the disturbing potential is comparable with the constituents of the gas and not infinite.

132



5.3 Discussion

5.3 Discussion

To explain the discrepancy between the measured critical velocity vc and the speed of
first sound u1 in the BEC regime multiple effects play a role which are discussed in this
section. We found, that the finite temperature, the inhomogeneous density profile along
the strongly confined direction, the circular instead of linear motion of the stirrer, and
to a lesser degree the finite depth of the obstacle potential are relevant. To support the
arguments given, I will later present simulation results obtained by Vijay Singh Ludwig
Matthey in section 5.4.

5.3.1 Finite obstacle effects

The Landau criterion applied to the Bogoliubov theory or the BCS theory does not
consider effects which are caused by a finite obstacle size. In our experiments the spotsize
of the stirring beam is comparable to the healing length of the cold gas and thus finite
size effects are in general possible.

• Creation of a local density minimum: The movement of the obstacle in the
superfluid medium creates variations in the local density around the perturbation.
This is intuitive for the case of a blue-detuned (repulsive) stirring beam which
creates a density minimum thus reducing the local critical velocity. But even a red
detuned (attractive) stirring beam is expected to create a density minimum in front
of the obstacle which leads to a local reduction of the critical velocity as pointed out
in Ref. [103]. The effect scales with the depth of the obstacle potential and should
vanish in the limit of an infinitely shallow obstacle. We performed measurements
of the critical velocity at different beam powers of the stirring beam and confirmed
that this effect should have only minor influence on our results.

• Local increase in flow speed: When a disturbing potential is moving through
the superfluid flow dynamics are created. For a repulsive obstacle, there will be
flow around the obstacle thus creating a local density minimum. In the coordinate
system of the obstacle that results in a local increase of flow velocity at the sides
of the obstacle and thus the critical velocity is exceeded at a lower obstacle speed
than what one would naively expect. An attractive obstacle shows a similar effect
with the difference that the trajectories of the superfluid are attracted towards the
obstacle creating a local density maximum.

• Creation of vortices: In the BEC regime we considered the Bogoliubov theory
which concludes that the critical velocity is given by the speed of first sound. So
far we did not consider beyond mean field effects. One prominent example is the
excitation of vortices which can be created as vortex pairs, closed vortex rings or in
other configurations. As pointed out in Ref. [99] and [103] it strongly depends on
the size w of the disturbing potential if the speed of sound u1 is larger or smaller
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than the critical velocity for vortex excitation vV . According to Ref. [99] u1 should
be lower than vV for w/ξ . 7 (. 1 for [103]). In our experiment the ratio w/ξ is
approximately 2.5 for the measurements at −1/kNaA ≈ −3.5 and vortex excitations
should not be solely responsible for the observed deviation between u1 and vc.

5.3.2 Trap effects

As pointed out in chapter 4 there are two different possibilities to define the Fermi wave
number in a trap: either via the density k3

n = n
6π2 or via the total particle number

~2k2N
2m = ~ω̄ (6N)1/3. Especially in the BEC regime the two definitions are not identical
kN 6= kn, see section 4.3.4 for details.

For calculating the speed of sound in a strongly interacting, hydrodynamic gas we
consider the average density along the z direction instead of the peak density of the cloud.
The reason is that the waves in our measurements for the speed of sound have a large
wavelength compared to the spatial extent 2Rz of the atom cloud in the strongly confined
direction. Therefore, the waves effectively probe an average density. Concerning the
measurement of the critical velocity this argument does no longer hold as the wavelength
of the created Bogoliubov phonons can be as small as the healing length ξ < 2Rz of
the system. Such high momentum phonons are able to resolve the local density in the
cloud which varies along the z direction. We can therefore argue that the critical velocity
measured in the experiment should always vanish as in each measurement low density
and non-superfluid regions in the outer region of the atom clouds are probed as well.
Nevertheless, we observe clear signatures of a non-zero critical velocity which might be
due to small heating rates associated with excitations in the low density regions.

Furthermore, we measure the critical velocity not in the cloud centre but at a stirring
radius of 10 µm. The Thomas Fermi radii in the radial direction Rx, Ry were larger than
34 µm for all measurements. The resulting reduction of the expected critical velocity is
then < 5% which is less than our measurement error.

5.3.3 Finite temperature

As discussed in sections 5.1.2 and 5.1.3 we expect temperature effects on vc to be small
for our experimental parameters. The simulations presented in section 5.4 suggest that
temperature effects only have a minor effect on the reduction of the critical velocity in
the experiments.
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5.4 Simulation results

To gain a deeper understanding of our measurement results, the theory group of Ludwig
Matthey and in particular his doctoral student Vijay Singh simulated our experiment with
a classical field method which is the limiting case of the truncated Wigner method used in
Ref. [104]. The time evolution of an ensemble of complex-valued fields is calculated using
classical equations of motion. The initial states are generated from a grand canonical
ensemble via a classical Metropolis algorithm. The simulations were performed in the
BEC regime at a scattering length of aA = 3634 aBohr ≈ 190 nm which corresponds to
a magnetic field strength of B ≈ 755Gauss. To disentangle the multiple effects which
potentially lead to a reduction of the observed critical velocity, I will first present the
simulation of the simplest situation which is closest to the ideal case and can be properly
described by Bogoliubov theory. Thereafter the parameters are successively changed such
that the simulations finally are a close approximation of our experiment.

Most simple approximation: homogeneous and cold sample with a shallow stirrer and a
linear stirring pattern

The most academic situation that was simulated is a homogeneous cold gas at a tem-
perature of T = 1 nK and a density of n = 0.486 µm−3. The system is simulated on a
grid with 60× 60× 3 sites and periodic boundary conditions. The discretization length
is 1 µm. An attractive potential which is Gaussian shaped in the radial direction and
cylindrical in the z direction with a depth of U = kB · 1 nK simulates the stirring beam.
The spatial extent of the simulated stirring potential is chosen similar to the size of the
stirring beam in the experiment. The potential is linearly ramped on and off following
the same protocol as the experiment and traces out a linear stirring pattern. During the
simulated stirring, the heating rate of the gas is recorded as a function of the stirring
speed, see Fig. 5.5. To determine vc the fit function A ·

(
v2 − v2

c

)2
/v + B is used for

v > vc [105], with the free parameters A, B and vc. In this case vc ≈ 4.2mms−1 is
obtained which is in good agreement with the Bogoliubov sound velocity of the sample
u1 = 4.4mms−1.

