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Abstract

This thesis presents experiments on 3D and 2D ultracold fermionic 6Li gases
providing local access to microscopic quantum many-body physics. A broad
magnetic Feshbach resonance is used to tune the inter-particle interaction
strength freely to address the entire Bose-Einstein condensate (BEC)-Bardeen-
Cooper-Schrieffer (BCS) crossover.

We map out the critical velocity in the crossover from BEC to BCS superflu-
idity bymoving a small attractive potential through the 3D cloud.We compare
the results with theoretical predictions and achieve quantitative understand-
ing in the BEC regime by performing numerical simulations, validating our
approach. Of particular interest is the regime of strong correlations, where no
theoretical predictions exist. In the BEC regime, the critical velocity should
be closely related to the speed of sound, according to the Landau criterion
and Bogoliubov theory. We measure the sound velocity by exciting a density
wave and tracking its propagation along the cloud. The results are compared
to the measured critical velocity.

The focus of this thesis is on our first experiments on general properties of
quasi-2D Fermi gases. We realize strong vertical confinement by generating
a 1D optical lattice by intersecting two blue-detuned laser beams under a
steep angle. Due to the large resulting lattice spacing, we prepare a single
planar quantum gas deeply in the 2D regime. The first measurements of the
speed of sound in quasi-2D gases in the BEC-BCS crossover are presented.
In addition, we present preliminary results on the pressure equation of state,
which is extracted from in-situ density profiles. Since the sound velocity is
directly connected to the equation of state, the results provide a crosscheck of
the speed of sound. Moreover, we benchmark the derived sound from avail-
able equation of state predictions. We find very good agreement with recent
numerical calculations and disprove a sophisticated mean field approach.

These studies are carried out with a novel apparatus which has been set up
in the scope of this work. An all-optical cooling scheme and optical transport
is employed to provide us with ultracold atomic clouds inside a separate
small vacuum cell with optimal optical access. Above and below this cell, two
high numerical aperture microscope objectives are placed to image and probe
the Fermi gases in-situ on length scales comparable to the intrinsic length
scales of the gases.





Zusammenfassung

In dieser Arbeit werden Experimente mit drei- und zweidimensionalen fermi-
onischen 6Li Gasen vorgestellt, die einen lokalen Zugang auf die quanten-
mechanische Vielteilchenphysik erlauben. Eine breite magnetische Feshbach-
Resonanz erlaubt es uns, die Wechselwirkungsstärke frei einzustellen, um
den gesamten BEC-BCS Übergangsbereich zu adressieren.

Wir messen die kritische Geschwindigkeit im Übergang von BEC- zu BCS-
Suprafluidität, indem wir ein kleines attraktives Potential durch eine drei-
dimensionale Atomwolke bewegen. Die Ergebnisse werden verglichen mit
theoretischen Vorhersagen. Dank numerischer Simulationen erlangen wir
ein quantitatives Verständnis für die Messergebnisse im BEC-Bereich und
können die Validität unserer Vorgehensweise untermauern. Von besonderem
Interesse ist der Bereich starker Korrelationen, für den keine theoretischen
Vorhersagen existieren. Dem Landau-Kriterium und der Bogoliubov-Theorie
zu Folge, sollte die kritische Geschwindigkeit im BEC-Bereich eng verknüpft
sein mit der Schallgeschwindigkeit. Diese messen wir, indemwir eine Dichte-
welle anregen und ihre Propagation durch die Wolke verfolgen. Die Ergeb-
nisse werden verglichen mit den gemessenen kritischen Geschwindigkeiten.

Der Fokus dieser Arbeit liegt auf unseren ersten Studien allgemeiner Eigen-
schaften von quasi zweidimensionalen Fermi Gasen. Den starken Einschluss
der Gase realisieren wir mit einem eindimensionalen optischen Gitter. Dieses
wird durch die Überlagerung zweier blau verstimmter Laserstrahlen unter
steilemWinkel erzeugt. Durch den großen resultierenden Gitterabstand sind
wir in der Lage, ein einzelnes, isoliertes Quantengas tief im zwei-dimensiona-
len Regime herzustellen. Wir präsentieren die ersten Messungen der Schall-
geschwindigkeit in einem quasi zweidimensionalem Gas im BEC-BCS Über-
gang. Außerdem zeigen wir vorläufige Ergebnisse der thermodynamischen
Druck-Zustandsgleichung, welche wir aus in-situ Dichteprofilen extrahieren.
Da die Schallgeschwindigkeit direktmit der Zustandsgleichung verknüpft ist,
bieten diese Messungen einen Vergleich mit den direkten Schallmessungen.
Darüber hinaus leiten wir die Schallgeschwindigkeit aus den verfügbaren
theoretischen Zustandsgleichungen ab und finden eine sehr gute Überein-
stimmung mit kürzlich veröffentlichten numerischen Simulationen. Die Vor-
hersage einer erweiterten Molekularfeld-Theorie können wir widerlegen.

All diese Untersuchungen wurden mit einem neuem Experiment durchge-
führt, dessen Aufbau Teil dieser Arbeit war. Mit einem rein optischen Kühl-
ungs- und Transportschema erzeugen wir ultrakalte Gase, mit denen die
eigentlichen Experimente schließlich in einer kleinen, separaten Vakuumkam-
mer mit optimalem optischen Zugang durchgeführt werden. Über und unter
dieser kleinen, separaten Vakuumkammer befinden sich zwei Mikroskop-
Objektive mit hoher numerischer Apertur. Diese werden genutzt, um die
präparierten Fermi gase in-situ abzubilden und auf Längenskalen zu unter-
suchen, die den intrinsischen Längenskalen der Gase entsprechen.
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1. Introduction

The first degenerate atomic Fermi gas was created just before the turn of the
century [1], followed by the realization of a molecular BEC of bosonic dimers
formed from fermionic atoms [2–4]. This seminal achievement signalled the
advent of research on strongly interacting fermionic model systems, bringing
new perspectives on phenomena which have occupied physicists for decades.
These phenomena were often accessible only in limiting cases like BCS su-
perconductivity of weakly interacting Cooper pairs. Today, ultracold atoms
enable us to address the entire crossover from the BCS regime to the BEC
regime with the turn of a knob [5–9].
Both BEC and BCS theory have been tremendously successful in provid-

ing the theoretical foundation for one of the most striking macroscopic phe-
nomena originating from microscopic quantum effects: frictionless flow of
particles [10–13]. Its appearance is remarkably widespread, ranging from
superconductivity in solids to superfluidity in liquids and dilute gases of
either bosonic or fermionic atoms. These phenomena are most robust in the
strongly correlated regime [14–16]. Here, two-dimensional (2D) systems are
of particular interest due to the connection to high-temperature supercon-
ducting materials [17–19] and the dominant role of fluctuations in lower
dimensions [20,21]. Fluctuations make 2D systems difficult to describe and
open questions remain, which are not only of fundamental significance but
also of technological importance.
To address these questions on a microscopic level, the ability to perform

local measurements on the length scale of the interparticle separation is
highly desirable. While this is very challenging in solids and liquids, ultracold
atoms have emerged as an excellent platform to study strongly correlated
low-dimensional superfluids. In recent years, there has been a remarkable
development of techniques, providing high resolution imaging and an un-
precedented degree of control [22–25]. However, so far only one experiment
combined high spatial resolutionwith low-dimensional Fermi gases, enabling
fascinating studies of transport phenomena [26–28]. Here, we present a novel
apparatus which is tailored for the research on local properties of three- and
two-dimensional fermionic 6Li quantum gases. Our experimental setup incor-
porates a high performance optical system for probing and in-situ imaging
with a resolution of ∼ 700nm.

We investigate one of the defining properties of superfluids, namely the
critical velocity.We demonstrate the breakdown of superfluidflow in the BEC-
BCS crossover by moving a point-like obstacle through the atomic cloud [29].

1



1. INTRODUCTION

We observe heating only above the critical velocity and compare the results
with corresponding measurements of the speed of sound. Due to our high
spatial resolution and large interparticle spacing, the experiment is in close
analogy with Landau’s Gedankenexperiment for the first time. Our results in
combination with numerical simulations by V. Singh and L. Mathey provide
the opportunity to isolate relevant effects in very a pure and controllable
environment.

Moreover, we are capable of creating isolated single layer quantum degen-
erate 2D Fermi gases. Reducing the spatial dimension of a many-body system
influences the underlying physics fundamentally and gives rise to surprising
effects. Consequently, one of the great challenges of contemporary research
is the understanding of complex low-dimensional phases. Well-known ex-
amples in one-dimensional (1D) geometry are the strongly correlated Tonks-
Girardeau gas [30, 31] and the Luttinger liquid [32, 33]. The 2D geometry is
special in the sense that it is known to exhibit distinct effects not encountered
in three-dimensional (3D) and 1D counterparts. For instance, fluctuations
destroy true long-range order and prevent the emergence of a BEC in uni-
form 2D systems at any finite temperature [34–36]. Instead, a qualitatively
different type of phase transition occurs. Below a critical temperature, the
system becomes superfluid but the phase is only quasi-coherent, causing an
algebraic decay of the first order correlation function. This is the Berezinskii-
Kosterlitz-Thouless (BKT) phase transition, which is associated with the pair-
ing of vortices [37,38]. Another peculiar feature of 2D gases with respect to
3D is the fundamentally altered scattering physics. The scattering amplitude
is energy dependent with a logarithmic divergence [39] and a bound state
always exists, even for positive scattering length. The ability to probe 2D gases
locally enables us to gain new insights into 2D fermionic quantum gases.

We present the first 2D speed of sound measurements to map out the BEC-
BCS crossover. With a small attractive potential in the cloud centre, a density
wave is created and its propagation tracked. The sound velocity is directly
connected to the 2D equation of state, whose theoretical predictions are in-
consistent and its complete behaviour is still unknown. To benchmark the
theoretical equations of state, we calculate the corresponding sound velocities
and compare them to the measurement. We find very good agreement be-
tween experiment and the results we obtain from numerical calculations [40],
which are expected to be the most reliable prediction so far. We are further-
more able to invalidate a sophisticatedmean field approach [41]. From in-situ
density profiles, we extract the experimental 2D pressure equation of state
and derive the speed of sound, which is in excellent agreement with results
from the direct measurement.
Beyond these investigations, our experiments pave the way for a deeper

understanding of 2D systems. In the near future, we hope to observe the BKT
phase transition locally and to explore exotic phases like Fulde-Ferrell-Larkin-
Ovchinnikov (FFLO) superfluids in imbalanced mixtures [42, 43].
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1. INTRODUCTION

This thesis is organized as follows:

• In Chapter 2 we summarize the basic theory of 3D and 2D Fermi gases.
The given overview is enclosed by an outline of our experimental capa-
bilities to motivate the content of the succeeding chapters. We conclude
with a short summary of the distinct features of 2D Fermi gases.

• Chapter 3 and 4 present the design and build process of our experimen-
tal apparatus.We give an overviewof the different parts and stepswhich
are required to produce degenerate single layer 2D clouds of fermionic
6Li. Furthermore, the development and realization of ourmagnetic field
setup is presented, which was one my main responsibilities in the early
stages of the experiment.

• In Chapter 5, we present measurements of the critical velocity, demon-
strating the breakdown of superfluidity in 3D Fermi gases in the BEC-
BCS crossover. We compare the results to the speed of sound and theory
predictions.

• Chapter 6 turns the attention to the physics in quasi-2D Fermi gases,
discussing the 2D scattering problem and the phase diagram with the
focus on the BKT phase transition. On classical grounds, we show that
no BEC emerges in 2D and demonstrate the important role of phase
fluctuations in reduced dimensionality. We compare the available 2D
equation of state predictions and develop a benchmark against our
experiment.

• In Chapter 7 we present the speed of sound measurements in quasi-2D
Fermi gases in the BEC-BCS crossover. We furthermore determine the
pressure equation of state from in-situ density profiles. We extract the
speed of sound from the measured and theory equations of state and
compare it to the results of the direct measurement. These efforts on 2D
thermodynamics are fortified by temperaturemeasurements of strongly
interacting 2D Fermi gases.

Publications in the context of this thesis

• The critical velocity in the BEC-BCS crossover
W. Weimer, K. M., V. P. Singh, J. Siegl, K. Hueck, N. Luick, L. Mathey, and H.
Moritz
arXiv:cond-mat/1408.5239v1, accepted in Phys. Rev. L.
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2. Fermionic Quantum Gases in Three
and Two Dimensions

Quantum-degenerate Fermi gases offer the unique possibility to access mag-
netic Feshbach resonances to tune the sign and strength of the inter-particle
interaction to change the nature of quantum statistics freely from fermionic
to bosonic behaviour. The crossover between the two regimes has been the
subject of considerable interest for many years.
This chapter provides the basic theoretical background for the remainder

of this work. We first give a compact overview of the parameters relevant
to describe Fermi gases in three and two dimensions. Both cases are treated
in parallel to emphasize the difference of the underlying physics. Then, a
description of the 3D scattering properties forms the basis for the subsequent
introduction into Feshbach resonances. The corresponding sections are kept
short since there already exists a variety of literature on theses topics.
Since the focus of this work is on experiments in 2D gases, we begin by

outlining our experimental aims in respect to the 2D quantum systems. We
will end this chapter by briefly outlining the distinct features arising in 2D,
whereas an extensive discussion of the 2D physics is given in Ch. 6.

2.1. Experimental System

Our apparatus is tailored for the production of ultracold 2D Fermi gases with
tunable interactions to explore the entire crossover between gases consisting
of composite bosonic pairs and gases consisting of fermionic Cooper pairs.
Reducing the dimensionality of many-body systems is achieved by subject-
ing the gas to a tight harmonic confinement such that only the quantum
mechanical ground state in that direction is occupied. This has important
consequences for the microscopic properties of 2D quantum gases and gives
rise to new physical effects not encountered in their 3D counterparts. For
instance, the scattering behaviour is fundamentally changed and a two-body
bound state is present even on the fermionic side of the magnetic Feshbach
resonance, where no 3D bound state exists. A comprehensive understand-
ing of the distinct features of 2D gases is still missing and some theoretical
predictions seem to be consistent with experimental observations [44, 45].

Against this background, our experiment is the first to connect two partic-
ular capabilities to push the frontiers of research. We combine the realization

5



2. FERMIONIC QUANTUM GASES IN THREE AND TWO DIMENSIONS

Figure 2.1.: Single layer 2D Fermi gases are created in an anti-node of the
blue-detuned optical lattice. The steep angle of intersection between both
lattice beams leads to a large lattice spacing of 2.9µm. The lower of the two
microscope objectives is used to image the clod with a high spatial resolution
of ∼ 700nm. Drawing not to scale.

of a single 2D cloud with the ability to manipulate and probe the samples lo-
cally with very high resolution. Using fermionic 6Li is particularly favourable
due to the large background scattering rate, the broad magnetic Feshbach
resonance, and the low particle mass in respect to the study of, e. g. dynamics
in bulk-, lattice- and mesoscopic systems.

To create 2D quantum gases in our experiment, an ultracold cold has to be
sufficiently strongly compressed in one direction to freeze out all correspond-
ing excitations. This is due to the fact that the tight confinement causes all
relevant energy scales to be much smaller than the energy level spacing to
the first excited state in the strongly confined direction.

OurplanarFermi gases are produced in a single anti-node of a blue-detuned
1D lattice. The lattice is generated by two blue-detuned laser beams which in-
tersect under an angle of 10.4◦ to form an interference pattern with a spacing
of 2.9µm, as shown in Fig. 2.1. The realized trap frequency in the transverse
direction of 25kHz generates very high trap aspect ratios of ωr/ωz ≈ 1000

and therefore quantum gases deep in the 2D regime. The blue detuning and
hence the absence of radial optical confinement enables us to realize such high
ratios and, in principle, to perform efficient evaporative inside the optical lat-
tice. This is due to the fact that no optical confinement restricts the hot atoms
from leaving radially. As a consequence, very low temperatures are accessible
which is a benchmark for most research interests, such as anti-ferromagnetic
ordering or the BKT superfluid phase transition. At present, a weak harmonic
confinement is still provided by the curvature of the magnetic field applied.
The typical starting point for experiments is a degenerate 2D Fermi gas

6



2.2. IDEAL FERMI GASES

with up to 20000 atoms in each of the two lowest, equally populated, hyperfine
spin states. The particle density in the centre of the cloud is on the order of
1µm−2. The cloud diameter is typically about 100µm.
Below and above the 2D Fermi gases, two microscope objectives form a

high performance optical system with a diffraction limited resolution of ∼
700nm. Through the upper microscope, arbitrarily shaped potentials, optical
lattices, or dipole traps can be imprinted on the atoms. Therefore, the 2D
gases can be probed on the relevant intrinsic length-scales, i. e. the healing
length, the inter-particle distance, or in future experiments, the lattice spacing
in 2D Fermi Hubbard systems. Absorption imaging is carried out with the
lower microscope in combination with a telephoto lens in front of an electron-
multiplying charged-couple device (EMCCD) camera to resolve, e. g. local
density fluctuations and potentially single atoms in individual lattice sites.
With only one layer of atoms, there is no integration along the line of sight,
which makes a single 2D cloud is particularly advantageous for the imaging
of smallest features.

2.2. Ideal Fermi Gases

The case of an ideal homogeneous Fermi gas is a good starting point for a
more detailed description as it already gives access to important properties
of trapped Fermi gases.

At very low temperature T , the de BrogliewavelengthλdB=
√
2π h2/(mkBT)

of particles is comparable to the inter-particle distance and degeneracy sets
in. Particles with an integer total spin, i. e. bosons, condense and become
superfluid. Fermions with a half-integer spin obey a fundamentally different
microscopic mechanism, as presented in the following.

2.2.1. Homogeneous Case

The energy states in an ideal Fermi gas at zero temperature are exactly filled
up to the Fermi energy EF and then the occupation drops to zero, see Fig.
2.2. Since identical fermions repel each other due to the Pauli exclusion, each
energy state is filled with exactly one particle. For a mixture of two different
hyperfine spin states, one of each kind can share the same energy.
The chemical potential µ is the energy which is required to add a particle

to the system. Thus, the chemical potential at zero temperature is identical to
the Fermi energy µ= EF. For T 6= 0, the energy states close to the Fermi edge
become thermally populated. The sharp edge at EF becomes washed out and
the occupation is described by the Fermi-Dirac distribution

fFD(E,T) =
1

e(E−µ)/kBT +1
. (2.1)

7



2. FERMIONIC QUANTUM GASES IN THREE AND TWO DIMENSIONS

T/T =0F

EF
EF

T/ >0TF E [EF]

n
 [

E
]

a b

T/T =0F

1

1

k TB

T/T >0F

Figure 2.2.: a) Fermi statistics for zero and finite temperature. Exactly one
fermion per spin can occupy each energy state. For zero temperature T/TF = 0,
fermions fill the available states in the Fermi sea up to the Fermi energy EF.
For finite temperature T/TF > 0, states with energies higher than EF become
thermally accessible in a blurred region around the Fermi surface. b) The
Fermi distribution as a function of energy for two different temperatures.
At zero temperature, all available states are filled up to the Fermi edge. For
finite temperature, the sharp edge is blurred over a region with a width of
the energy kBT .

Integration yields the particle number

N=

EF∫
0

ρdDOS(E)fFD(E,T)dE. (2.2)

Here, ρdDOS ∝ Ed/2−1 is the density of states in d dimensions. In a homoge-
neous 3D gas, the density of states is proportional to the square root of the
energy ρ3DDOS ∝

√
E, whereas the 2D density of states ρ2DDOS is energy inde-

pendent, see Table 2.1. The smallest length scale in the system is given by
the Fermi wave vector kdF , which depicts the radius of the Fermi surface in
momentum space.
Non-interacting Fermi gases are experimentally feasible, but they always

require a confinement to restrict the particle movement to a defined volume.
This is typically an optical trap, in the simplest case realized by a Gaussian
beam. For small distances from the centre, the generated trapping potential
can be assumed as harmonically. This case is discussed in the following.

2.2.2. Harmonically Trapped Case

The harmonic trapping potential Vtrap imposes an inhomogeneity on the gas.
As a consequence, the global chemical potential µ becomes ill-defined and is
replaced by the local quantity

µLDA = µ−Vtrap. (2.3)

8



2.2. IDEAL FERMI GASES

Homogeneous gas 2D 3D

Fermi energy EF 2πn h2

m
(6π2n)2/3 h2

2m

Fermi vector kF (4πn)1/2 (6π2n)
1/3

Density of states ρDOS mV
2π h2

m3/2V√
2π2 h3

√
E

Energy per particle E
N (T > TF) kBT

3
2kBT

Table 2.1.: Characteristic quantities of homogeneous Fermi gases in two and
three dimensions in absence of interaction. At zero temperature all fermions
fill the Fermi sea which has the radius kdF in the d-dimensional momentum
space. Further implications and the corresponding dimension-depending
formulas are given in the text.

The total chemical potential µLDA resembles the sum of the chemical potential
µ of a homogeneous gas and the trapping potential Vtrap, where µ is fixed by
particle number conservation.

On a local scale, the trapped gas has the same properties as a homogeneous
gas at finite temperaturewith a chemical potentialµLDA and the local, spatially
dependent Fermi wave vector kF(r). This is the local density approximation
(LDA), which is valid if the trapping potential varies only slowly over a length
scale given by 1/kF(r) and the de Broglie wavelength λdB so that the energy
difference of two neighbouring states is small compared to the temperature
T .

The Fermi-Dirac distribution fFD(E) in the framework of the LDA is given
by

fLDA(r,p) =
1

ep
2/2m+(Vtrap(r)−µ)/kBT +1

. (2.4)

Integration either over the spatial vector r or the momenta p gives the atomic
density or momentum distribution in the trap. In a semiclassical approxima-
tion, the density distribution of the thermal non-interacting gas reads

n(r) =
∫ dpd
(2π h)d

fLDA(r,p) (2.5)

=−
1

λddB
Lid/2(−ζe−Vtrap(r)/kBT ), (2.6)

where Lid/2 is the d/2th polylogarithmic function Lin(z) ≡ Σ∞
k=1z

k/kn and
the fugacity is ζ≡ exp(µ/kBT). At zero temperature, fLDA can be replaced by
a step function which greatly simplifies the integral.
For finite temperature, integration of Eq. 2.6 over all r yields the particle

9



2. FERMIONIC QUANTUM GASES IN THREE AND TWO DIMENSIONS

Harmonically trapped gas 2D 3D

Fermi energy EF (2N)1/2 hω̄ (6N)1/3 hω̄

Fermi vector kF (4πn0)
1/2 (6π2n0)

1/3

Density of states ρDOS E/( h2ω̄2) E2/(2 h3ω̄3)

Chemical potential µ(T)/EF 1− π2

6

(
kBT
EF

)2
1− π2

3

(
kBT
EF

)2
Degeneracy T/TF (−2Li2(−ζ))−1/2 (−6Li3(−ζ))−1/3

Table 2.2.: Comparison between trapped Fermi gases in two and three di-
mensions. The particle density at the centre of the trap is given by n0. The
d-dimensional mean trapping frequency is given by ω̄d =Πd(ωd)

1/d and the
polylogarithmic function Lid/2 is defined in the text.

number

N=−

(
kBT
 hω̄d

)d
Lid(−ζ), (2.7)

where ω̄d = Πd(ωd)
1/d is the mean frequency of the harmonic trapping

potential V(r) in d dimensions. With Eq. 2.7, the Fermi energy in the zero-
temperature limit becomes

EdF = ((d−1)!d ·N)1/d  hω̄d. (2.8)

A measure for the degeneracy of ultracold Fermi gases is given by degen-
eracy parameter

T

TdF
= (−1 · (d−1)!d ·Lid(−ζ))−1/d , (2.9)

which is given in terms of the fugacity ζ.
The evaluation of the above stated expressions for the 3D and 2D case yields

the quantities presented in Table 2.2.
In the experiment, the cloud properties are typically retrieved via absorp-

tion images. In case of a 3D cloud, the imaging light projects the 3D density
distribution onto a 2D optical density (OD) map1. In the case of a 2D cloud,
we have direct access to the density distribution, which is advantageous in
many cases.

1The image analysis is straightforward, even in the case of a given expansion time. Since both,
potential and kinetic energy in the corresponding single particle Hamiltonian are quadratic
in respectively r and p, the time of flight (TOF) leads to no significant change of the cloud
shape and the density distribution is directly related to the in-situ distribution by simple
rescaling.

10



2.3. FERMI GASES WITH TUNABLE INTERACTIONS

2.3. Fermi Gases with Tunable Interactions

So far, we have neglected inter-particle interactions. The density distribution
of non-interacting gases simply represents Fermi statistics, which is interest-
ing to a limited extent. We now consider two-component Fermi gases which
give rise to the ability to precisely tune the interaction between particles in
different hyperfine states via magnetic Feshbach resonances. The possibility
to control the collisional behaviour allows us to efficiently reach quantum-
degeneracy via evaporative cooling and moreover, to realize intriguing sys-
tems with non-trivial correlations and interesting many-body states.
This section gives an introduction to the elastic scattering behaviour of

ultracold atoms in 3D and briefly explains the phenomenon of Feshbach
resonances. Afterwards, the crossover of 3D Fermi gases between the BCS
and the BEC regime is presented. We emphasize that the treatment here is
kept deliberately short whereas an extensive discussion of the 2D scattering
problem is given in Ch. 6.

2.3.1. Elastic Scattering

The scattering behaviour of ultracold fermionic alkali atoms is typically dom-
inated by two-body collisions [46]. The corresponding length-scale is the van
der Waals length which is about two orders of magnitude smaller than the
typical inter-particle spacing n−1/3 ' 500nm in our experiment.

Solving the 3D radial wave equation for a given angular momentum l and
spin quantum number s yields the scattering properties between two collid-
ing particles. In general, the two-body wave-function must be symmetrized
so that the spatial wave function is anti-symmetric in case of a collision be-
tween two identical fermions. Then, s-wave scattering is forbidden at low
temperatures, which is why spin-polarized mixtures are non-interacting and
spin mixtures are typically used in the experiment.

When considering two different fermions, the solutionφk of the radialwave
equation, written in the partial wave expansion in l, is given by an incoming
plane wave which is superimposed with an outgoing spherical wave

ψk = eikr+
eikr

r
fl(k,k ′). (2.10)

Here, k ′ is the wave vector of the outgoing wave and fl the scattering ampli-
tude of the partial wave with angular momentum l.

The total cross section is then

σ=

∫
dΩ|f(k,k ′)|2. (2.11)

The isotropic s-wave contribution is dominant in the low energy limit k→ 0,
which is due to the emergence of a centrifugal barrier for higher angular

11



2. FERMIONIC QUANTUM GASES IN THREE AND TWO DIMENSIONS

momenta. As a consequence, all other partial waves are suppressed if the
spherical symmetric scattering potential V(r) vanishes fast enough for large
distances r. The effective potential is then given by

Veff(r) = V(r)+
 h2l(l+1)

2mr2
, (2.12)

where V(r) is of the form r−6, andm is particle mass.
For k→ 0, the influence of the scattering potential on the outgoing wave

function is expressed by a phase shift δ0 depending on the 3D s-wave scatter-
ing length

a3D =− lim
k→0

tanδ0(k)
k

. (2.13)

The scattering amplitude can be written as f(k) = 1/kcotδ0−ik, where the case
δ0→ π/2 depicts a resonant contribution to the phase shift and thus a diverg-
ing scattering length a3D. This is referred to as the 3D scattering resonance.
We now advance to the description of s-wave scattering in presence of a

Feshbach resonance where resonant coupling to a two-body bound state can
change the scattering length dramatically.

2.3.2. Feshbach Resonances

A Feshbach resonance occurs whenever a bound state is resonantly coupled
to the collision of two particles. If these two particles feature different molec-
ular bound states, each state gives rise to a separate Feshbach resonance [5].
For alkali atoms, the hyperfine interaction between the electron spins and
the nuclear spins leads to coupling between different spin states, i. e. singlet
and triplet states, see Fig. 2.3 a. The energetically available channel is called
entrance or open channel,which in the case of 6Li, describes the s-wave scatter-
ing of the triplet state. The scattering potential of the called closed channel has
a higher asymptotic energy and is not accessible due to energy conservation.

The different magnetic moments ∆µ of the states in the different channels
enable us to tune the energy difference between their asymptotes. This allows
us to tune the bound state in the closed channel in or out of resonance with
the two colliding atoms in the open channel and hence to adjust the scattering
length by an external magnetic offset field [47]

a3D(B) = abg

(
1−

∆B

B−B0

)
(1+α(B−B0)). (2.14)

Here, abg is the off-resonant background scattering length, ∆B the width
and B0 the position of the Feshbach resonance in terms of the magnetic field
strength, as shown in Fig. 2.3 b. The correction factor α results in a 99%
agreement of the analytical expression in Eq. 2.14 with the empirical values
in the range 600G to 1200G [48].
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Figure 2.3.: Scattering in presence of a magnetic Feshbach resonance. a) Two-
channel model of the Feshbach scattering resonance. Shown are the Lennard-
Jones potentials of a pair of fermions in the closed channel and open channel.
The relative offset between the closed and the open channel is tuned with an
externalmagnetic field acting on the differentmagneticmomentsµB. A bound
state in the closed channel can be resonantly coupled to the asymptotic energy
of the open channel. b) Scattering length a3D between the |1〉 |2〉 mixture in
6Li as a function of the external magnetic field. The insets sketch how the
open channel is tuned through the resonance. For scattering lengths a3D < 0,
the energy of the bound state is higher than energy of an incoming particle.
Crossing the resonance to the regime of positive scattering lengths a3D > 0,
the scatterers can form composite dimers with an binding energy EB. c) The
two-levelmodel description of the resonance dynamics between the scattering
constituents. The level of the scattering state of the open channel and the level
of the bound state of the closed channel feature an anti-crossing at the position
of the resonance. Ramping the magnetic field from field strength higher than
the resonance into the BEC regime leads to dimer formation.
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Figure 2.4.: a) Scattering length between the hyperfine states |1〉 and |2〉 of 6Li
as a function of the external magnetic field. The scattering length is given in
units Bohr’s radius a0. The Feshbach resonance is located at a magnetic field
strength of 834.15G. b) Energy of the hyperfine states |1〉 to |6〉 as a function the
magnetic field. The energy is given in units of the magnetic-dipole hyperfine
constant for the ground state 22S1/2without hyperfine interaction.ms denotes
the z-component of the angular momentum of the corresponding hyperfine
state [49].