Introduce a stronger stirrer

Next, the stirrer strength is increased to U = kB · 30 nK. In this situation the simulation
results in a reduced critical velocity of vc = 3.2mms−1. A locally increased flow speed
around the stirrer or the onset of vortex nucleation might be responsible for this reduction.
As a comparison also a repulsive stirrer with U = −kB · 30 nK was simulated with
otherwise unchanged parameters. Here vc = 2.2mms−1 is obtained which indicates that
a repulsive stirring potential reduces the critical velocity more than an attractive one.
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Introduce higher sample temperature and change to a circular stirring pattern

To get to a closer approximation of our experimental measurements the simulated sample
temperature is increased to T = 10 nK and the stirring trajectory is changed such that it
matches the one used in the experiment. The simulations show that both features reduce
vc by approximately 15%. Having both present simultaneously causes a small further
reduction of the critical velocity to vc = 2.7mms−1. The reduction at finite temperature
might be due to vortex-antivortex excitations, or rotonic precursors of them. As the
temperature is increased above the mean field energy, density fluctuations increase and
vortices can nucleate at points of minimal density. That the circular motion can reduce
vc can be seen in perturbation theory performed in momentum space: here, the motion
of the perturbation consists of a distribution of velocities rather than a single velocity.

Introduce inhomogeneities

To simulate our experiment as realistic as possible the spatial inhomogeneities are added
to the simulations to account for trapping effects. The simulated cloud is trapped in
a harmonic potential with trapping frequencies of ωx = ωy = 2π · 31Hz and ωz =
2π · 446Hz. The resulting simulated Thomas Fermi radii are Rx = Ry = 29 µm which is
close to the experimentally observed value of 34 µm. The simulation grid was extended
to 140×140×11 sites. The simulated local density excess inside the stirrer is comparable
to the excess observed in the experiment. The simulated critical velocity of 1.6mms−1

agrees excellently with the experimentally measured value of 1.7mms−1. We believe
that the additional reduction of 39% with respect to the homogeneous simulation result
is mainly due to probing lower density regions along the stirrer axis For the trapped cloud
the reduction in the central column density was simulated as well. The results are shown
in the inset of Fig. 5.5 and are in good agreement with the experimental data.
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Figure 5.5: Simulated heating rates normalised by the stirrer depth U2. The complexity is
gradually increased: blue squares depict the idealized case of a very cold homogeneous sample
stirred with linear pattern. The relative density excess in the weak stirrer potential U = kB ·1 nK
is only 3%. In this case the extracted critical velocity vc = 4.2mms−1 is close to the Bogoliubov
speed of sound which is u1 = 4.4mms−1 for all datasets. The red open circles depict a simulation
of the experimental case: A trapped sample is stirred circularly with a stirrer of realistic depth.
A reduced temperature is chosen for technical reasons. For this curve, the y-axis scaling factor
is unity. In the inset, the results for the heating observed in the central column density are
compared. The red open (blue filled) circles show the simulated (experimental) result. The
bilinear fits to extract vc are shown with solid lines. In the inset U = kB · 35 nK.
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5.5 Conclusion

In conclusion, we have demonstrated the breakdown of superfluidity due to a moving
obstacle across the BEC-BCS transition, for the first time in close analogy to Landau’s
Gedankenexperiment. We compare the results with theoretical predictions throughout
and achieve quantitative understanding in the BEC regime by performing numerical
simulations. Pointlike defects also play a role in strongly correlated high temperature
superconductors. The experiment presented here provides the opportunity to isolate
relevant effects in a very clean and controllable environment. Of particular interest for
future studies are strongly correlated two-dimensional superfluids where the theoretical
situation is far more unclear compared to three-dimensional systems even in the weakly
interacting limits
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6 Two-dimensional ultracold gases

The research on two-dimensional systems currently enjoys a high priority mainly due
to its connection to high-temperature superconductivity. Modern experiments working
with ultracold fermions provide the possibility to access and to simulate the physics in
such systems in a very clean and controlled environment. However, in the past it was
impossible to create single-layer two-dimensional clouds which restricted the studies on
2D systems to samples containing multiple layers with different densities and atom num-
bers. As a consequence, only averaged effects could be investigated. With the latest
generation of experimental apparatuses, it becomes possible for the first time to create
single-layer two-dimensional clouds and to locally image and manipulate the samples via
microscope objectives. Such experiments are highly welcome from a theoretical point of
view as well, since two-dimensional samples offer a rich variety of physics which cannot
be accessed in other dimensionalities. Examples are the Berezinsky-Kosterlitz-Thouless
(BKT) transition or polarized phases with deformed Fermi surfaces like the Fulde-Ferrell-
Larkin-Ovchinnikov (FFLO) phase. Furthermore, single-layer two-dimensional samples
form the basis for experiments which aim towards single-site and single-atom detection in
combination with optical lattices. It can be anticipated that the experiment presented in
this thesis will provide new insights, contributing to the development of theories describ-
ing 2D systems which are currently far less mature than comparable theories describing
1D or 3D systems.

In this chapter, I first give a brief and incomplete overview of the features of two-
dimensional gases and point out several fundamental differences compared to three-
dimensional systems. Next, I introduce the experimental approach to create 2D sam-
ples in our apparatus using an optical lattice and present a novel method to verify that
only one layer of this lattice is occupied. In the last section, I show further advanced
manipulation techniques which are integrated in the setup.
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6.1 Theory of a two-dimensional cold gas

This section is intended to give a brief insight into 2D physics and to point out funda-
mental differences between 2D and 3D quantum gases. The section follows the lines of a
review article by Bloch, Dalibard and Zwerger [5]. First, a pure two-dimensional system
is discussed. Afterwards the more realistic case of 2D systems created in experiments
is considered. In the latter the influence of the third dimension cannot be neglected
completely.

6.1.1 Pure two-dimensional system

Non interacting Bose gas

To illustrate the impact of the dimensionality on the properties of an ultracold gas,
consider the case of an ideal, homogeneous Bose gas in two (three) dimensions. The gas
is described by its atom density n2D (n3D), the temperature T and the mass m of its
constituents. Further, we can define the thermal de Broglie wavelength λT = h√

2πmkBT
.