We can therefore change from repulsive interaction (a3D > 0), where the
bound energy asymptote is lower than the energy of the closed channel, to
attractive interaction (a3D < 0), where the energy of the bound state is higher,
see Fig. 2.3 b.

The probability density of the two-particle wave function |ψ|2 in the closed
channel is only large near resonant coupling between two fermions in the
open channel to the bound state in the closed channel. Then the Feshbach
resonance is reached and the scattering length diverges. The energy of the
singlet and triplet wave function are correlated and feature an anti-crossing
along the scattering resonances which is depicted in Fig. 2.3 c. The magnetic
fielddependence of the energy for the different hyperfine states of 6Li is shown
in Fig. 2.4 b. The states are numbered in ascending order, corresponding to
higher energies in an external magnetic field. Typical experiments are carried
out at magnetic field strengths between 600G to 1000G. Above 500G, the
electronic spin of the hyperfine states |1〉, |2〉, and |3〉 are fully polarized and
aligned parallel to each other. Therefore, two 6Li atoms in any two different
of the lower three hyperfine states scatter as a triplet.
We use a mixture of the two lowest states |1〉 and |2〉. Mixtures of higher

hyperfine states feature channels for losses via inelastic collisions, which are
however, relatively small in case of the three lowest states.
The exact positions of the magnetic Feshbach resonances of 6Li are listed

in Table 2.3. The |1〉 |2〉 mixture features an extremely narrow resonance at
543.28G. The strong contribution of the closed channel at narrow resonances
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2.3. FERMI GASES WITH TUNABLE INTERACTIONS

Mixture B0 ∆B abg

|1〉 |2〉 834.15G 300.0G −1405a0

|1〉 |2〉 543.28G 0.4G −1405a0

|1〉 |3〉 690.43G 122.3G 1727a0

|2〉 |3〉 811.22G 222.3G 1490a0

Table 2.3.: Position B0 and width ∆B of the magnetic Feshbach resonances
between different hyperfine states in 6Li [50,51]. The background scattering
length abg is given in units of the Bohr radius a0. We work with the |1〉 |2〉
mixture which features a very broad resonance at a magnetic field strength
of 834.15G.

leads to a fast decay of dimers and thus enhanced losses. A second resonance
is located at 834.15G, which is approximately 300G wide, as shown in Fig.
2.4 a. In terms of energy, this width is much larger than the typical Fermi
energy andmakes this resonance ideally suited for almost all our experiments.
At a magnetic field strength of 527.5G, the scattering length features a zero-
crossing and the |1〉 |2〉mixture is non-interacting.
A particularly interesting property of ultracold fermions is the possibility

to explore the attractive and the repulsive side of the resonance. Along the
crossover, weakly bound dimers are formed in the BEC regime, and Cooper
pairs exist in the BCS regime. In between both limits, exactly on resonance,
the Fermi gas is in the unitary limit and exhibits universal thermodynamic
properties.

2.3.3. BEC-BCS Crossover

In 3D, the crossover between BEC- and BCS-regime is described by the dimen-
sionless parameter 1/(k3DF a3D). Values of 1/(k3DF a3D)> 0 depict the BEC side
of the resonance,whereas the BCS side corresponds to 1/(k3DF a3D)<0. Values
between −1 and 1 denote the crossover regime and strong interactions, not
accurately described by either weakly interacting Bose- or Fermi-gas models.
The schematic phase diagram of 3D Fermi gases is in shown in Fig. 2.5. Here,
we briefly present the physics of the three different regimes and already point
out that the BEC-BCS crossover in 2D Fermi gases is strikingly different to
the 3D case. We come back to this statement at the end this section.

BEC Regime On the repulsive side of the Feshbach resonance, two differ-
ent fermions can form weakly bound molecules with a net spin of zero. Per-
forming evaporative cooling in this regime leads to the formation of a BEC
of bosonic dimers. The composite bosons populate the highest vibrational
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Figure 2.5.: Qualitative phase diagram for ultracold 3D Fermi gases. Two
different temperature scales TC and T∗ describe the system. TC is the critical
temperature for the emergence of phase coherence and condensation. T∗ de-
scribes the onset of pairing, below which pairs can be formed without the ex-
istence of a superfluid phase. For low temperature T < TC and positive interac-
tion strength 1/(k3DF a3D)> 0, fermions form a superfluid consisting of tightly
bound composite dimers. In case of weak attraction, where 1/(k3DF a3D)< 0,
weakly bound Cooper pairs are formed. Between both regimes the chemical
potential features a zero crossing. For 1/(k3DF a3D)→ 0, the gas is said to be in
the unitary limit. The regime where the interaction strength is between −1

and 1 is called crossover. For higher temperature T > TC,T
∗, the gas is in the

normal state, i. e. in the limits of weak and strong attraction the gas is a Fermi
liquid or a Bose liquid, respectively. The Figure is adapted from Ref. [52].
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Figure 2.6.: Cooper pairing of two particles scattering on the Fermi surface
where the only energetically accessible states are located. a) In case of two
particles with equal momenta and opposite sign k and −k, the whole surface
of the Fermi sea is accessible. Momentum conservation is always fulfilled. b)
For a finite total momentum q, particles can only scatter in a narrow region
defined by a circle on the Fermi surface (velvet dashed line). As a conse-
quence, the formation of Cooper pairs with zero momentum is energetically
favourable.

bound state. Their binding energy E3DB depends on the s-wave scattering
length a3D and can be written as E3DB,BEC =  h2(2mMa

2
3D), with the dimer mass

mM = 2m.
Compared to the inter-particle separation, the size of the molecules is large

and approximately ∼ a3D. The fermions still experience Pauli exclusion so that
collisions and three-particle recombinations are suppressed, which stabilizes
the molecules. Far in the BEC regime the binding energy increases and as the
molecules get smaller in size, the lifetime becomes shorter due to fast decay
into lower molecular states.

In the BEC limitwhere 1/(k3DF a3D)→∞, the critical temperature for conden-
sation of dimers is T3Dc ≈ 0.55EF/kB. The chemical potential of the condensate
is [7]

µ=−
 h2

2ma23D
+
π h2a3Dn

m
, (2.15)

where the first term is the binding energy per constituent of the bound
molecule and the second term is a mean field contribution describing the
repulsive interaction between the molecules in the gas. This simple mean
field expression neglects correlations between different pairs or between one
fermion and a pair.

BCS Regime In the regime of attractive interaction, where 1/(k3DF a3D)< 1,
no two-body bound state exists. Nevertheless, fermions with opposite spin
and momentum k and −k can form Cooper pairs on the surface of the Fermi
sea, see Fig. 2.6. The size of the bound pairs is much larger than the inter-
particle separation.
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2. FERMIONIC QUANTUM GASES IN THREE AND TWO DIMENSIONS

The pair formation is a pure many-body effect, facilitated by the presence
of the non-interacting Fermi sea. This is described in a self-consistent way
by the BCS theory [53]. All energy states, except a small fraction below and
above the Fermi surface, are excluded from the scattering events due to the
Pauli blocking. Cooper pairs exist even for arbitrarily weak interaction.
The fermions are either in a normal, non-paired state, or in a superfluid

state consisting of Cooper pairs. In the BCS limit of weak attractive interaction
1/(k3DF a3D)→−∞, adding a Cooper pair to the superfluid costs 2µ3D ≈ 2E3DF .
The binding energy E3DB,BCS of a single Cooper pair equals half the gap ∆,
which itself stabilizes the superfluid state. Compared to the Fermi energy, the
superfluid gap ∆ is exponentially small

∆/EF ≈
8

e2
e−π/2k

3D
F |a3D|. (2.16)

Here, the gap parameter is given in units of the Fermi energy, which in the
BCS limit is approximately E3DF ≈ µ3D.
At low temperature, the gap is largest and vanishes when the gas reaches

the critical temperature of the superfluid transition

T3Dc ≈ 0.28T3DF eπ/k
3D
F a3D , (2.17)

which is an analytical result and shows the strong dependence of T3Dc on the
density k3DF ≈ n1/3.

Unitary Regime Exactly on resonance,where 1/(k3DF a3D) = 0, the scattering
length diverges and drops out of the description of the system. The scattering
cross section is limited to σ= 4π/(k3DF )2. That leaves the Fermi energy E3DF =
 h2(k3DF )2 as the only relevant energy scale and the inter-particle distance
1/k3DF as the only relevant length scale.

Therefore, all unitary Fermi gases are expected to exhibit universal thermo-
dynamics whereby the microscopic details of the systems become irrelevant.
For a unitary gas at zero temperature, all thermodynamic quantities can be
expressed in terms of a single parameter ξB,which is called the Bertsch param-
eter1. It is universal constant defined as the energy of a system with unitary
interaction in units of the free gas energy [8,9, 54]. The thermodynamic equa-
tion of state is then of the simple form µ3D = ξBE

3D
F .

The universal behaviour becomes also apparent in the set of the so-called
Tan relations [55–57]. They relate thermodynamic properties of the unitary
gas to short-range correlations in terms of a single quantity named contact,
which was measured via, e. g. radio-frequency (rf)- and Bragg-spectroscopy
[58,59].
In strongly interacting Fermi gases near a Feshbach resonance, one can

realize very robust superfluids. The lifetime is relatively large due to Pauli
statistics which strongly suppresses three-body recombination.
1Another commonly used quantity is the gain factor β= ξ−1 [8].
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2.4. 2D Fermi Gases

An extensive discussion of the peculiar features of 2D Fermi gases is beyond
the scope of this chapter. Instead, we summarize a few important characteris-
tics of 2D gases and point out that all 2D physics relevant for this work are
discussed in detail in Ch. 6.
In 2D quantum gases, the role of fluctuations is significantly enhanced

which strongly modifies superfluid properties and, e. g. forbids the formation
of a true condensate at any finite temperature in accordance to the famous
Mermin-Wagner-Hohenberg (MWH) theorem [35,36]. The phase transition
to a BEC is replaced by the BKT transition from the normal to a superfluid
phase,which is strongly connected to the existence of boundvortex pairs. Each
pair consists of two vortices with opposite phase winding. Above the critical
temperature of the BKT phase transition, the pairs are dissociated and free
vortices proliferate. The free vortices depict strong local phase fluctuations,
which lead to a decay of the long-range order in the system on very short
length scales. This is described by the decay of the first order correlation
function,which changes from algebraically to exponentially when going form
the superfluid to the normal phase. Below the critical temperature, phase
fluctuations prevent the emergence of a condensate and the BKT superfluid
is considered a quasi-condensate.

Generally, in contrast to the case of 1D and 3D, true condensation in 2D is
only possible at zero temperature. In 1D, strictly speaking, no BEC can emerge
even at zero temperature1. However, 1D systems are analytically solvable and
in 3D, phase fluctuations are typically negligible at low temperatures. Hence,
2D systems are particularly hard to describe owing to the importance of
fluctuations.
The fundamentally changed 2D scattering behaviour manifests itself in a

logarithmic dependence of the 2D scattering length on the scattering energy
instead of an energy independent scattering length in 3D. As a consequence,
unlike in 3D, there is no unitary behaviour.

Due to the finite extent of 2D clouds in the experiments, the third dimension
never becomes unimportant. In fact, both the 3D scattering length and the
characteristic length lz of a harmonic oscillator the strongly confined direction
influence the scattering amplitude.

In analogy to the 3D case, we define the dimensionless interaction parame-
ter
ln(k2DF a2D). As shown in Fig. 2.7. the Fermi gas is in the regime of strong inter-
actions for ln(k2DF a2D)→ 0, corresponding to the situation where k2DF ≈ a2D,
. For ln(k2DF a2D)→∞, the 2D Fermi gas is in the limit of a non-interacting
Fermi gas. The opposite case ln(k2DF a2D)→ −∞ depicts the limit of a non-
interacting gas of deeply bound dimers. The regime where ln(k2DF a2D) is

1In presence of a trapping potential, a 1D quasi-BEC can emerge.

19



2. FERMIONIC QUANTUM GASES IN THREE AND TWO DIMENSIONS

Bose gas of strongly interacting non-interacting
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Figure 2.7.: Schematic phase diagram of ultracold 2D Fermi gases. The
system is described by the dimensionless interaction parameter ln(kFa2D).
For ln(kFa2D) → 0, where k3DF ≈ a2D, the gas is strongly interacting. The
BCS regime is described by positive interaction parameters. In the limit of
ln(kFa2D)→∞, the system approaches the ideal non-interacting 2D Fermi
gas. In the opposite limit ln(kFa2D)→−∞, the gas consists of non-interacting
deeply bound composite dimers.

between -1 and 1, is called crossover.
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3. A Novel 6Li Quantum Gas
Experiment

Quantum gases have been in the focus of experimental physicists for decades,
and yet, the production and probing of ultracold gases in an isolated envi-
ronment is still an immensely challenging task. This particularly accounts for
fermions since they are intrinsically harder to cool than bosons due to the
Pauli-principle. However, the possibility to use Feshbach resonances to freely
choose sign and strength of interactions renders fermions the ideal specimen
for a broad range of intriguing phenomena, particularly in two dimensions.
This chapter presents the development process and realization of a novel

quantum gas experiment which combines the fast and efficient production
of degenerate 2D 6Li quantum gases with the ability to image and probe the
atomic clouds with very high resolution. We begin by introducing general
consideration in Sec. 3.1 andgive an overviewof the apparatus and the cooling
sequence in Sec. 3.2. Afterwards, Sec. 3.3 follows the evolution from hot to
degenerate 2D gases and provides a detailed explanation of the essential parts
and techniques.

Preface With advancing experimental techniques, modern quantum gas
research increased its interest in the investigation of local properties. The
implementation of high resolution imaging gave direct access to, e. g. in-situ
density correlations and fluctuations.

Furthermore, in recent years a completely new generation of quantum gas
experiments emerged, dedicated to the creation of low-dimensional quantum
gases. Nowadays, 2D and 1D systems earn more and more interest due to
their fundamentally different many-body physics and intriguing connections
to solid state matter phenomena.
At the time of the development of our new apparatus, experiments with

fermions were only few and no existing research group was able to locally
resolve and manipulate 2D Fermi gases. We aimed to create an experiment to
combine 2D fermionic quantum gases with an excellent degree of control and
advanced optical systems to probe and manipulate the samples with very
high resolution.

For the initial cooling, we choose a combination of a Zeeman slower and a
3Dmagneto-optical trap (MOT). The concept has proven to be reliable already,
e. g. in an experiment which was under the advisory ofH. Moritz in the group
of T. Esslinger. We took inspiration from said experiment, yet, our apparatus
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represents an augmented version in many regards. The high level of prior
knowledge furthermore enabled us to prevent many difficulties during the
design and realization process.

Themain parts of the experimentwere set up in three years bymy colleague
W. Weimer and me. The main vacuum chamber was designed by F. Wittkötter,
who was a diploma student at that time. In the past two years, the group was
joined by J. Siegl and K. Hueck, who built, e. g. the 1D optical lattice for the
production of 2D gases. All of them contributed to this work by supporting
measurements and by providing valuable input.
Extensive information about the design and assembly of our vacuum sys-

tem, our high resolution imaging system, and the in-vacuo cooling resonator
can be found in the thesis of W. Weimer [29]. Here, we give more detailed in-
formation on the Zeeman slower, the MOT, the transport dipole trap, and the
laser system. Particular attention is given to the magnetic field setup which
is presented in the succeeding Ch. 4.

3.1. General Considerations

Building a new quantum gas experiment requires several substantial and
interdependent decisions regarding the choice of the atomic species, the vac-
uumdesign, and the cooling scheme. One of themain difficulties is to combine
a vacuum system to produce pure and unperturbed atomic samples with the
ability to get in proximity for the employment of high resolution imaging. In
the following, we briefly explain the general design considerations and how
we realized an excellent degree of control in an ultra-high vacuum (UHV)
environment, i. e. the ability to probe and detect 2D atomic clouds on a sub-
micron length-scale.

Proper Atomic Species Lithium is the lightest alkali metal and 6Li, together
with 40K, the only radioactively stable fermionic species. Due to the small
mass, the recoil energy Erec =  h2k2

2m is about seven times larger for Lithium than
for Potassium. This requires higher laser powers to prevent high tunnelling
rates in an optical trap. On the other hand, the small mass enables us to
study fast dynamics and allows for very efficient laser cooling, due to the
high momentum transfer of scattered photons. Compared to 40K, the natural
abundance of 6Li is very high, with respectively 7.5% to 0.01%, which adds a
lot of headroom to the cooling procedure. The 300Gbroadmagnetic Feshbach
resonance of 6Li is highly advantageous with respect to physics regarding
the BEC-BCS crossover and the unitary regime. The resonance is located at
a magnetic field strength of 834G, which is more than three times higher
compared to the case of 40K and thus requires larger magnetic coils or higher
current strengths.
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Lastly, preparation of the bosonic isotope 7Li is possible with only a few
changes to the laser system realizing sympathetic cooling of 6Li with 7Li if
wanted. However, sympathetic cooling does not lead to lower temperatures.
Thus, we decided to use a mixture of the two lowest hyperfine state of 6Li and
to employ a magnetic Feshbach resonance to tune the scattering behaviour
between both states.

In summary,only the requirement of deep optical traps and strongmagnetic
fields are potential disadvantages. The former is a technical limitation which
is more andmore overcome while the latter is mainly an issue of the available
space and cooling, which is both manageable. Due to the above mentioned
advantages of 6Li, it is the best suited fermionic species for the exploration of
the BEC-BCS crossover. Finally, laser diodes for the 6Li resonance wavelength
of approximately 671nm are relatively cheap and readily available.

Tailored Vacuum System The ideal vacuum chamber for a quantum gas
experiment features an UHV environment to isolate the gaseous samples,
simultaneously provides optimal optical access, and allows for the placement
of magnetic coils and optics in short distances to the position of the atoms.
This is not easy to accomplish since the corresponding requirements are not
always compatible.
For instance, maintaining a good vacuum requires big pumps close to all

relevant positions, which in turn reduces the available space for optics and
magnetic coils. This makes it more difficult to generate strong magnetic fields
and to perform high resolution imaging, since the corresponding space con-
suming components can easily interfere with the chamber dimensions. More-
over, the switching of magnetic coils causes vibrations so that all coils have to
be isolated from the chamber. Additionally, in case of high current densities
the magnetic coils generate a lot of dissipated power close to the chamber
walls which eventually worsens the vacuum.

Many problems are circumvented by disentangling the preparation, i. e.
the main part of the cooling sequence from the location where the actual
experiments with the atomic samples are carried out. In our case, the final
step towards a degenerate Fermi gas is done in a small, additional vacuum
cell. This octagonal cell, to which we refer as the science cell, is connected to
the main chamber with a small, 126mm long tube. The separation from the
main chamber provides us with enough space to implement magnetic coils
and a high performance optical system.

All-Optical Cooling Strategy The slowing of atoms in a Zeeman slower
and the trapping and subsequent cooling in a MOT is a common procedure.
To reach quantum degeneracy in Fermi gases, further cooling is required.

While bosons scatter at low temperatures, the Pauli exclusion prevents
identical fermions to collide and therefore to thermalize during evaporative
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3. A NOVEL 6LI QUANTUM GAS EXPERIMENT

cooling. Instead, Fermi gases can be cooled sympathetically, i. e. with another
species to enable collisions. Alternatively, one can prepare an equal mixture
of two different hyperfine states to address a magnetic Feshbach resonance
for optimal evaporative cooling.

In many experiments, the evaporative cooling is carried out after the atoms
are transferred into a magnetic trap or optical dipole trap. Magnetic trapping
allows for large capture volumes hence a simple atom transfer. But, the achiev-
able densities are quite low compared to optical dipole traps. Therefore, the
evaporation is less efficient. In the case of 6Li,magnetic traps have another dis-
advantage. The required offset fields for sufficiently large scattering lengths
in combination with a magnetic trap are likely to interfere and technically
difficult to achieve. We employ an optical dipole trap to decouple the trapping
of atoms and the tuning of the scattering length.

The atom transfer into the smaller volume of a dipole trap is more demand-
ing. Also, the generation of deep optical traps requires high laser powers. We
overcome both potential issues by using a ring resonator inside the vacuum.
Two counter-propagating laser beams form a standing wave pattern with a
high power enhancement and therefore very deep trap depths. The diverg-
ing eigenmode between two curved mirrors allows us to transfer the atoms
into the resonator beam at a position where the beam diameter is large. We
therefore reach a very high transfer efficiency of ∼ 60%.

High Resolution Optical System Our aim is the investigation of ultracold
Fermi gases with an imaging resolution on the order of the relevant intrinsic
length scales of the physical system, e. g. the Fermi wavevector, lattice con-
stants, or the interparticle distance. Resolving these length scales, which are
usually less than one micron, gives in-situ access to local properties of the
gas, like local dynamics and correlations.
For that purpose, a microscope objective with a resolution of a several

hundred nm at the wavelength of the imaging light is necessary. Such optical
systems are very complex and their design is time consuming and costly.
When the development of our new experiment begun, high performance
imaging systems were existing in experiments with bosons but not with
fermions, yet.

We put the idea further and implemented two identical microscope objec-
tives in a symmetric arrangement above and below the atoms. These depict
a very versatile tool, not only for high resolution imaging, but also for local
manipulation of ultracold gases.

3.2. Apparatus Overview

This section provides an overview of the realized experimental setup. We
briefly introduce the four main sections of the apparatus, namely the oven,
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Figure 3.1.: Technical drawing of the experimental apparatus. We divide the
setup into four main sections in correspondence to different steps throughout
the experimental sequence. 1) The oven chamber consists of pumping devices,
a vacuum gauge, and the small oven itself. 2) The tapered magnetic field coils
of the Zeeman slower placed around a thin vacuum tube which connects the
oven chamber with the main chamber. 3) In the main chamber, the slowed
atoms are captured in the MOT and transferred into the in-vacuo resonator
enhanced dipole trap to perform evaporative cooling. 4) The science cell is a
small octagonal vacuum chamber which is placed between various magnetic
field coils. The inset shows a sketch of the upper microscope objective above
the position of the atoms. The horizontal red beam depicts the optical dipole
trap to produce oblate atomic clouds. Two intersection laser beams generate
the 1D optical lattice to prepare 2D Fermi gases.

Zeeman slower, main chamber and science cell. Afterwards, we summarize
the cooling protocol and then proceed with a detailed discussion of the cor-
responding parts in Sec. 3.3.

The complete setup consists of one optical table for the laser system, one for
the vacuum chamber, and a large quantity of electronic devices formonitoring
and control. Both optical tables are located in the same laboratory which
maintains a stable room temperature, air humidity, and minimum vibrations
of the tables. Figure 3.1 shows a technical drawing of the apparatus, which
can be divided into four main sections to reflect different steps throughout
the cooling procedure and the preparation of ultracold Fermi gases:

1) The oven, where a hot gas of 6Li is created.
2) The Zeeman slower, to slow the jet of hot atoms.
3) The MOT, to perform the first trapping and cooling.
4) The science cell, for the final preparation and experiments.

Cycling operation repeats the preparation of identical ultracold gases every
∼ 15s with high reliability with respect to the achieved atom numbers and
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cloud temperatures. At the end of each cycle, typically an absorption picture
of the cloud is taken. This ultimately destroys the atomic sample and the
preparation of the next cloud begins. We now take a closer look onto the
separate sections of the experimental setup.

Oven The oven contains chunks of solid 6Li and is constantly heated to
∼ 430◦C to produce a high vapour pressure inside the steel vacuum cham-
ber. The hot atoms leave the oven in a collimated jet and travel through the
Zeeman slower towards the main chamber. The atom beam can be blocked
by a mechanical shutter which is connected to a magnetic feed-through1, see
Fig. 3.2. A titanium sublimation pump2 and an ion getter pump3 compen-
sate for the out-gassing at high temperatures. A differential pumping stage
connects the oven to the Zeeman slower. With a length of 280mm and an
inner diameter of 4mm, the thin vacuum tube leaves the pressure in the main
chamber of 1.8×10−11mbar unaffected by the pressure of 1×10−9mbar in
the oven vacuum chamber4. To secure the main chamber and for optional
maintenance, the oven chamber can be separated from the main chamber
with a Conflat (CF) 16 vacuum valve5. In the vicinity to where significant
amounts of liquid or gaseous 6Li is expected, nickel instead of copper gaskets
are used for the vacuum flanges.

Zeeman Slower The jet of hot atoms leaves the differential pumping stage
and travels through a 465mm long tube with an inner diameter of 18mm into
the main chamber. Along their path, the atoms are slowed down with the
help of a Zeeman slower. It consists of magnetic coils of decreasing diameter,
placed around the vacuum tube over a length of 520mm. Opposite to the lo-
cation of the oven, on the other side of the main chamber, a laser beam enters
the vacuum through a CF40 sapphire view-port. Atoms with an initial veloc-
ity of about 1000ms−1 are slowed down by the scattering of photons from
the counter-propagating laser beam. The tapered magnetic field constantly
compensates for the changing Doppler shift to keep the atoms in resonance.
With final velocities of about 50ms−1 we are able to capture the atoms in the
MOT.

Since the sapphire view-port is directly exposed to the atom beam, it might
be necessary to replace it at a certain time. A CF40 valve6 allows us to do so
without destroying the vacuum inside the main chamber.

1Vacom MagiDrive MD16, www.vacom.de.
2Vacom Titansublimationspumpe DN40CF, www.vacom.de.
3Gamma Vacuum 25S-DI-2V-SC-N-N, www.gammavacuum.com.
4The pressure is monitored with a Pfeiffer PBR260 pressure gauge, www.pfeiffer-vacuum.de.
5VAT DN16, www.vatvalve.com.
6VAT Ganzmetall-Schieber DN40, www.vatvalve.com.
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Figure 3.2.: a) Technical drawing of the oven vacuum chamber. The flexible
bellow connects the oven chamber with the vacuum tube of the Zeeman
slower. With a magnetic feed-through we can move a mechanical shutter
inside the vacuum to block the atomic beam. b) Top-view (cut-away) of the
oven, exposing the mechanical shutter and the beam apertures for the atom
jet.

Main Chamber The MOT is located inside the main chamber, which is a
large non-magnetic steel chamber with a diameter and height of 304mm and
205mm, respectively. As shown in Fig. 3.3, 16 different view-ports provide
optical access for the six MOT beams, imaging, optical traps, the connection
of the Zeeman slower, an optional 2D-MOT, vacuum pumps, and gauges1.
The Zeeman slower is connected to a CF25 port opposite to a large CF100 port
which accepts the main pumping stage consisting of a 100 l ion getter pump2

and a titanium sublimation pump3. The two coils for the generation of the
MOT field are recessed in the top and bottom CF100 view-ports. Two laser
beams for the in-vacuo resonator enter the main chamber under an angle of
∼ 65◦ with respect to the Zeeman slower axis.
Perpendicular to the Zeeman slower axis, the beam of the moving dipole

trap enters the main chamber. After the evaporation inside the cooling res-
onator is performed, the cold atoms are captured inside the dipole trap and
transported into the science cell by moving the trap focus accordingly.

Science Cell The final preparation is carried out in a small, octagonal, non-
magnetic steel vacuum chamber4, which is depicted in Fig. 3.4. It is connected
1The pressure in the main chamber is monitored with a Varian UHV-24p Nude Bayard-Alpert
gauge, now www.agilent.com.

2Gamma Vacuum 100L-DI-6D-SC-N-N, www.gammavacuum.com.
3Varian Mini Ti-Ball, now www.agilent.com.
4UKAEA CCFE Special Techniques, www.ukaea.co.uk.
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Figure 3.3.: Technical drawing of the main vacuum chamber. The large cham-
ber consists of connectors for pumps, a vacuum gauge, and 16 view-ports to
provide optical access. The different coloured laser beams depict the MOT
light (red), the beam for the optional 2DMOT (orange), a possibility for imag-
ing light (cyan), the Zeeman slower light (yellow), the moving dipole trap
(green), and the light for the cooling resonator (velvet). The upper chamber
part and the cooling resonator are not shown.
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Figure 3.4.: a) Technical drawing of the science cell. A CF40 to CF16 reduction
fitting connects the small octagonal cell to the main vacuum chamber. The
top and bottom window feature a diameter of 46mm. Seven CF16 view-ports
are placed around the sides of the cell. b) Top-view (cut-away) of the science
cell. The view-ports are tilted by 2◦ to avoid undesired back-reflections.
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to a CF40 port at the main chamber with a 126mm long tube with an inner
diameter of 16mm. A non-evaporable getter foil1 is placed inside the connec-
tion tube to ensure a good vacuum in the science cell. The protruding design
allows us to place magnetic coils in proximity to the atoms and to perform
experiments without being limited by the dimensions of the main chamber.

The science cell is only 34mm high, and the recessed top and bottom CF40
view-ports are separated by 8mm and enable us to place the microscope
objectives in minimum distance to the atoms. The thickness of the main view-
ports is (4.00±0.05)mm. Their surface quality is specified to be better than
λ/8. Seven CF16 view-ports on the side of the cell provide excellent optical
access from all directions. To prevent back-reflections, the view-ports on the
side of the cell are tilted by 2◦. All view-ports are anti-reflection coated for the
wavelengths 532nm, 590nm, 760nm, 780nm and 1064nm for incident angles
from 0◦ to 30◦.

3.3. Producing Ultracold 2D 6Li Gases

In the following, we briefly outline the individual steps from the slowing
of atoms in the Zeeman slower to the final evaporative cooling inside the
science cell. Afterwards, we focus on the realization of the separate steps
in our experimental setup. First, Sec. 3.3.1 introduces the laser system we
employ for cooling and imaging of 6Li. In Sec. 3.3.2 to 3.3.4, we present the
all-optical cooling steps we employ inside the main chamber and science cell.
The laser system for the moving dipole trap and the realization of ultracold
2D Fermi gases is presented in Sec. 3.3.5. Finally, an overview of our high
performance imaging system is given in Sec. 3.3.6.

Experimental Sequence The experiment runs in cycling operation with
a fast repetition rate, i. e. every ∼ 15s a 2D cloud is prepared, imaged and
destroyed, and a new preparation begins.
At the end of the cooling procedure, we obtain atomic clouds with final

temperatures of a few ten nK, which corresponds to a reduction of ten orders
of magnitude. The cooling steps required to produce such cold gases are
described in the following and sketched in Fig. 3.5.

• Ata temperature of 430 ◦C, the atoms leave the ovenwith amean velocity
of roughly 1400ms−1 and enter the Zeeman slower. The coils and laser
light for the Zeeman slower and the MOT are switched on. A rotating
magnetic feed-through closes a mechanical shutter in front of the oven
nozzle when the MOT loading is finished.