One can then find expressions for the degeneracy parameter n2Dλ
2
T (n3Dλ

3
T ) by using

the Bose distribution and the density of states1 for the atoms:

n2Dλ
2
T = − ln

(
1− e

µ
kBT

)
n3Dλ

3
T = g3/2

(
e

µ
kBT

)
(6.1)

where g3/2(z) =
∑∞

n=1
zn

n3/2 . The chemical potential µ is given by the density and tem-
perature such that Eq. 6.1 is fulfilled. In the three-dimensional case this is only possible
for n3Dλ

3
T ≤ g3/2(0) = ζ(3/2) ≈ 2.612. For higher values of n3Dλ

3
T , there is no solution

for µ which indicates the formation of a BEC2. In contrast, the two-dimensional case in
Eq. 6.1 admits a solution for arbitrary high values of n2Dλ

2
T and therefore condensation

does not occur at non-zero temperatures.
The result that there is no condensate in two dimensions changes if the gas is trapped

in a harmonic potential V (r) = 1
2mω

2r2, where ω is the trapping frequency. When
applying the local density approximation, the expression for the degeneracy parameter
becomes

n2D(r)λ2
T = − ln

(
1− e

µ−V (r)
kBT

)
. (6.2)

Taking the limit µ→ 0 and integrating over the two spatial dimensions yields an expres-
sion for the critical temperature Tc, below which a condensate emerges:

kBTc = ~ω
√

6N

π
. (6.3)

1The density of states for a homogeneous gas in d dimensions is g(ε) ∝ ε(d/2)−1.
2Here condensation is defined as a macroscopic occupation of the ground state, rather than long-range

phase coherence.
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Although the presence of a trapping potential allows the formation of a condensate in two
dimensions, the situation is still substantially different from a three-dimensional BEC.
For non-zero temperatures, the density in the centre of the trapped cloud diverges in
two dimensions n2D(0) → ∞, whereas it tends to a finite value in three dimensions
n3D(0) = ζ(3/2)

λ3T
.

Interacting gas

In three dimensions it is possible to apply a mean field theory to the problem of an
interacting Bose gas as long as the interactions are not too strong. A mean field parameter
U0 is defined which yields a very simple expression for the chemical potential µ = n3DU0.
As this expression can be considered as an equation of state, all thermodynamic properties
of the gas can be written as a function of U0. In two dimensions such a convenient mean
field treatment is impossible as the energy dependence of the scattering processes cannot
be neglected. To show this, consider the scattering of a plane wave ei~k~x in the low energy
limit. The wave function after the scattering event can be written as3

Ψ(~x) = ei
~k~x −

√
i

8π
f(k)

eikr√
kr

(6.4)

where f(k) is the dimensionless scattering amplitude. Since we restrict ourselves to low
energy s-wave scattering, f(k) is isotropic and can be written as

f(k) =
4π

2 ln
(

1
ka2D

)
+ iπ

. (6.5)

Equation 6.5 defines the 2D scattering length a2D. The dimensionless scattering ampli-
tude vanishes in the low energy limit, i.e.

lim
k→0

f(k) = 0. (6.6)

Further, the total scattering cross-section, which is defined as the integral of the dif-

ferential cross-section
∣∣∣f(k)/

√
8πk

∣∣∣2 over all solid angles, diverges in two dimensions,
σ2D → ∞. In three dimensions it is finite and given by σ3D = 4πa2

3D. In the three-
dimensional mean field theory the parameter U0 = 4π~2a3D

m is intrinsically connected to
the scattering amplitude at low energies. As the scattering amplitude vanishes in the
two-dimensional situation (Eq. 6.6) a similar treatment is not possible.

Equation 6.1 shows that an ideal, homogeneous 2D Bose gas cannot condense at any
non-zero temperature. This statement continues to hold under the presence of interac-
tion. It was generally shown by Mermin, Wagner and Hohenberg [8, 9] that a continuous

3The normalization prefactors are omitted for clarity.
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6 TWO-DIMENSIONAL ULTRACOLD GASES

symmetry cannot be broken in two dimensions at any non-zero temperature. In partic-
ular, it forbids the presence of long range phase coherence and therefore Bose Einstein
condensation. However, the formation of a so-called quasi-condensate is possible, which
is described by a wave function Ψ(~x) =

√
n2D(~x)eiφ(~x) with a fluctuating phase φ(~x) but

suppressed density fluctuations. The phase fluctuation themselves can appear either in
the form of long-wavelength phonons or as quantized vortices around which the phase
turns by 2π or multiples thereof. The formation of the quasi-condensate out of a thermal
gas with decreasing temperature is described by the BKT transition [106, 107] which I
will briefly sketch in the following. At very low temperatures, the phase fluctuations are
dominated by phonons whereas density fluctuations are suppressed. Vortices exist only
in the form of pairs and the first order correlation function shows an algebraic decay
ng(1)(r) = 〈Ψ(r)Ψ(0)〉 ∝ r−η in contrast to a BEC where the correlation function does
not decay to zero. The exponent is η = 1/(nSλ

2
T ), which relates the superfluid density

nS directly to the phase ordering (coherence) in the system4. The superfluid density
decreases with increasing temperature until a critical temperature TBKT is reached at
which nS suddenly jumps from a finite value nsλ2

T = 4 to zero and the decay of g(1)

becomes exponential. Microscopically, the transition is accompanied by the proliferation
of the previously bound vortex pairs. The free vortices then distort the phase such that
the superfluidity (which can be regarded as phase-stiffness) in the system disappears.
For even higher temperatures, density fluctuations enter the system and the notion of
vortices becomes inapplicable. The correlation function g(1) becomes Gaussian and the
behaviour of the gas approaches that of an ideal gas [5].