1SAES Getters ST122/NFC/50-150/130X180/D, www.saesgetters.com, activated during the
bake-out procedure.
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Figure 3.5.: Sketch of the all-optical cooling scheme. Different colours depict
the sequential steps to produce ultracold 2DFermi gases in our apparatus. The
preparation starts in the oven with a hot gas of 6Li. After 5 s, theMOT loading
(red) is complete and the atoms are transferred (orange) into the cooling
resonator enhanced dipole trap for the first evaporative cooling step (velvet).
The cold gas is then transported into the science cell (green) and transferred
into the squeeze dipole trap (bright blue) and evaporatively cooled (blue).
The final step to generate the 1D optical lattice and to confine the ultracold
atoms in a single anti-node of the corresponding interference pattern (dark
blue). This simplified overview does not account for about 5 s in which, e. g.
the actual experiments with the prepared cold gases are carried out.
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Figure 3.6.: Working principle of the resonator enhanced dipole trap. a) The
MOT is loaded and two counter propagating laser beams are coupled into
the cooling resonator. b) The atoms are transferred from the MOT into the
standing wave interference pattern inside the resonator. c) Evaporative cool-
ing is performed by lowering the power of both resonator laser beams. d) The
cold atoms are transferred into the running wave dipole trap and transported
into the science cell.
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• The changing magnetic field of the Zeeman slower keeps the constantly
slowed atoms in resonance with the counter-propagating laser light.
The scattered photons decelerate the atoms down to 50ms−1 so that
they can be captured in the MOT.
• TheMOT consists of six beams of near resonant laser light coming from
all spatial directions and a magnetic quadrupole field. Together, they
generate a spatially dependent radiation force restricting the atoms to
the centre of the trap. The final MOT temperature is on the order of
mK. After 5 s, approximately 30×106 atoms are captured, the loading is
finished, and the Zeeman slower is switched off. Each half of the atoms
is one of the two lowest hyperfine spin states.
• The laser light for the cooling resonator enhanceddipole trap is switched

on during the MOT phase. To transfer the atoms into the standing wave
pattern of the resonator beam, the MOT laser is tuned closer to the
cooling transition to compresses the MOT volume. Simultaneously, the
magnetic MOT centre is shifted by offset fields to ideally overlap with
the resonator eigenmode. The high power enhancement of the resonator
realizes a trap depth of ∼ 40mK and thus a high transfer efficiency of
60%, see Fig. 3.6.
• After the transfer, the MOT light is switched off and the polarity of
one of the MOT coils is changed to create a magnetic offset field. With
this, the interaction between the spin states is large enough to perform
efficient evaporative cooling inside the resonator beam.
• The dipole trap which transports the atoms into the science cell is
switched on and overlapped with the resonator mode at the position
of the atoms. The beam power of the cooling resonator is lowered to
perform evaporative cooling and finally, the beams are switched off to
transfer the cold atoms into the several hundred µK deep running wave
dipole trap. Typically, we are left with 1×106 atoms with a temperature
on the order of 100µK.
• The focussing lens of the transport dipole trap is positioned on an air-
beared translation stage. Moving the lens over a distance of 326mm
transports the atoms into the science cell in ∼ 1s.

• The laser power of the transport trap is lowered from 2.4W to 100mW
to perform further cooling1. We obtain 1×105 to 1×106 atoms with an
approximate temperature of 100µK.
• Afterwards, the atoms are transferred into the oblate squeeze dipole

trap. Lowering the corresponding beam power from 400mW to 20mW
results in atom numbers on the order of 1×105 at temperature of ∼
100nK. Experiments are either carried out with flat 3D gases inside the
squeeze trap or, after transfer, in the 1D optical lattice.
• The blue-detuned 1D lattice is generated by two 532nm laser beams

1For lower laser powers, the emergence of a elongated molecular BEC can be observed.
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which form a standing wave interference pattern with a large lattice
spacing. For the transfer into a single anti-node of the interference pat-
tern, the power of the squeeze trap is increased to compress the atomic
cloud. Afterwards, the squeeze trap is switched off and 1×105 atoms
are prepared as a 2D cloud.

The final steps of the sequence may vary since they depend on the par-
ticular type of experiment. Either way, after approximately 15 s each cycle
typically ends with the acquisition of an absorption image of the cloud. Reso-
nant light casts a shadow of the spatial atom distribution onto a sensor and
simultaneously destroys the atomic cloud.

3.3.1. Laser System for Cooling, Trapping and Imaging

The slowing, laser cooling, trapping and imaging of atoms is based on scatter-
ing events of photons. This requires resonant light, stable in frequency and
intensity. In our laboratory, the corresponding laser system consists of several
diode laser and electronics for temperature and frequency control. The entire
setup is located on a separate optical table.

All lasers are external cavity diode lasers (ECDLs) in Littrow configuration
with linewidths significantly below the natural 6Li linewidth of Γ = 5.9MHz.
Piezo-actuated gratings enable us tune and stabilize the frequencies via
proportional-integral (PI) control in a range of about 100MHz. With output
powers on the order of tenmW, the diode lasers seed tapered amplifiers (TAs)
which generate 250mW to 450mW. This light is then distributed among dif-
ferent paths and finally in-coupled into single-mode polarizationmaintaining
optical fibres which lead to the experiment. All output powers are actively
stabilized by PI control and photo diodes which monitor the intensities on
the experiment table.

The reference frequency for the MOT, the Zeeman slower and the imaging
light is set by performing Doppler-free spectroscopy inside a 340 ◦C hot 6Li
vapour cell. The lower S orbital of 6Li is split into two levels, one F = 1/2
and one F = 3/2 state which are separated by 228MHz, see Fig. 3.7. With a
Pound-Drever Hall (PDH) locking scheme, the reference laser is locked onto
the transition of the crossover between the 2S1/2,F = 1/2 and F = 3/2 to the
2P3/2 state along the D2 line (approximately 671nm). The splitting of the
upper P orbital state is below the linewidth Γ and can therefore be treated as
a single state. The P state sub-levels only splits further in presence of strong
magnetic fields.

A common offset-lock technique is used to stabilize the laser for the MOT
lightwith respect to the reference laser. TheMOT laser seeds an individual TA
and the amplified light is then split into two separate beams, the MOT cooler
and repumper, to realize a closed cycling transition during MOT operation.
Two acousto-optic modulators (AOMs) shift the frequencies of these two
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Figure 3.7.: Level scheme of 6Li without an external magnetic field. Shown
are the 22S1/2 ground state and the excited P state. The coloured vertical
lines depict the transitions on the D2 line for our MOT cooling laser (red)
and repumper laser (cyan). F depicts the different total angular momenta.
The energy splitting of the 22P3/2 is smaller than the linewidth of 6Li and
therefore not resolvable. The given values are adapted from Ref. [49, 60].

beams ±114MHz. The crossover to which the reference laser is locked lies
exactly between them. The cooler laser drives the 2S1/2,F= 3/2→ 2P3/2,F=

3/2 transition and the repumper the 2S1/2,F= 1/2→ 2P3/2,F= 3/2 transition.
Our laser system is also prepared to cool bosonic 7Li, which is also contained
in the oven and the vapour cell of the spectroscopy.

An additional laser provides the seed light for the Zeeman slower TA and
also generates the imaging light. While the Zeeman slower light drives the
same transition as the cooler, the imaging light drives the repumper transition.
Both are separately tunable in frequency. The imaging light can be tuned
over a wide range of about 1GHz to account for a wide range of magnetic
field strengths. Two AOMs set frequency shifts of the imaging light of either
40MHz or −400MHz. Separate imaging fibres allow us to quickly change
between different imaging axes and low or high field imaging.
Furthermore, for the creation of local potentials, there is a 780nm light

source, consisting of a diode-laser and a TA.

3.3.2. Zeeman Slower and Magneto-Optical Trap

After outlining the cooling and preparation of 6Li quantum gases, we now
turn to a detailed discussion of the individual parts of the experimental setup,
beginning with the Zeeman slower and the MOT. Note that details about the
realization of the corresponding magnetic fields are given in Ch. 4.
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Figure 3.8.: Sketch of the Zeeman slower and the resulting magnetic field
along the slower axis. a) The hot atoms enter the tapered magnetic field gen-
erated by the Zeeman slower coils and are constantly decelerated by counter
propagating laser light. The green line denotes the calculated axial magnetic
field of the Zeeman slower. The red line depicts the MOT field. The cyan
line depicts the resulting sum of the fields generated by the Zeeman slower,
the shim coil, and the MOT coils. b) Sketch of the increasingly compressed
Boltzmann distribution of the atom velocity at three different positions along
the slower axis.

Laser cooling of atoms is based on scattering events of resonant photons.
The net momentum transfer slows the atoms down to a lower limit given by
the recoil velocity vrec = �hk/m, where m is the particle mass. The Zeeman
slower, for instance, relies on this principle. If inter-particle scattering allows
the atoms to re-thermalize we are not only able to reduce their velocity but
also the temperature of an atomic cloud as it is realized in a MOT.

Zeeman Slower At a temperature of 400 ◦C, the hot atoms leave the oven
with a mean velocity of v ≈ 1400ms−1. To capture them in the MOT, they
have to be slowed down by two orders of magnitude to v ≈ 50ms−1. This
can be realized with a Zeeman slower, which yields an atomic flux of up to
1×1010 s−1 [61].
The basic idea of a Zeeman slower is to constantly decelerate the atoms

with the help of a counter-propagating laser beam, see Fig. 3.8. To maintain
the radiation pressure along the atoms path, a decreasing magnetic field
compensates for the changing Doppler shift δD = vλ/c of the atomic energy
levels via the Zeeman effect, where λ is the wavelength of the slowing light,
v the velocity of the atoms, and c is the speed of light. This decreasing field
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is generated by tapered magnetic coils, placed around the vacuum tube in
which the atoms travel from the oven into the main chamber.

Atoms with an initially lower velocity are addressed at a later position in
the Zeeman slower. This leads to a compression of the velocity distribution
and depicts the difference between the slowing and cooling of atoms.

To avoid losing decelerated atoms from the slowing process, the compensa-
tion of the Doppler shift has to be fulfilled over the entire length of the slower.
Considering the imposed level shift by an external magnetic field B and the
equations of motion of the atoms yields the ideal magnetic field slope

B(z) =
h

µB

[
δ0+

1

λ

√
v2init−2aez

]
, (3.1)

where the resultingmagnetic field is depicted in Fig. 3.8. The z-direction is the
symmetry axis of the slower, µB is Bohr’s magneton, λ the wavelength of the
slowing light, ae = κamax is the effective deceleration, the constant 0 < κ6 1,
and vinit the initial velocity of the atoms.

If the detuning δ0 between the slower light and the MOT cooler transition
equals zero, the position where the atoms reach their final velocity vend co-
incides with the centre of the MOT field. Choosing δ0 > 0 shifts the slower
end beyond the MOT centre, but prevents the Zeemman slower light from
perturbing the MOT due to resonant scattering.

In the limit of high laser intensity the maximum light force acting on the
atoms is

Fmax =mamax =
 hkΓ

2
, (3.2)

which determines the maximal deceleration amax, with the linewidth Γ =

5.9MHz of the used transition and the wavenumber k. In the case of 6Li,
it follows amax ≈ 2×106ms−2. This fairly large value makes the use of a
Zeeman slower for 6Li feasible. Typically, a deceleration of κamax = 0.5amax
is chosen to realize a robust operation, i. e. to be independent from random
fluctuations of the light intensity and scattering rate.
In our experimental setup, the Zeeman slower light enters the vacuum

chamber through a CF40 view-port opposite to the oven and is focussed onto
the 4mmoven nozzle over a distance of about 2m. The circularly σ+ polarized
light drives the 2S1/2,mJ = 1/2→ 2P3/2,mJ = 3/2 transition with an available
laser power of 80mW. The slower frequency is detuned from the cooler laser
by additional δ0/(2π) = −36MHz.

Themagnetic field coils of the Zeeman slower are operatedwith a current of
9.9A at 48V. This yields a maximum field strength of 1250G at the beginning
of the slower to address atoms with an initial velocity of up to ∼ 1000ms−1.

Magneto-Optical Trap When the atoms are successfully decelerated by the
Zeeman slower, they are captured in the MOT which corresponds to the first
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a b

mF = 1 mF = -1

x

mF = 0

Figure 3.9.: Working principle of a MOT. a) Three pairs of counter-
propagating laser beams intersect at the centre of a magnetic quadrupole
field. This field is generated by two coils, which are operated with a current
of opposite circular direction. b) Away from the local minimum at the MOT
centre, the magnetic gradient field introduces a change of the atomic level
shift. Due to the magnetic field and the polarization of the six laser beams,
the atoms are only resonant with the laser beam counter propagating the
direction in which the atoms move. This results in an effective restoring force
which confining the atoms to the centre of the MOT. Here, the detuning of
the MOT light is described by δ.

cooling step. At the end of the MOT phase, the temperature of the gas has
already decreased by almost seven orders of magnitude. The lower tempera-
ture limit in the MOT is determined by the Doppler temperature TD = 140µK
due to momentum transfer of re-emitted photons.
The experimental realization of a MOT consists of three orthogonal circu-

larly polarized and near-resonant laser beams which illuminate the atoms
in the main chamber from all spatial directions. Each beam exits through a
view-port and is back reflected into the vacuum chamber by a mirror which is
combined with a λ/4 retardation plate. Therefore, the incident pairs of beams
are respectively σ+ and σ− polarized, as shown in Fig. 3.9 a.
Two magnetic coils are recessed in the top and bottom view-port of the

main chamber. Their distance to the atoms is only 40.5mm. During the MOT
phase, the coils are operated in anti-Helmholtz configuration, i. e. the currents
through the individual coils run in opposite circular direction. The generated
magnetic quadrupole field is a gradient field with a minimum field strength
in the centre.

The magnetic field and the polarization of the laser beams break the sym-
metry of the imposed radiation pressure. Atoms are only resonant with the
beam which is coming from the direction in which the atoms travel, i. e. the
atoms can only scatter a counter-propagating photon. Similar to the case
of the Zeeman slower, the MOT light is red-detuned by a few line-widths
Γ ≈ 5.9MHz to compensate for the Doppler effect. Thus, the atoms are slowed
down to standstill in a shell around the centre of the MOT and then pushed
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back, see Fig. 3.9 b.
With a detuning of approximately 5Γ , we obtain optimal loading perfor-

mance with a MOT coil current of 63A which generates in-plane magnetic
field gradients of approximately 15Gcm−1. Since the cooling transition of 6Li
is not closed, after the absorption of a photon the atoms can relax from the
2P3/2 state to the 2S1/2,mJ =−1/2 state and become invisible for the cooler.
Therefore, an additional repumper laser, which is overlapped with the cooler
beam, re-excites the atoms to the 2P3/2 state. A power of respectively 23mW
and 17mW is available for cooler and repumper.
The lifetime of the atoms in the MOT is on the order of ten minutes, cor-

responding to the low background pressure of only 1.8×10−11mbar in the
main vacuum chamber. After 5 s MOT loading, we capture ∼ 30×106 atoms.
In the last step of the MOT phase, the frequency of the cooler and repumper
laser is tuned closer to the resonance to compress the MOT volume. Simulta-
neously, magnetic offset fields shift the zero field centre of the MOT field to
overlap it with the resonator enhanced dipole trap. Switching off the MOT
light completely transfers the atoms into the cooling resonator.