There is an intuitive way to calculate the BKT transition temperature TBKT by
considering the contribution of a single vortex to the free energy of the system which
shall have a spatial extent R. Around the singly charged vortex the (superfluid) flow
field is given by v(r) = ~

mr . Hence, the corresponding kinetic energy is

E = πmnS

∫ R

ξ
v2(r)r dr =

πnS~2

m
ln

(
R

ξ

)
. (6.7)

The lower bound of the integral is the healing length ξ which takes into account that the
density in the vortex core drops to zero on approximately that length scale. The entropy
S of the vortex is given by all possible positions of the vortex inside the systems of size
R2. The approximate size of the vortex itself is ξ2 and therefore

S = kB ln

(
R2

ξ2

)
. (6.8)

Hence, the free energy is

F = E − TS =
1

2
kBT

(
nSλ

2
T − 4

)
ln

(
R

ξ

)
. (6.9)

4The densities here and in the following part of this chapter are 2D areal densities.
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6.1 Theory of a two-dimensional cold gas

In the case of a large system R � ξ and cold temperatures, the free energy is large and
positive. Therefore, free vortices do not appear in the system5. With increasing tem-
perature, the thermal de Broglie wavelength shrinks and above the critical temperature
TBKT the system favours the existence of free vortices to lower the free energy. The
critical temperature is given by

nSλ
2
T = 4

⇔ TBKT =
π~2nS
2mkB

. (6.10)

Although Eq. 6.10 is clean and simple, it is only of limited value to calculate TBKT in an
experiment, since the relation of the superfluid density to the total density nS/n remains
unknown.

6.1.2 Realistic two-dimensional system

The previous section considered a pure two-dimensional system and did not account
for any contributions of a third dimension. However, in the experiments which can be
performed on two-dimensional quantum gases, the third dimension cannot be neglected
completely. In cold gas experiments the kinematics in the third direction are frozen
out in the sense that a confining potential is applied in this direction which is strong
enough that the first excited state of this potential cannot be reached by any other
intrinsic energy scale of the system. For a harmonic potential with a trap frequency
ωz, this implies in particular kBT, µ� ~ωz. Under such conditions the two-dimensional
scattering amplitude was calculated in Ref. [108, 109]. The scattering length is

a2D = lz

√
π

B
e
−
√

π
2

lz
a3D (6.11)

with B = 0.905 and the harmonic oscillator length lz =
√

~
mωz

. A positive s-wave scat-
tering length is connected to the presence of a bound state. Therefore, Eq. 6.11 implies
that a two-component Fermi gas confined in two dimensions supports a molecular bound
state for all 3D scattering lengths a3D. The binding energy is given by EB = − 4~2

ma22D
.

This is a further property of two-dimensional gases, which is substantially different from
the three-dimensional situation where a bound state exists only on the BEC side of the
Feshbach resonance. The scattering amplitude can be obtained with Eq. 6.5 and 6.11
and is given by

f(k) =
4π

√
2π lz

a3D
+ ln

(
B

πk2l2z

)
+ iπ

. (6.12)

5Note that bound vortex pairs with opposite charge are still possible, as the energy of such a pair
is given by an expression similar to Eq. 6.7 with the upper bound of the integral given by the vortex
separation d� R.
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6 TWO-DIMENSIONAL ULTRACOLD GASES

For a3D � lz, the logarithmic part in Eq. 6.12 can be neglected [108]

f(k) ≈
√

8π
a3D

lz
=: g̃2 � 1 (6.13)

defining a small dimensionless coupling parameter g̃2. As a consequence, the scattering
becomes energy independent and a mean field treatment is possible. The corresponding
mean field parameter is g2 = ~2g̃2

m and the chemical potential becomes µ = g2n similar
to the 3D situation. The fact that the scattering events are described by the scattering
length a3D distinguishes the regime a3D � lz from a pure two-dimensional system and
it is therefore referred to as quasi-2D regime. For such a quasi-2D gas there is a Monte
Carlo calculation [110] for the total density at the critical point of the BKT transition:
nλ2

T = ln
(
C
g̃2

)
with C = 380 ± 3. The same publication points out that the superfluid

density in such a quasi-2D gas is smaller than the quasi-condensate density which is
another remarkable difference compared to a 3D gas where the two densities are identical.

For the experimental apparatus presented in this thesis, the scattering length a3D

can be enhanced by making use of a Feshbach resonance and it is possible to access the
regime where a3D is comparable to or exceeds lz. Then the full expression 6.12, including
the energy dependence, becomes relevant and the situation is a close approximation of a
pure 2D gas.

Quantification of the interaction strength

Similar to the three-dimensional gas, where the interaction strength is usually quantified
as x = 1

kF a3D
, a dimensionless parameter needs to be defined for the same purpose in the

two-dimensional case. The Fermi wavenumber in two dimensions is kF =
√

4πn2D, which
is easily accessible in the experiment for all interaction strengths as there is no line-of-
sight integration like in a 3D gas. The scattering length a2D defined by Eq. 6.11 is always
positive and the interaction strength can therefore be quantified via η = ln (kFa2D). For
6Li η is positive at high magnetic fields (BCS side) and negative at low magnetic fields
(BEC side). However, η = 0 does not coincide with the 3D Feshbach resonance and the
position of the zero crossing depends on the confinement length lz in the vertical direction.
Sometimes n2Da

2
2D is used as an equivalent to η. The presence of a molecular bound state

for all interaction strengths offers another possibility to quantify the interaction strength
via the molecular binding energy. The binding energy is EB = − 4~2

ma22D
and depends

solely on the scattering length a2D. The interaction is then typically given as the ratio
−EB/EF , where EF =

~2k2F
2m . For 6Li −EB/EF is small at high magnetic fields and large

at low magnetic fields. The point −EB/EF = 1 coincides neither with η = 0 nor with
x = 0 in general.

6.1.3 Speed of sound in two dimensions

The microscopic properties of a 2D or quasi-2D quantum gas affect the macroscopic
behaviour of the system. As it is questionable whether a mean field theory is appropriate
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6.1 Theory of a two-dimensional cold gas

Figure 6.1: Different predictions for the equation of state of a two-dimensional Fermi gas as
published in Ref. [113]. Plotted is the beyond mean field correction to the energy per particle of
the gas as a function of the interaction strength.

to capture the scattering physics in a 2D system correctly, the description of macroscopic
effects is non-trivial as well. As an illustrative example, I would like to consider the speed
of sound. In chapter 4 we were able to calculate the speed of sound for a weakly interacting
molecular three-dimensional BEC at T = 0 by considering the mean field energy of the
gas and then applying basic thermodynamic relations. If the same procedure is applied
to a quasi-2D situation, the speed of sound in units of the Fermi velocity is

u1

vF
=

1√
2
, (6.14)

which is independent of the interaction strength. According to Ref. [111] the result given
in Eq. 6.14 holds even when additionally considering phase and amplitude fluctuations.

In contrast to the mean field result, the Monte Carlo calculation presented in Ref.
[112] concludes that the equation of state, and therefore the speed of sound, depends
significantly on the interaction strength. Reference [113] compares multiple suggested
expressions for the equation of state and concludes that even first-order corrected mean
field theories do not provide an accurate description for a weakly interacting 2D gas, not
even for ultra weak interactions on the order of na2

2D ≈ 10−100 ⇔ ln (kFa2D) ≈ −114.
Figure 6.1 shows several predictions for the equation of state at T = 0 as published

in Ref. [113] and illustrates how valuable an experimental measurement of the equation
of state would be to improve the understanding of such systems.
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6 TWO-DIMENSIONAL ULTRACOLD GASES

6.2 Setup III: From the squeeze trap to the lattice

In this section I present our approach to trap ultracold atoms in a potential such that
the physics is governed by two-dimensional effects. First, I will introduce the concept
which is based on the trapping of atoms in a blue-detuned optical lattice. Next, technical
details will be discussed and finally I show a procedure to verify that only one single layer
of the lattice is occupied. The latter is a crucial condition to work with in-situ imaging
and to observe local effects in the cloud. The design and the integration of the lattice
which we use to create the two-dimensional confinement was part of the master’s project
of Klaus Hueck and details can be found in his thesis [55].

6.2.1 Concept

The concept of our approach to create two-dimensional samples is that of an optical
lattice. Two intersecting laser beams with identical frequency form an interference pattern
which has a lattice spacing on the order of the wavelength. The resulting trapping
frequencies are high enough to create a two-dimensional confinement even for larger atom
numbers. We use blue-detuned laser beams with a wavelength of 532 nm which create
a repulsive potential for the atoms as shown in Fig. 6.2. The two beams intersect each
other at an angle of 5.2◦ which results in a lattice constant of 2.9 µm. An ultracold cloud
of atoms is prepared in the squeeze trap as described in chapter 3 and afterwards the
blue-detuned lattice is ramped up to load the atoms in between two of the interference
maxima. During the loading sequence, the squeeze trap operates at high power and
the magnetic field is ramped to the BEC side of the Feshbach resonance to ensure a
small spatial extent of the cloud in the z direction. The laser beam of the squeeze
trap is aligned such that the atoms are loaded into one single potential minimum of
the lattice. If the position of the squeeze trap with respect to the lattice is changed by
half a lattice spacing it is possible to create two identical atom clouds on top of each
other. After the loading is completed the squeeze trap can be switched off and radial
confinement is provided by magnetic trapping which is available due to the geometry
of the coils generating the magnetic offset field. The main advantage of a blue-detuned
lattice compared to a red-detuned one is that with increasing beam power the vertical
trap frequency ωz becomes larger whereas the radial trapping frequency ωr is almost
not affected. Therefore, high ratios of ωzωr can be achieved which allows two-dimensional
trapping of large atom numbers. Further parameters of the lattice trap are listed in Tab.
6.1.
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6.2 Setup III: From the squeeze trap to the lattice

(a) Oblate cloud in the squeeze trap (b) Blue-detuned lattice for 2D confinement

Figure 6.2: The concept for the creation of single-layer two-dimensionally trapped atom clouds.
(a) First, a cold oblate sample is prepared in the squeeze trap as described in chapter 3. (b) Two
intersecting blue-detuned laser beams with a wavelength of 512 nm create an interference pattern.
The additional confinement in the z-direction which is created by that lattice is sufficiently
strong to achieve two-dimensional trapping. The lattice spacing is 2.9 µm and the squeeze trap
is positioned such that the cloud is located in between two interference maxima.

6.2.2 Green lattice

The light for the green lattice is created by frequency doubling6 of 1064 nm light created
by a Nd:YAG laser7 which is amplified with a fibre amplifier8 prior to the second harmonic
generation. The main design criterion of the 532 nm lattice is stability. For a reproducible
transfer of atoms from the squeeze trap into one single layer of the lattice, it is necessary
to reach a stability of the two traps with respect to each other of less than a lattice
spacing. As there is no automatic feedback loop installed to stabilize beam pointing,
a high level of mechanical stability is essential. Therefore, all the optics for the lattice
and the squeeze trap are designed as rigid and compact as possible. In addition, the
two fibre couplers for the 532 nm and the 1064 nm light are mounted in a symmetric
arrangement on the two sides of a single, vertically installed optical breadboard. The
beam splitting assembly to create the two laser beams for the lattice, is a customized
design which was optimized for long term stability and low drifts of the beam pointing.
A sketch of the assembly is shown in Fig. 6.3. After the two beams have been separated,
they pass through a number of lenses for beam shaping. Afterwards, they are combined
with the 1064 nm beam, which forms the squeeze trap, with a dichroic mirror. The lattice
beams are shaped to reach an elliptical beam waist of 350 µm × 35 µm9. The achieved
intersection area is almost circular in the radial plane. The spatial restrictions around
the science cell make it difficult to perform manual readjustments to the optics of the
lattice. Therefore, one of the lenses is mounted on a piezo actuated linear stage which
can be remote controlled. The movement of the lens shifts the intersection position of

6Evans & Sutherland, doubling cavity
7Innolight, Mephisto MOPA
8Nufern, Sub-1174-22 Fibre Laser
91/e2 radius, intensity
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6 TWO-DIMENSIONAL ULTRACOLD GASES

Figure 6.3: Assembly to split the 532 nm laser beam into two parallel beams in order to create
the lattice for the two-dimensional confinement. The design minimizes drifts in the beam pointing
while still providing a certain adjustment range by utilizing flexure bearings. The graphic is
adopted from Ref. [55].

Description Value

Lattice laser, wavelength 532 nm
Lattice laser, beam intersect angle 5.2◦

Lattice laser, beam waist dimensions 35 µm× 350 µm
Lattice, spacing 2.9 µm
Lattice, vertical trap frequency at 600mW ωz = 2π · 24.8 kHz
Trap frequency ratio at 600mW and B = 835Gauss ωz

ωr
≈ 850

Table 6.1: Properties of the confinement to create a two-dimensional gas.

the two 532 nm laser beams. A direct monitoring of the interference pattern is possible
with the BEC-X camera. An exemplary picture can be seen in Fig. 6.4. The camera can
also be used to align the lattice with respect to the squeeze trap10.

6.2.3 Procedure and verification of single-layer two-dimensional confinement

This section presents detailed information on the loading sequence of the lattice trap and
the verification scheme that only one single layer of this lattice is occupied. The achieved
performance is discussed, including a measurement of the long term stability of the setup.