Comment on Loading Rates OurMOT is quite small compared to other 6Li
experiments which obtain loading rates up to two orders magnitude higher.
Although the reason for this is still unknown,we could rule outmany possible
issues as discussed in the following.
First, we consider a possible limitation by the available laser power for

the Zeeman slower light. Our design value for the effective deceleration of
0.5amax yields a slowing light intensity Iwhich equals the saturation intensity

I= Isat = 2hπ
2 Γc

3λ3
. (3.3)

For 6Li, the resulting saturation intensity is Isat = 2.5mWcm−2.
At the MOT position, the slowing laser beam has a diameter of about

≈ 20mm, which equals the expected size of the slowed atom beam at that
position. The available laser power of 80mW for the slower light enables us
to reach a maximum intensity of 18.0mWcm−2, which would correspond
to a deceleration of ≈ 0.9amax. Thus, the Zeeman slower light is no limiting
factor.

This does not apply for the MOT light. Typical values for the power density
of a 6Li MOT are 10mWcm−2 to 15mWcm−2. This is about five times Isat to
fully saturate the resonance. However, the maximum power of 23mW and
17mW for our cooler and repumper laser yields only 60% of the saturation
intensity Isat.

The clear limitation of the laser power is mainly due to the degradation of
the performance of the corresponding 670nmTA. On the timescale ofmonths,
we repeatedly observed an increasing loss of output power after the assembly
of several TAs. We can only assume that there is a problemwith the TA device
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itself or with insufficient management of dissipated heat. Two measures are
thus planed for the next downtime of the experiment. First, we will improve
the laser system by using two separate TAs for cooler and repumper light.
And second, the illumination of the atoms in the MOT will be optimized by
adapting the shape of the MOT beams to the spread of the MOT volume, i. e.
we reduce the beam size and therefore increase the intensity. Furthermore, a
new mechanical design for the TA setup is finished and will be tested soon.
Above that, the direction of the atom beam itself was carefully adjusted.

We also optimized the match of magnetic Zeeman slower and MOT field by
installing a small shim coil between end of the Zeeman slower coils and main
chamber.

Another possible issue might regard the applied magnetic fields. The mag-
netic centre of theMOT is shifted bymagnetic offset fields during the loading,
as well as for the transfer into the cooling resonator afterwards1. This results
in a non-trivial asymmetric magnetic field configuration of the MOT. As a
consequence, the wavefronts of the corresponding laser beams are tilted in
respect to the magnetic field lines, which may be disadvantageous for the
MOT loading performance. The same accounts for the Zeeman slower beam
which has to match the angle of divergence of the hot atom jet.

Finally, the performance of the oven itself seems to be erroneous. We ob-
served a reduction in atom flux over the past years. The reasons might be
that 6Li chemically reacted to form solid lithium-oxide Li2O and -hydroxide
LiOH. These obstructions are most likely located in proximity to the oven
nozzle but at a position where we are unable to see and eliminate them.
We compensate for the reduced flux by operating the oven at higher tem-

peratures of (400 to 440) ◦C. As a consequence, we increased the current in
the Zeeman slower coils to adapt the magnetic field to the higher mean veloc-
ity of the atoms. The Zeeman slower now operates closer to a regime where
κ6 1, i. e. where the effective deceleration is close to the maximum attainable
deceleration of the atoms. So far, this was not disadvantageous for us.

However, a new oven is manufactured and will be assembled at the earliest
opportunity. It features a less complicated design to minimize the chances
for a blockage. Until then, our efficient preparation of the atomic samples
compensates for the reduced atom numbers we start with.

3.3.3. Cooling Resonator and Transport Dipole Trap

In order to access lower temperature regimes, we employ optical dipole traps.
Here, the Doppler temperature is not longer the lower limit. This makes the
all-optical preparation of degenerate alkali gases so feasible.

1The Zeeman slower axis, which is shifted in respect to the geometric centre of the main
chamber, prevents us from loading the MOT without the offset fields. Further informations
are given in Ch. 4.4.
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Figure 3.10.: Technical drawing of the cooling resonator. The mirror holders
are positioned on a rigid steel baseplate inside the main vacuum chamber.
The lower mirrors are convex and cause the resonator eigenmode to feature a
minimum beam waist of (17.5×30)µm, which coincides with the geometric
centre of the main chamber.

Cooling Resonator After theMOT phase, the atoms are transferred into the
resonator enhanced dipole trap in the main chamber. The cooling resonator
consists of four mirrors in bow-tie configuration placed on a monolithic steel
baseplate inside the main chamber, as shown in Fig. 3.10. Two of the mirrors
are curved, forming a resonator eigenmode. The minimum beam waist of
(17.5×30.0)µm is locatedat the geometric centre of the chamber. The asymme-
try of the resonatingmode is due to the fact that all fourmirrors define a plane
which is tilted by 45◦ with respect to the baseplate. The round-trip length of
the resonator is 87 cm which leads to a free spectral range of νFSR = 345MHz
and a power enhancement of ∼ 1300. A finesse of 3880 yields a bandwidth of
80kHz.

A commercial Nd:YAG solid-state laser system1 provides the laser light for
the cooling resonator. Two beams, which are mode and polarization matched
to the cycling eigenmode, are coupled into the resonator through the pol-
ished back of one of the plane mirrors, see Fig. 3.10. The incident angle of the
two beams is such that they propagate in opposite directions within the res-
onator. The TEM00 mode is excited and a standing wave interference pattern
is formed.

The resulting resonator power enhancement enables us to realize very deep
trapping potentials to gain a high transfer efficiency from the comparatively
hot MOT. Despite the high cycling power in the resonator, the mode volume
at the centre is too small for sufficient transfer efficiencies. Thus, ideal overlap
between MOT and cooling resonator eigenmode is obtained by shifting the
MOT with magnetic offset fields, accordingly. The final transfer position is
approximately 20mm away from the centre of the main chamber, where the
minimumbeamwaist of at the centre has increased to approximately ∼ 400µm.

The transfer is further optimized by compressing the MOT volume by tun-
ing the cooler and repumper laser frequency closer to the resonance. In addi-
1Innolight Mephisto MOPA 25, www.coherent.de.
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tion, the laser powers are lowered and finally switched off when the transfer
is complete.

During the transfer, the incident power of the two 1064nm resonator beams
is 105mW,which results in trap frequencies of (10.000×0.135×0.080)MHz in
axial and both radial directions. The resulting trap depth is about 40mK at the
centre. At the transfer position, the trap depth is about 175µK corresponding
to trap frequencies of (650×520×290) kHz.With this, nearly 60%of the atoms
are loaded from theMOTvolume into the oblate slices definedby the intensity
maxima of the standing wave pattern. Then, the MOT light as well as the
magnetic coils are switched off completely.
To perform evaporative cooling, the polarization of one of the MOT coils

is inverted to change from anti-Helmholtz coil configuration to Helmholtz
configuration. Now, the current through both solenoids has the same circular
direction and creates a magnetic offset field with a strength of 210G at the
position of the atoms. The corresponding scattering length of |a3D|≈ 235a0
enables us to cool the atoms by reducing the beam powers in 1.6 s down to
8mW1.

Since the mechanical design of the cooling resonator is very stable, we have
to take care mainly of the frequency stabilization of the in-coupled light. A
68MHz modulation via an electro-optic modulator (EOM) creates sidebands
on the laser light. Via PDH technique, an error signal is generated by detecting
the beat signal of the carrier frequency with the modulated sidebands. The
corresponding photo-diode (PD) detects one resonator beams reflected from
the in-couple mirror. We stabilize the laser frequency to the resonator on a
time-scale of 100 kHz. Additionally, the frequency of the laser itself can be
tuned over a range of ±100MHz with an internal piezo actuator to vary the
length of the laser cavity. The resulting regulation frequency is about 20 kHz.
Finally, we control the temperature of the Nd:YAG crystal directly which is
rather slow but necessary to ensure that the laser frequency does not drift too
far from resonance to lock on. The PI control for the intensity has a control
speed of 10 kHz and acts on two AOMs in the laser beam paths of the in-
coupled beams. Two photo diodes monitor each resonator beam individually
via leaking light behind the curved mirror opposite to the in-couple mirror.

During the evaporative cooling, the power of the running wave transport
dipole trap is ramped up. Both, resonator and transport trap, share the same
laser light source. When the evaporation inside the cooling resonator is fin-
ished and the beams are finally switched off and the atoms are contained in
the transport trap.

1One of the beam is switched off completely. Hence, the atoms are transferred from a running
wave dipole trap into the transport dipole trap.The final trap frequencies are on the order of
a few Hz.
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Figure 3.11.: Characterization of the transport dipole trap beam. a) Spotsize
(1/e2 radius) of the beam focus along its axis. The cyan circles depict the mea-
sured values in the sagittal plane, the black circles denote the measurements
in the meridional plane. The solid lines are fit curves, yielding the minimum
beam radius of 20.9µm (sagittal) and 22.1µm (meridional). b) False colour
pictures of the obtained beam profiles corresponding to the marked data
points.

Transport Dipole Trap One of the key features of many quantum gas ex-
periments is the spatial separation of the main cooling steps and the position
where the actual experiments are carried out. As a consequence, the atoms
have to be transferred over amacroscopic distancewhich poses a considerable
challenge.

There are different possibilities to realize the transport of atoms, e. g. using
a moving magnetic trap generated by consecutively powered coils or mag-
netic coils mounted on a translation stage. A more common solution is to
combine one or multiple lenses to create a tightly focussed optical dipole trap
with a translation stage to move the focus and the atoms accordingly. Most
alternatives are rather complex and thus yield numerous sources for possible
optical aberrations. We opted for a simple and thus reliable design.
We realize the optical dipole trap by focussing a laser beam with a single

achromatic lens on a highgrade linear translation stage1, see Table 3.1 formore
details. The air beared translation stage is operated with cleaned pressured
air2 and powered by two 10A switch power supplies3 powering a brushless
linear servo motor with Hall sensor based position feedback. The focussing
lens has a focal length of 1000mm and creates beam focus with a waist of
∼ 22µm (1/e2 radius), see Fig. 3.11. It overlapswith the cooling resonator beam
in the main chamber. After the atoms are transferred from the resonator into
1Dover AirGlide AG-350, www.dovermotion.com, operated with an Aerotech Ensemble ML-40
controller, www.aerotech.com.

2Water-seperator, grade AO pre- and grade AA high efficiency filter.
3Meanwell DRP-480-48, www.meanwellusa.com.
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Transport Dipole Trap

Focussing lens focal length 1000mm
1/e2 Beam waist radius 23µm
Rayleigh length 1.8mm
Trap frequencies (4W) (8800×8800×90)Hz
Trap frequencies (20mW) (400×400×5)Hz
Trap depth 290µK (4W)
PID control speed 5 kHz

Linear Stage

Maximum available current 10A
Specified max. peak current 14.2A
Specified max. cont. current 4.5A
Specified max. acceleration 5ms−2

Specified max. velocity 1000ms−1

Travel distance 326.35mm
Maximum Travel distance, approx. 350.00mm
Time of travel 1.4 s

Table 3.1.: Summarized properties of the transport dipole trap and the linear
translation stage which is used to move the focussing lens. Specified values
are given by the manufacturer.
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Figure 3.12.: Optical setup of the transport dipole trap beam. The 1064nm
laser beam is coupled into a bare fibre endwhich is fixedon a 6-axis translation
table. The diverging out-coupled light is then reflected by two mirrors before
being collimated. The leaking light behind the first mirror is used for the
power regulation. The second mirror is piezo-actuated to employ position-
control of the transport trap beam pointing. Moving the focussing lens with
the linear translation stage transports the atoms from the main chamber into
the science cell. Behind the science cell, the beam is focussed onto a QPD
whose signal is used to control the piezo-actuated mirror.

the running wave dipole, the focus is moved over a distance of ∼ 326mm in
about 1 s to transport the atoms into the science cell.

In order to obtain an ideal focus profile, the transport dipole trap laser beam
is coupled through a short optical fibre. The diverging out-coupled light is
first reflected under ∼ 45◦ by two mirrors, and then passes an achromatic lens
with a focal length of f = 800mm, see Fig. 3.12. This lens is positioned on a
small translation table to precisely collimate the beam in accordance to the
diameter of the movable focussing lens of 50.8mm.

Optical Fibre In case of a silica core optical fibre, a constant high laser power
through-put is difficult to achieve, especially in sequential operation. This
is mainly due to different thermalization time-scales of the involved optical
elements. As a consequence, thermal drifts cause misalignment, i. e. worsen
the coupling efficiency which can ultimately destroy the optical fibre. Nev-
ertheless, with appropriate caution we are able to achieve output powers of
6Wwith a coupling efficiency of at least 70%.

Yet, special measures have to be taken. For in-coupling, the typically used
angle-polished connector (APC) is not feasible because the connector and the
ferrule are likely to be exposed to high dissipated powers from scattered light
or light within the cladding. Furthermore, optimal mode-matching of the
incident light beam with respect to the angled fibre tip is difficult to obtain.
We therefore cleaved one end of the fibre and mounted the bare fibre end on
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a six-axis flexure stage1. Thus, we are able to precisely move and tilt the fibre
tip in all spatial directions with sub-micron accuracy.

Unfortunately, the first fibre did not withstand the high input powers and
was destroyed in a distance of a few centimetres away from the bare end. To
keep the downtime as short as possible, we replaced the fibre with a similar
one, and opted to operate it at a lower output power of 2.5W to reduce the
danger of damaging the fibre.

However, the silica core fibre is about to be replaced by a hollow-core pho-
tonic crystal fibre2, which allows us to obtain > 95% coupling efficiency with
an input power of 10W without significant thermalization issues. While one
end is confectionedwith a FC/APC connector the other end is cleaved, sealed
and polished3. Thus, we can use the same coupling peripherals.

Operation and Stabilization Special care has to be taken so that the beam
is not truncated along its path inside the vacuum chamber and to avoid back
reflections. Both could cause losses during the transport. Furthermore, the
acceleration of the trap focus must not exceed the time-scale given by the
axial trap frequency to prevent non-adiabatic effects. For a laser power of
2.5W, this time scale is on the order of 100ms. The radial trap frequencies set
the limit for vibrations and jitter perpendicular to the laser beam. Although
there are no noticeable vibrations of the translation stage, the laminar air
flow provided by the flow-boxes above the optical table, causes significant
jitter of ±2µm of the focus position on the QPD. Therefore, we covered the
optical beam path and reduced the vibrations to 0.5µm and 0.3µm in x- and
y-direction. The residual jitter along the axial direction was determined to be
on the order of a few 100nm in amplitude, using the position feedback of the
linear stage.
To obtain constant atom numbers, the pointing position of the transport

trap beam is stabilized to the location of the Feshbach field maximum inside
the science cell with a QPD. This diode is placed in a short distance behind
the view-port of the science cell through which the transport trap beam exists.
The position control features a piezo-actuated mirror in adequate distance
to the 1000mm lens, see Fig. 3.12. The position readout by the QPD is done
while the reduction of the transport laser power for evaporation is halted for
100ms at 100mW. Regulation is possible on a timescale of 30Hz.
Instead of transferring the atoms into the squeeze dipole trap we can con-

tinue the evaporation inside the transport trap to produce an elongatedmolec-
ular BECs. Typically, the final laser power at the end of the evaporation is
between 20mW and 10mW. Lowering the trap depth leads to spilling of
particles, as shown in Fig. 3.13 a. We determined the corresponding trap fre-

1Thorlabs MBT616D Fiber Launch System, www.thorlabs.com.
2NKT Photonics LMA-PM-15, www.nktphotonics.com.
3Alphanov, www.alphanov.com.
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Figure 3.13.: a) Number of particles in the transport dipole trap as a function
of the laser power. For low powers, we observe onset of spilling. Due to
the formation of molecules there is an increase in the particle number at
low powers. The measurement is performed for two different magnetic field
strengths, corresponding to a gas consisting of dimers on the BEC side (760G)
and a Fermi gas on the BCS side (1150G). Before imaging,we increase the trap
power to 1Wandperform amagnetic field sweep to afield above the Feshbach
resonance to dissociate all molecules. b) Parametric heating in the transport
trap as a function of the beam power modulation frequency. The atom loss is
caused by the excitation of the radial breathing mode. The measurement is
performed at a magnetic field of 790G for the beam powers P = 10mW and
P = 20mW. We modulated with an amplitude of 6 1%P for 150ms. The solid
lines are Lorentzian fits yielding the maximum atom loss for a frequency of
560Hz and 815Hz. The corresponding trap frequency is 280Hz and 409Hz,
respectively.
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quencies via parametric heating to respectively 409Hz and 280Hz, as shown
in Fig. 3.13 b.