Sequence

The following procedure is used to create a two-dimensional single-layer sample: first, an
ultracold cloud is prepared in the squeeze trap as described in chapter 3. The final evap-
oration power in the squeeze trap is typically chosen to be 20mW. After the evaporation

10Note the focal shift of the imaging optics when comparing the 532 nm and 1064nm light.
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6.2 Setup III: From the squeeze trap to the lattice

Figure 6.4: Image of the interference pattern used to create the two-dimensional gas acquired
by the BEC-X camera. The spacing between two interference maxima is 2.9 µm. The imaging
optics can resolve the lattice pattern even though it is below its resolution limit. The reason
is that only a very small region in the optical Fourier space is necessary to describe the highly
periodic pattern. As a result, only a very small fraction of the lens’ aperture is actually used.
The aberrations introduced by imperfections in this area are small enough to allow good imaging
of the lattice. In contrast, the spatial extent of an atom cloud trapped in one of the interference
minima cannot be resolved. As the lattice constant is known with a high precision, such images
provide an easy and reliable method to calibrate the magnification of the camera.

is completed the cloud is re-compressed by exponentially increasing the beam power of
the squeeze trap to 500mW in 200ms and subsequently ramping the magnetic field from
835Gauss to 795Gauss (coil current 105A to 100A) in 100ms. Both the magnetic field
ramp and the re-compression reduce the spatial extent of the cloud in the vertical direc-
tion and therefore simplify the loading of a single layer of the 2D lattice afterwards. After
the magnetic ramp, the power of the lattice beams is exponentially increased to typically
600mW11 in 100ms. After the lattice is switched on, the squeeze trap is switched off by
exponentially lowering its power within 300ms. Radial confinement is then provided by
the magnetic field curvature (ωR ≈ 2π ·29Hz at 835Gauss). The atom cloud is now ready
to be used for an experiment. Imaging can either be performed while the atoms are in the
lattice or after the cloud is transferred back into the squeeze trap. When transferring the
atoms back into the squeeze trap an exponential lowering of the lattice beam power over
a time of 1 s is necessary to avoid heating. With the correct experimental parameters we
observe no heating after transferring the atoms from the squeeze trap to the lattice and
back, which indicates that the loading procedure outlined above is adiabatic.

Tunnelling

The lattice beam power can be changed to achieve varying trap frequencies in the vertical
directions as shown in Figure 6.5. However, if the beam power is lowered too far, the
tunnelling rate between different interference minima increases. As a result, multiple
layers are occupied even if the loading sequence successfully loads atoms only into the

11Powers for the lattice beams are always given as the sum of both beams.
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Figure 6.5: Vertical trap frequencies achieved in the squeeze trap as a function of the beam
power p (solid line). The tunnelling rate between different layers of the lattice (dashed line)
assumes that the lattice beam intensity is half of the peak intensity at the edge of the cloud.

central layer. The tunnelling rate is plotted in Fig. 6.5 under the assumption that there
is no further confinement and that the cloud size is such that the laser beam power is
reduced to one half at the clouds edge. If the beam power for the lattice exceeds 400mW,
the tunnelling rate becomes insignificant for typical experimental time scales and can be
neglected. Tunnelling at low lattice beam powers can be strongly suppressed with the
squeeze trap which imposes a strong relative potential offset to the different layers of the
lattice. We observe no tunnelling on experimental time scales with the lattice operating
at 50mW and the squeeze trap at 30mW.

Verification of single-layer loading

When using the loading scheme outlined above, it is crucial to verify that only one
single layer of the lattice is populated with atoms. A lateral shift of the trap centre of
the squeeze trap relative to the lattice by half a lattice spacing (1.5 µm) is sufficient to
change the single-layer loading into a symmetric double layer loading. To monitor the
loading performance we utilize a small misalignment between the lattice and the squeeze
trap to our advantage as shown in Fig. 6.6. The plane which is defined by the squeeze
trap is slightly tilted with respect to the plane defined by the interference pattern of
the lattice. The tilting angle is approximately 1.5◦. To verify that only one single
layer of the lattice is occupied we image the cloud with the squeeze trap and the lattice
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6.2 Setup III: From the squeeze trap to the lattice

(a) (b)

(c) (d)

Figure 6.6: The scheme to verify single-layer loading into the 2D lattice. Figures (a) and (b)
illustrate how the tilted lattice (green) with respect to the squeeze trapping region (red) separates
the atoms (black) into multiple clouds if more than one layer of the lattice is populated. Figures
(c) and (d) show the corresponding in situ absorption images. The images are acquired with the
squeeze trap operating at 500mW and the lattice at 600mW. The magnetic field is 715Gauss.

operating at high beam powers. As a result, the atoms which populate different layers
of the lattice are laterally separated as illustrated in the figure. Therefore the acquired
in situ absorption pictures verify weather the loading sequence performs as intended.
By changing the pointing of the squeeze trap, the loading can be adjusted to achieve
single-layer, symmetric double-layer or asymmetric double-layer loading.

By counting the atom numbers in the separated clouds it is possible to define a
parameter s which describes the efficiency of the single-layer loading sequence:

s =
Ncentral

N
, (6.15)

where Ncentral is the atom number in the central layer. Typically a value of s ≈ 0.8 can
be achieved for a atom number of Ncentral ≈ 20000. Loading of three or more layers is
possible as well by changing the loading sequence such that the cloud is fairly large in
the vertical direction when ramping up the lattice .

Performance

Typical atom numbers which can be trapped in a single layer of the 2D lattice are
Ncentral ≈ 30000 (per spin state). In momentum space we observe a bimodal distribution
which we identify with a certain condensate fraction, which typically is around 50% for
30000 atoms at a magnetic field of B = 716Gauss. For higher magnetic fields closer to
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Figure 6.7: Lifetime of atom clouds trapped by the 2D lattice as a function of the magnetic field.
The radial confinement is only due to the magnetic trapping and the squeeze trap is completely
switched off. At low magnetic fields the dimers start to decay into lower molecular states which
reduces the lifetime of the sample significantly.

the Feshbach resonance, the characterisation becomes more difficult due to the lack of a
known equation of state which describes the system in the strongly interacting regime.