Logarithmic PowerControl During evaporation, the power in the transport
trap is reduced by almost three orders of magnitude. A power control based
on a linear power monitoring is not feasible since it works reliably either for
high or for low powers. We employ a PI control using a photo diode with a
logarithmic amplifier instead, which provides a feasible control signal over
the whole laser power range with a control speed of 5 kHz.
The signal of the logarithmic photo diode amplifier is proportional to the

logarithm of the measured laser power ∝ logP. For regulation, the PI control
compares the measured laser power ∝ logP with the logarithm of the set
value logS. The PI control acts on an AOM to regulate the laser power. Using
the relative difference logP− logS as a control signal does not work because
the AOM has to compensate for the real difference in laser power. However,
in case of small deviations the difference is

logP− logS ∼=
P−S

S
. (3.4)

Therefore, the control signal can be multiplied by S to create a feasible control
signal.

3.3.4. Squeeze Dipole Trap and 1D Optical Lattice

In 1.4 s, the atoms are transported from the main chamber to their final posi-
tion in the science cell. Here, the laser beam of the squeeze dipole trap enter
the science cell perpendicular to the transport trap, both traps are overlapped,
and the power of the transport trap is lowered to transfer the atoms into the
oblate squeeze trap. After further cooling of the atoms, one either experiments
with an oblate cloud, or an additional transfer into the 1D optical lattice is
carried out.

The available space around the science cell is quite limited. Consequently,
the required optics for trapping, i. e. for the realization of the squeeze trap
and the 1D optical lattice, had to be integrated in a compact way without
forfeiting their stability. We thus realized a rigid and yet compact setup on
a separate, non-magnetic breadboard1, which is shown Fig. 3.14. After the
testing and adjustment of the optics, the breadboard was implemented into
the experiment2.
The breadboard is positioned between the magnetic coils without being

in direct contact to either the vacuum chamber or the coils. All mechanical
1EP-GC 201, Erhard Hippe KG, www.hippe.de.
2A detailed description of the adjustment procedure can be found in the Master’s Thesis of K.
Hueck [62].
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Figure 3.14.: Photograph of the compound breadboard which accommodates
the optics providing the 1D lattice and the squeeze dipole trap. The picture
was taken before the breadboard was integrated into the experimental setup.
The green 532nm laser beam of the lattice and two red 671nm imaging beams
aremade visible using vaporized dry ice. Below the positionwhere the beams
cross, one can recognize the cut-out for the lower microscope objective.
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Figure 3.15.: Lens setup for the creation of the squeeze dipole trap. The cyan
and red beam depict the sagittal and meridional beam axis, respectively. The
sagittal beam extension is scaled down by a factor of ten.

mounts, many of which are custom-built, are non-magnetic and mostly non-
metallic to ensure that they are unaffected by changing magnetic fields. For
adjustment, piezo actuators are connected to all relevant mirrors and lenses.

Squeeze Dipole Trap The laser light for the red-detuned squeeze trap is
provided by the same laser light source as the cooling resonator and the
transport dipole trap. An optical fibre1 delivers the 1064nm laser light to the
breadboard where it is out-coupled2.
After the beam polarization is cleaned with a polarizing beam-splitter,

a cylindrical lens focusses the laser light in the horizontal direction which
results in a large horizontal beam waist. An achromatic lens with a focal
length of 200mm collimates the beam in the meridional plane. With this,
we realize a highly elliptical beam waist with an aspect ratio of about 1 : 40
with 1/e2 radii of wx,y = 370µm and wz = 10µm, see Fig. 3.15 for a sketch of
the lens setup. The small waist size wz is limited by the optical system and
aberrations which are mainly caused by misalignment.

An achromatic lens with a focal length of f= 150mm ismounted on a linear
translation stage3 to adjust the focal position along the beam direction inside
the science cell. The second last mirror in front of the science cell view-port,
throughwhich the squeeze beam enter, is mounted in a piezo-actuatedmirror
mount4. Tilting this mirror moves the focus up to ±6mm up or down, and
left or right, respectively.

The typical squeeze trap beam power during the transfer is 400mW, which
generates a 4µKdeep trapwith trap frequencies of (68×68×2300)Hz in x-,y-,
and z-direction, respectively. To realize an ideal transfer, we apply a magnetic
field strength close to the Feshbach resonance.
Finally, the atoms are loaded into the squeeze trap without significant

losses. By lowering the laser power we perform evaporative cooling and

1Thorlabs PM980-XP, www.thorlabs.com.
2Toptica FiberDock 2V0, six axis, f=4.51 fibre-coupler, www.toptica.de.
3Newport Agilis AG-LS25, www.newport.com.
4Newfocus 8886 Pint Sized Corner Mount 12.7mm, www.newport.com.
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Figure 3.16.: a) Quasi-2D regime in an optical lattice. All movement along the
strongly confined direction besides the zero-point motion is frozen out. This
requires the Fermi energy EF and thermal energy kT to be smaller than the
excitation energy to the first excited state EF,kBT � �hωz. b) Typical config-
uration of red-detuned 1D optical lattice. Two counterpropagating 1064nm
laser beams generate an interference pattern with a small lattice spacing of
532nm. A stack of quasi-2D clouds is loaded. c) Our configuration consists of
two blue-detuned laser beams which intersect under a steep angle to create
an optical lattice with a lattice spacing of 2.9µm. As a consequence, we create
a single quasi-2D cloud trapped in a anti-node of the interference pattern.

set the atom number or temperature. At a final power of 20mW, the radial
trap frequencies are dominated by the curvature of the magnetic field. The
resulting trap frequencies are (32×32×500)Hz.

As high field seekers, 6Li atoms are attracted by magnetic field maxima. As
a consequence, the curvature of the magnetic offset field generates a highly
radially symmetric confinement with a frequency of about 30Hz at a field
strength of 800G1. To precisely control the beam power, a photo diode moni-
tors the light leaking through one of themirrors behind the view-port through
which the beam exists the science cell. The corresponding PI control loop op-
erates at a maximum speed of 17kHz.
With a final power of 20mW, the squeeze trap typically contains 20000

atoms per spin state with a temperature on the order of � 0.1T/TF. The oblate
cloud can either be used for experiments or we continue with the preparation
to realize a single 2D cloud by transferring the atoms into the 1D optical
lattice.

1D Optical Lattice In order to achieve the 2D regime, excitations in one
direction of motion have to be frozen out. Hence, the Fermi energy and
the temperature have to be sufficiently low in respect to the confinement
EF,kBT � �hωz, whereωz is the trap frequency of the strongly confined lattice
direction, as illustrated in Fig. 3.16 a. The higher the trap aspect ratio of the
vertical and the radial direction ωz/ωr � 1, the stronger is the 2D confine-
ment. Note, that due to the finite radial extent of realistic experiments, even

1With a final power of 20mW the resulting trap frequencies without magnetic confinement
are (15×15×500)Hz.
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in the case of very strong confinements, the gas is said to be quasi-2D.
A convenient way to produce a 2D gas is to use a red-detuned light sheet

[63]. However, the aspect ratio of the realizable radial and axial trap frequency
is quite limited and the prepared atomic gases are therefore not far in the
2D regime. This is improved by using blue-detuned Hermite Gaussian laser
beams [64] and 1D optical lattices. These are formed by the standing wave
interference pattern of two counter propagating laser beams. Here, the trap
frequency of the strong confinement easily exceeds typical energy scales of
excitations. Thus, strong confinements and highly planar gases are realized.
However, due to the small lattice spacing, typically many adjacent 2D planes
are populated, see Fig. 3.16 b [65–72]. This easily causes an averaging of
measured quantities and counteracts the advantages of high performance
imaging systems.
Being interested in local properties, it is therefore desirable to address

individual 2D planes [73, 74] or prepare only a single 2D cloud. This can be
done by decreasing the intersecting angle of the counter propagating lattice
beams which results in a larger lattice spacing [75], as shown in Fig. 3.16 b.
We intersect two 532nm laser beams under an angle of 10.4◦, we create a

lattice spacing of 532nm/2sin(10.4◦/2)≈ 2.9µm, see Fig. 3.16 c. We are able
to directly transfer the atoms from the squeeze dipole trap into a single layer
of the 1D lattice with a high aspect ratio ofωz/ωr ≈ 1000. Furthermore, since
the atoms are confined inside an anti-node of the interference pattern of the
blue-detuned laser light, scattering induced heating is strongly suppressed.
In the radial direction, the 1D lattice is anti confining, which is particularly
advantageous to perform evaporative cooling inside the lattice. However,
radial confinement is typically provided by the highly symmetric magnetic
offset field which is applied to set the inter-particle interaction.

Realization The 532nm laser light for the 1D optical lattice is generated by a
1064nm fibre-amplifier1 and a frequency-doubling resonator2. Details about
the laser system are presented in Sec. 3.3.5.

For a reliable realization of a single quasi-2D cloud, relative drift between
the squeeze dipole trap and the optical lattice has to be avoided. A displace-
ment of less than one micron is sufficient to populate two lattice layers. A
constant performance thus requires a highly stable optical setup for the beam
preparation and delivery of both, the squeeze and the lattice beams.

Therefore, a very rigid and compact setup in minimum proximity to the
science vacuum cell was realized on the same non-magnetic breadboard
which accommodates the squeeze trap optics, as shown in Fig. 3.14. The beam
delivery is done with a highly stable fibre out-coupler3, similar to the one of

1Nufern NuAmp PSFA-1064-50mW-50W-6-0, www.nufern.com.
2Evans & Sutherland, supplier for digital theatres and planetariums, www.es.com.
3Toptica FiberDock 2V0, www.toptica.de.
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Figure 3.17.: Lens setup for the creation of the 1D lattice. The cyan and red
beam depict the sagittal and meridional beam axis, respectively.

the squeeze dipole trap. Close to the out-coupler, the leaking light behind a
mirror is used for the powermonitoring for the PI control. An achromatic lens
with a focal length of 80mm collimates the beam with a diameter of about
360µm. After a retardation waveplate and polarization cleaning, the beam is
split into two by a second polarizing beam splitter.

The corresponding optics are placed in a monolithic mount to create a pair
of parallel and phase-stable laser beams. These intersect inside the science
cell to form the optical lattice. The polarization of both beams is equalized
with an λ/2 waveplate and each beam profile is then changed to an elliptical
shape by passing through a cylindrical lens.
The two elliptical beams are intersected with each other at the position

of the atoms via a lens with a focal length of 150mm, which is positioned
between the cylindrical lens and the entrance view-port of the science cell.
The beam divergence in the direction of the beam axis is adapted such that
the optical lattice generates a symmetric radial confinement. In the horizontal
direction perpendicular to the beam axis, the waist of the lattice beams is
about 370µm, similar to the waist of the squeeze beam to realize an ideal
overlap of the two traps. The focussing lens is mounted on a piezo-actuated
translation stage1 to adjust the position of the focus by±3mm. The lens setup
for the creation of the 1D optical lattice is depicted in Fig. 3.17.

Protocol The starting point is an ultracold cloud consisting of balancedmix-
ture of 6Li atoms in the two lowest hyperfine states confined in the oblate
squeeze dipole trap at a power of 20mW. To transfer the atoms into the op-
tical lattice, the squeeze beam power is ramped up to 1000mW to compress
the atomic cloud. The magnetic field is ramped from the evaporation field
strength at the Feshbach resonance at 834G to approximately 800G in 100ms.
On the BEC side of the Feshbach resonance, the Fermi pressure is decreased
and thus the mean interparticle distance and the vertical cloud extent is re-
duced.
Simultaneously, the laser power of the lattice beams are exponentially in-

1Newport Agilis AG-LS25, www.newport.com.
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creased to 600mW1. The vertical and radial trap frequencies of respectively
25 kHz and −19Hz are realized and interlayer tunnelling is thus negligible.
In 300ms, the squeeze trap is switched off exponentially and the atoms are
adiabatically transferred into a single anti-node of the optical lattice. The adi-
abacity of the lattice loading is verified by a return transfer into the squeeze
dipole trap and subsequent temperature analysis.

The radial confinement is usually dominated by the magnetic confinement,
i. e. ωr ≈ 30Hz for a magnetic field strength close to the Feshbach resonance.
Our resulting aspect ratio ofωz/ωr≈ 850 exceeds the ratio ofmost comparable
experiments. The highly stable optical setup provides us with quasi-2D Fermi
gases with typically 30000 atoms per spin state and temperatures of a few
percent of the Fermi temperature TF and condensate fractions of ≈ 50%.

For lattice beam powers > 400mW, no significant tunnelling between in-
dividual layers can be observed. Lowering the beam power below 400mW
leads to noticeable losses on the relevant times scales, as shown in Fig. 3.18
a. However, finite squeeze beam powers significantly counteract. Instead of
switching the squeeze off completely, maintaining a low power of only 30mW
causes an additional vertical confinement which is sufficient to suppresses
the tunnelling almost completely, even for lattice powers down to 50mW.
As a result, for a lattice beam power of only 200mW lifetimes of an atomic
cloud on the BCS regime of ∼ 15s are restored. Towards the BEC regime, the
lifetime decreases due to losses caused by decay of bound dimers into lower
molecular states.

In Fig. 3.18 b, we show exemplary results of the determination of the radial
trap frequency. We excite a sloshing mode of the atomic cloud in the planar
direction by introducing a slight displacement of the squeeze trapwith respect
to the lattice. The resulting trap frequency accounts for both, the magnetic
field curvature and the optical lattice.

Single Layer Verification It is important to have an explicit and reliable
method to assure that we populate only one layer of the optical lattice. One
obvious way would be to image the trapped cloud from the side, but the
available optical system lacks the resolution to resolve multiple layers of
atoms. However, we are able to directly determine the number of populated
layers with the microscope objective based imaging in only one shot.
To optimize the single layer performance, the squeeze trap and the lattice

are operated with a high laser power of respectively 400mW and 600mW. In
the ideal case, the squeeze trap is perfectly aligned with a single anti-node
between two intensity maxima of the 1D lattice, see Fig. 3.19 a.