The lifetimes of the trapped (quasi-)2D gas are shown in Fig. 6.7. Towards the
BEC limit the lifetimes are reduced as the dimers become more deeply bound and start
to decay into lower vibrational and rotational states. The de-excited molecules are no
longer resonant with the imaging light and the released energy is transferred to a third
scattering partner which escapes the trap. The lifetimes in the lattice are considerably
longer than those achieved by trapping in the squeeze trap (Figure 3.21 on page 88). It
is assumed that imperfections of the squeeze trap are responsible for the reduction.

6.2.4 Advanced manipulation methods

The single-layer, two-dimensional ultracold gases serve as excellent starting point for
experiments. With the highly resolving imaging optics and the possibility of tuning
the interactions, many interesting aspects of 2D systems can be studied. However, the
potential of the machine extends even further. A couple of additional manipulation
methods have already been implemented. They either act on the sample and the response
can be investigated or they allow us to control further properties of the atom cloud. Those
techniques are briefly presented in the following. It should be mentioned that many of
them have not been used yet for actual measurements.
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RF manipulation of hyperfine states

So far, we considered balanced gases where two different hyperfine states are populated
equally. The presence of two distinguishable states is a requirement to evaporatively
cool the fermionic cloud. However, after the sample has been cooled down it might
be interesting to create imbalanced gases or to transfer a fraction of the atoms into a
third hyperfine state. For this purpose, radio frequency antennas have been installed in
close proximity to the science cell. Details about the setup can be found in the master’s
thesis of Klaus Hueck [55]. One application of strongly imbalanced gases is to investigate
the non-interacting Fermi gas. An interacting imbalanced Fermi gas features pairing
of minority and majority atoms in the centre of the trap, whereas the majority atoms
will form a purely polarized ring in the outer regions of the atom cloud. The polarized
phase is non-interacting and can for example be used to calibrate the temperature in the
experiment as the properties of the ideal gas are known, see for example supplemental
material of Ref. [58].

Optical lattices

Currently, two different options are available to create optical lattices in the plane of the
2D ultracold gas. One is designed to imprint a small periodic structure onto the inner
region of the gas cloud and uses light shone onto the atoms via the upper microscope
objective. The other is a conventional retro-reflected lattice which can be either used to
simulate the lattice of a condensed matter crystal or to pin the atoms on the lattice sites
for imaging purposes.

1. The first lattice uses four far detuned laser beams with a wavelength of 1064 nm,
shone onto the atom cloud via the upper microscope objective as shown in Fig. 6.8.
Details can be found in the Bachelor’s thesis of Niclas Luick [114]. The detuning
with respect to the transition frequency of 6Li is large enough to eliminate off-
resonant scattering. The beams intersect with an angle of 59◦ and create a squared
optical lattice with a lattice constant of 1080 nm. The individual beams have an
adjustable spot size ranging from 15 µm to 30 µm12 which is smaller than a typical
atom cloud in our experiment. Therefore, the lattice can be used to realize cooling
schemes which aim for a low entropy area in the centre of the cloud surrounded by
a high entropy bath. Another possible application is the simulation of the Hubbard
model surrounded by a bath of ultracold atoms.

The large lattice constant in combination with the high resolution optical system
allows to image single sites of the lattice using fluorescence imaging. During the
imaging pulse, it is necessary to fix the atoms at their positions which can be
achieved by ramping up the lattice beam power. However, due to the large detuning
of the lattice beams, high powers are necessary and extreme care has to be taken
that the beams do not reach the EMCCD sensor of the camera.

121/e2 radius, intensity
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Figure 6.8: Concept of the far detuned optical lattice shone onto the atoms via the upper micro-
scope objective. The four beams with a wavelength of 1064nm interfere such that a square lattice
with a lattice constant 1080 nm is created inside a circular area with an adjustable radius rang-
ing from 15 µm to 30 µm. The polarisation of the beams is chosen such that only diametrically
opposite beams interfere. Graphic adopted from Ref. [114].
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2. The second lattice uses light at the wavelength of 672 nm and is created by two
retro-reflected beams propagating in the same plane where the 2D gas is created
in. The beams are perpendicular with respect to each other such that the created
squared lattice has a lattice constant of 336 nm. The interference between two non
counter-propagating beams is suppressed via different polarisation settings. The
beam optics are mounted on the same breadboard around the science cell as the
optics for the squeeze trap and the 532 nm lattice which creates the two-dimensional
confinement. Details of the setup and the alignment procedures can be found in
Ref. [55]. The beam waists of the two lattice beams measure 14 µm × 180 µm13

which is larger than the typical atom clouds. Hence, the lattice can be used to pin
the whole cloud for imaging purposes. With only 15mW of beam power (per beam)
at a wavelength of 672 nm, the lattice created has a depth of 4000 recoil energies.
Therefore, the lattice is optimally suited for fluorescence imaging of clouds which
have previously been manipulated with the far detuned lattice described above.
The differing lattice constants ensure that atoms which were previously trapped
in separate sites of the lattice shone through the microscope objective are still
separated far enough from each other in the 672 nm lattice to allow single site
imaging.

The same setup can also create a retro-reflected lattice with a larger lattice constant
by using light with the wavelength of 1064 nm. With such a lattice the Hubbard
model can be simulated. The spacing between two lattice sites of 532 nm is slightly
less than the resolution of the microscopes. However, with an optimized analysis
of the acquired images single-site resolution is still within reach.

Creation of micro-potentials

A laser beam with a wavelength of 780 nm is focussed with the upper microscope objective
to a waist of 0.9 µm which is comparable to several intrinsic length scales in the atom
clouds. These are for example the de Broglie wavelength, the healing length and the
interparticle distance. In combination with a piezo actuated mirror, this beam was used
in the measurements of the speed of sound and the critical velocity presented in chapters
4 and 5. Details about the optical setup of this beam can be found in the Bachelor’s
thesis of Martin Schlederer [51]. With an additional 2D acousto-optic deflector, it is
possible to create multiple small dipole traps in close proximity to each other. The
relative positioning of those traps is controllable and simple geometries like square 2× 2
plaquettes can be created. By rapidly sweeping the driving frequencies of the deflector,
time-averaged potentials like e.g. a ring are possible. Time dependent potentials can be
realized as well. The high level of controllability of the micro-potentials facilitates the
study of small mesoscopic systems which are embedded in a bath of ultracold atoms.

131/e2 radius, intensity

155





7 Conclusion & outlook

Superfluidity is a remarkable phenomenon with high technological relevance. In its en-
tirety it is still not completely understood, especially in strongly correlated systems. Our
experiments contribute to the understanding of the superfluid state and how it behaves
in the transition between the BEC and BCS states.

A thermodynamic equation of state is a powerful tool to describe many properties
of a physical system. Our measurements of the speed of sound across the BEC-BCS
crossover provide a benchmark to the theoretically predicted equation of state. Similar
measurements in two-dimensional systems will offer valuable input to the development
of a comprehensive theory describing the BEC-BCS transition in lower dimensions.

The machine that we have set up is able to create single-layer ultracold fermionic gases
deep in the two-dimensional regime for the first time. The interaction strength between
the constituents can be freely adjusted via a Feshbach resonance and the samples can
be manipulated and probed with a resolution of around 700 nm. The capabilities of the
setup are rounded off by various options to manipulate the gas. The apparatus has just
recently been completed and the measurements of the sound velocity and the critical
velocity are only the first experiments which have been performed with it. The potential
of the machine has not yet been fully utilized and the future promises many interesting
discoveries.

In the following I would like to list a few research directions which can be addressed in
the near future and which do not require any major upgrades to the setup. The options
listed below are incomplete and the rapid development of the field might open entirely
new possibilities.

The speed of sound across the BEC-BCS crossover in two dimensions

As presented in chapter 4, the speed of sound is directly connected to the equation of
state which describes the thermodynamic properties of the gas. Many properties of a two
dimensional ultracold gas are still unknown including the equation of state. The speed
of sound is therefore unknown as well which makes experimental studies desirable. We
performed such measurements of the speed of sound in two-dimensional clouds and a pre-
liminary analysis indicates that the equation of state obtained by quantum Monte Carlo
simulations [112] is in reasonable agreement with the experimental results. In contrast,
the mean-field prediction vs = 1√

2
vF seems to be inadequate. A detailed presentation of

those measurements will be made available soon in the doctoral thesis of Kai Morgener

157



7 CONCLUSION & OUTLOOK

[18] and in a research article which is currently in preparation.

Imbalanced gas and FFLO phase

The behaviour of imbalanced ultracold gases in two dimensions is not fully understood.
One example is the Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) phase [115] which features
Cooper pairing at finite momentum and thus deformed Fermi surfaces. The FFLO phase
was first detected in a superconducting bulk material in 2003 [116] but so far it could
not be observed in a cold gas experiment. It is predicted to be rather unstable in 3D
ultracold gases but to occupy a much larger area in the phase diagram of 2D Fermi gases
[117, 118]. In our apparatus it is possible to create imbalanced gases and confine them in
a two-dimensional trap. Under the assumption of the local density approximation, each
absorption image which is taken of the atom cloud probes a certain range of the chemical
potential and thus can be considered as a cross-section of the phase diagram. If the FFLO
phase occupies a sufficiently large area in the phase diagram, a ring-like region in the
2D gas will be in the FFLO state. This region is predicted to show density modulations
caused by the non vanishing momentum of the Cooper pairs. Those oscillations can than
be detected by analysing high resolution in-situ absorption images.

Friedel oscillations

If a small perturbation is introduced into a Fermi gas, an isotropic spatial oscillation
of the density around the position of the perturbation is predicted [119, 120]. These
so called Friedel oscillations have already been observed in solids [121] but not yet in
quantum gases. The oscillations can be easily understood by considering the following
scattering argument. A fermion with a certain initial momentum state can only scatter
if the final momentum state is available. In a gas which is cold compared to the Fermi
temperature, only atoms with a momentum close to the Fermi momentum kF are able
to scatter. The wave function therefore oscillates with a spatial frequency kF in the
vicinity of an externally imprinted density disturbance. As a result the density oscillates
with a spatial frequency of 2kF . A more detailed analysis shows that the amplitude of
the oscillations decays as 1/r3 in three dimensions and as 1/r2 in two dimensions [122].
To observe these oscillations in our experiment, it is necessary to create a clear Fermi
edge in the momentum distribution of the atoms which could be realized either far on
the BCS side of the Feshbach resonance or by using a fully polarized sample. Further
it is necessary to probe a region with constant density (and therefore constant kF ) to
avoid averaging effects. Our two dimensional ultracold gases in combination with the
high resolution imaging system is ideally suited to perform such an experiment.

Optical lattice experiments

The suggested experiments mentioned above do not utilize the possibility to impose an
optical lattice onto the atom cloud. With such a lattice it is possible to use the machine
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as a simulator for models which are proposed to describe solid state phenomena. The
probably most prominent example is the Hubbard model which describes the behaviour
of particles in a lattice at low temperatures by taking into account only the on-site
interaction energy and the nearest neighbour tunnelling. The model attracts a lot of
attention as it might explain high temperature superconductivity. Although the structure
of the model is rather simple, its exact solutions away from half filling are still unknown.
Cold atom experiments with optical lattices simulate the Hubbard model and thus can
help to understand its properties.

Our experiment is particularly well suited for this type of research since it offers
in-situ high resolution imaging. If the lattice constant is chosen sufficiently large, the
microscope objectives are able to resolve the individual sites of the lattice. In addition,
the single-layer two-dimensional confinement of the atoms avoids any averaging along
the imaging axis. The possibility to study the spatial distribution of particles inside the
optical lattice is unique to cold gas experiments and turns them into a valuable tool to
improve the understanding of solid state phenomena.

Experiments with two layers

Our apparatus is able to produce two layers of two-dimensional clouds on top of each
other, a configuration potentially useful for experiments as well. A symmetric loading
of the two layers can be used to apply heterodyning techniques to gain access to the
phase of the system similar to Ref. [123, 124]. Another experimental possibility would
be to connect the two layers with a narrow channel created by a red-detuned laser beam
from above. An asymmetric loading of the two layer creates a difference of the chemical
potential along the channel which allows the study of conductance phenomena.

The controlled coupling of two-dimensional superconducting planes in high-temperature
superconductors is a highly promising research topic which may lead to novel crystal
structures and superconductors with even higher critical temperatures. Corresponding
research is currently performed in Hamburg in the group of Andrea Cavalleri [125]. The
realisation of an analogue to the situation in the layered superconductors in our cold
atom experiment might be helpful to isolate and to understand the relevant effects in a
very clean and controllable environment.
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