The corresponding absorption image shows the tightly compressed cloud.
Due to the fact that the axis of the squeeze trap is titled by approximately 1.5◦
in respect to the 1D optical lattice, the imaged cloud is elongated along the
1The lattice beam power is always given as the sum of both intersecting laser beams.
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Figure 3.18.: a) Particle loss in the optical lattice as a function of time. The
measurements are carried out at a magnetic field strength of 830G. For typ-
ical beam powers of (500 to 600)mW, the lifetime is 14 s and higher. For
lower power, the lifetime rapidly decreases. When the squeeze dipole trap is
switched on simultaneously, long lifetimes on the order of 15 s are restored
even for low lattice power such as 20mW (not shown). b) Radial trap fre-
quency of the 1D lattice. The measurement is carried out with a lattice power
700mW at a magnetic field strength of 680G. The sinusoidal fit yields a radial
trap frequency of 28.1Hz, resulting from the confinement of the optical lattice
and the magnetic field curvature. We deduce a optical trapping frequency of
−18Hz.
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Figure 3.19.: Scheme to verify the preparation of a single quasi-2D cloud in
the 1D optical lattice. a) Sketch of the ideal overlap of 1D lattice and squeeze
dipole trap, where the cold gas is loaded into a single anti-node of lattice
interference pattern. Accordingly, the absorption image shows a single cloud.
b) Tilting the squeeze dipole trap leads to a relative displacement between
both traps. As a result, the atomic cloud in the squeeze trap is separated and
the atoms populate two lattice layers,which is clearly visible in the absorption
image. The images are acquired with the squeeze trap operating at 500mW
and the lattice at 600mW at a magnetic field strength of 715G. The clouds are
elongated along the tilting axis.
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tilting axis.
When the beam of the squeeze trap is tilted so that the focus moves by

half the lattice spacing, the atomic cloud is split in half by a maximum of the
lattice interference pattern. The tilting angle causes a displacement of both
clouds, see Fig. 3.19 b, which can be observed in the resulting absorption
image. Without the tilt, the two resulting clouds would be axially aligned
on top of each other and both cases would be difficult to distinguish. With
a distance of about 100µm between the two separate parts of the cloud we
estimate the relative angle between the plane of the squeeze trap and the
lattice to be ∼ 1.3◦.
For a qualitative optimization, three Gaussian curves are fitted to the ver-

tical average of the obtained pictures. The optical lattice is vertically moved
with the piezo-actuated mirror in front of the science cell entrance port to
minimize the adjacent density peaks. In the optimal case, this simple anal-
ysis provides us with 85% of the atoms in one single layer, which is most
likely a lower bound. However, even with 15% to 20% in the adjacent layers,
the influence on the experiments and the image analysis of the central layer
is expected to be negligible. This method allows us to realize single layer
preparation in only a few iterations.

3.3.5. 532 nm and 1064nm Laser System

In the case of 6Li, there are numerous commercial options to realize red-
detuned optical dipole traps. However, this is not the case for blue-detuned
traps,where the availability of well suited laser systems is only just increasing.
In the following, we briefly present our 1064nm laser system and a custom-
built 532nm laser system which consists of a high power amplifier and an
external doubling resonator, which provides up to 50W in continuous wave
operation1. When this system was set up, it was the first laser system com-
bining a fibre amplifier with an external doubler to produce 532nm and to
exceed the performance of available commercial systems by far.

Our 1064nm light source is a commercial solid state system with an output
power of up to 25W2 and a linewidth of 1 kHz. It is located on the main
optical table and provides the laser light primarily for the cooling resonator,
the transport dipole trap, and the squeeze trap.

A similar solid state laser is located on the optical table of the 671nm laser
system, see Sec. 3.3.1. Through an optical fibre, the laser provides the seed
light for the amplifier which is part of the 532nm setup. In front of the fibre
in-coupler, an EOM generates sidebands with a modulation frequency of

1More details about the performance and adjustment of the 532nm laser system can be found
in the Bachelor’s Thesis of J. Thielking, who tested the setup and developed the electronics
for the frequency and temperature control of the doubling resonator [76].

2Innolight Mephisto MOPA 25, now www.coherent.de.

56

www.coherent.de


3.3. PRODUCING ULTRACOLD 2D 6LI GASES

5

telephoto

lens system

light for imaging

or manipulation

science cellscience cell

microscope

objective

EMCCD

camera

Figure 3.20.: Sketch of the high resolution microscope setup. Imaging light
is guided through the upper objective onto the atoms and then focussed via
the lower objective and a telephoto lens system onto the camera sensor. The
upper microscope objective is also used for manipulation of the cold gases.

230MHz for the PDH stabilization scheme of the resonator length. Below the
main optical table, the seed light is fibre-coupled to the fibre amplifier1.

The doubling resonator consists of four mirrors in bow-tie configuration
and a doubling crystal. The optical elements are built into a monolithic hous-
ingwhich offers high thermal andmechanical stability. The out-couplemirror
is reflection coated for the 1064nm input light, and anti-reflection coated for
the doubled 532nm light. The running wave operation of the resonator pro-
tects the doubling crystal from being damaged by high intensity peaks of a
standing wave interference pattern. One of the mirrors is piezo-actuated to
vary the cavity length and controlled with the signal from the frequency lock.

With an input seed power of 100mW the amplifier generates up to 50Wat a
wavelength of 1064nm. This light is then frequency-doubled in the doubling
resonator2. The frequency doubling efficiency reaches up to 80% and the
resulting output light features a linewidth of 10kHz.

Inside the birefringent LiB3O5 doubling crystal, the refractive index for the
input frequency and the doubled output frequency are temperature depen-
dent. Only at a certain crystal temperature, both frequencies stay in phase
throughout the crystal. If this is the case, the wavelength conversion efficiency
is very high. Otherwise, both wavelengths rapidly fall out of phase and thus
the conversion efficiency is low. As a consequence, the performance is sensi-
tive to temperature changes and the crystal is thus temperature controlled
with a peltier element.
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3.3.6. High Resolution Microscopes

Typically, at the end of each cycle an absorption image of the atomic cloud is
taken. Our high numerical aperture (NA) optical system is highly advanta-
geous in regard to in-situ measurements of local properties of quantum gases.
Thus, we have access to dynamics, which would otherwise dissolve in typical
TOF measurements. Imaging a single 2D quantum gas is particularly inter-
esting since the extracted information is unobstructed by additional layers of
atoms above and below the sample. Hence, avoiding the integration along
the line-of-sight enables us to detect the smallest local changes and to probe
the underlying physics in many-body systems.

The imaging setup consists of one microscope objective below the science
cell and a telephoto lens in front of a high perfomance camera with a back-
illuminated EMCCD1 and a front window which is anti-reflection coated for
(532, 670, 767 and 780)nm. A second identical objective is located above the
atoms to realize, e. g. small local or mesoscopic potentials, see Fig. 3.20. Both
microscope objectives are corrected for the science cell windows. When an
absorption image is taken, a resonant imaging beam illuminates the atomic
cloud through the upper objective and casts a shadow of the atoms. The
light is then captured by the lower objective, collimated, and focussed by the
telephoto lens onto the camera sensor.

The objectives have a NA of 0.62which corresponds to a diffraction limited
spatial resolution of 700nmat the imagingwavelength of 671nm. The attained
field of view is about 150µm. The air spaced lenses, which allow us to use
high laser powers for the generation of additional optical lattices and micro-
potentials, are anti-reflection coated for (532, 671, 780 and 1064)nm.

Both microscope objectives are mounted in non-magnetic resin tubes2.
These protrude through the centre of the magnetic coil packages above and
below the science cell. Outside the coils, each holder tube is mounted on a
combination of precise translation tables. Coarse alignment of each objective
can be done manually with a two-axis table3 with a travel of 20mm and a
resolution of 10µm. On top of that, a custom-design three-axis tilt-shift table
enables us to align the tilt angle of the microscopes and also the coarse verti-
cal direction. PI controlled positioning is carried out with a piezo-actuated
three-axis table4 with a motion range of 100µm and nanometre accuracy.

Image Acquisition The image acquisition and analysis consists of several
steps to reconstruct the density distribution of the atoms and, e. g. retrieve

1Nufern NuAmp PSFA-1064-50mW-50W-6-0, www.nufern.com.
2Evans & Sutherland, www.es.com, supplier for digital theatres and planetariums.
1Andor Ixon3 897, www.andor.com.
2Ultem 2300, 30% glass reinforced polyetherimide.
3Owis KT 90- D56-MP, www.owis.eu
4Piezosystem Jena TRI-TOR 102, www.piezosystem.de.
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the atom number or the gas temperature.
First, the atomic cloud is illuminatedwith resonant laser light ofweak inten-

sity I0, either in-situ or after some TOF is applied. Depending on the column
density of the particles, the optical density OD determines the normalized
transmission intensity I/I0 = exp(−OD) which is captured on the EMCCD
sensor. In short succession, a second picture of the imaging beam is taken
without the atoms. This contains all information about present fringes and
inhomogeneities of the light itself to subtract them from the first picture. Fi-
nally, a dark picture without the imaging light is taken to take stray light and
pixel errors into account.

When 2D images of 3D atomic clouds are acquired, the significant expan-
sion along the line-of-sight causes the imaged atom density to be integrated
along this direction. To reconstruct the 3D density distribution, one can em-
ploy themathematical tool of inverse Abel transformation. In contrast, images
of flat 2D clouds give direct access to the density.
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4. Magnetic Field Setup

All quantum gas experiments today heavily rely on magnetic fields for a wide
range of applications, e. g. the Zeeman effect,whichdescribes themagnetically
induced shift of atomic energy levels and which enables us to cool and trap
atoms. External magnetic fields also change the atomic potential energy and
thus give access to free control over the inter-particle interaction via magnetic
Feshbach resonances.

This chapter presents the design process and the realization of ourmagnetic
field setup. We give an overview of the magnetic coil setup and the general
considerations of the development and the realization of our magnetic coils
in Sec. 4.1 and 4.2. Detailed descriptions of the individual coils are given
afterwards, beginning with the Zeeman slower in Sec. 4.3, followed by the
coils around the main chamber in Sec. 4.4, and the coils around the science
cell in Sec. 4.5. The last two Sections 4.6 and 4.7 are dedicated to the current
control and interlock system, and the thermal stability of our setup.

4.1. Overview

The magnetic coil setup around the main and science chamber is depicted in
Fig. 4.1. All coils are attached to a solid aluminium framework around the
main and science chamber. It is convenient to distinguish three experimental
phases corresponding to three different magnetic field configurations. The
first one is the MOT phase, followed by the cooling phase inside the in-vacuo
resonator, and the experimental phase in the science cell. Each phase is now
briefly summarized and the corresponding coils are listed. Note that the focus
is on the generated fields and that we do not repeat, e. g. the description of
the cooling sequence given in Ch. 3.

1) MOT phase
• Zeeman slower
• MOT coils
• shim coil
• push coil

At the beginning of each cycle, the current of the Zeeman slower and theMOT
coils is switched on and atoms are continuously captured in the MOT. The
pair ofMOT coils is operatedwith a current of opposing directions to generate
amagnetic quadrupole fieldwith zero field strength in the centre. For optimal
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Figure 4.1.: Technical drawing of the magnetic coils in our experimental setup.
During an experimental sequence the tapered Zeeman slower coils to the left,
the shim, push and the pair of MOT coils are powered simultaneously. After
the atoms are transported into the science cell, typically the Feshbach and
Helmholtz coils are used for further preparation of the atomic sample and
measurements.

performance, the magnetic field of the shim coil provides a smooth transition
from the slower field into the MOT field. The axis of the Zeeman slower is
shifted in respect to the centre of the main chamber. Therefore, during the
loading theMOT centre is shifted onto the slower axis by an offset fieldwhich
is created by the push coil.

2) Cooling resonator phase
• MOT coils
• shim coil
• push coil

At the end of theMOTphase, the Zeeman slower coils are switched off and the
current through the shim and push coil is increased. This shifts theMOT field
minimum onto the transfer position of the cooling resonator beam, where the
atoms are transferred into the resonator enhanced trap. When the transfer is
complete, the magnetic fields for slowing and trapping are switched off.
Next, evaporative cooling inside the cooling resonator is performed. This

only works if the atoms are able to re-thermalize when the trap depth is low-
ered. Since the 6Li scattering length almost vanishes in absence of a magnetic
field, we have to apply an external one. At 300G, the scattering length has a
local maximum of |a3D|= 300a0, which can be addressed by the MOT coils.
Hence, the direction of the current in one of theMOT coils is changed. Instead
of a quadrupole field with zero field at the centre, the coils now generate a
field with the maximum magnetic field strength in the geometric centre.
When the evaporation is finished, the atomic cloud is transferred into the

transport dipole trap and all fields in the main chamber are switched off.

62



4.2. DESIGNINGMAGNETIC COILS

3) Experimental Phase
• Feshbach coils
• Helmholtz coils
• auxiliary coils

For further evaporation and experiments in the science cell,we have to control
the scattering length over a wide range. Correspondingly, the magnetic field
strength has to be changed over several 100G around the Feshbach resonance
at 834G. Due to the coil geometry, the Feshbach field features a high field
curvature. Therefore, an additional coil pair is placed around the Feshbach
coils to generate highly homogeneous fields at the position of the atoms. We
refer to them as Helmholtz coils.

The term auxiliary coils summarizes several smaller coils which are located
around the science cell. There is a pair of smaller, so called jump coils, which
feature a small inductance and can be used to quickly switch on magnetic
fields. The levitation coils enable us to compensate the gravitational force
which is felt by the atoms. Finally, eight small racetrack coils in groups of four
above and below the science cell can be used to realize various field gradients
along the atomic clouds.

4.2. Designing Magnetic Coils

For each required magnetic field configuration, the demands and constraints
to the mechanical design have to be considered individually. Here, we in-
troduce the fundamental field types employed in our experiment and then
summarize the general considerations regarding the realization of magnetic
coils.

4.2.1. Basic Field Types

The simplest possible field shape is the one created by a magnetic dipole, see
Fig. 4.2. The magnetic dipole field is equal to the field created by a current car-
rying loop, or in a broader sense, a magnetic coil. The combination of dipoles
generates more complex magnetic fields, e. g. two dipoles in an anti-parallel
orientation generate a quadrupole field, which is employed in the MOT. In
the experimental setup, depending on the coil dimensions, the distance, and
the current, we generate a quadrupole gradient field with a zero field centre,
or a field with a central finite strength. For the latter, the coils are said to be
in Helmholtz configuration.

Helmholtz Configuration Consider two identical coils with radius rwhich
are separated from each other by a distance d on the same axis. If the strength
and circular direction of the current I is the same in both coils, a field of finite
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Figure 4.2.: Basic magnetic field types. a) A dipole field is the simplest mag-
netic field possible. b) A dipole field is generated by a current carrying loop,
and in a wider sense, by a magnetic coil. c) The combination of two dipole
fields results in a quadrupole field, which is employed in the MOT. It can be
generated by two coils in anti-Helmholtz configuration.

strength at the symmetric centre is generated. For distances d > r or d < r,
the axial field component between both coils features a local minimum or
maximum.

For d= r, the coils are said to be in Helmholtz configuration and the axial
field is homogeneous along the centre region at d/2. To realize homogeneous
fields with real coils, e. g. our Helmholtz coils, the finite extent and the centre
of mass of the winding packages has to be considered.

For d� r, magnetic fields with high field strength and high curvature are
generated, like it is the case with our Feshbach coils1.

Anti-Helmholtz Configuration In anti-Helmholtz configuration, the cur-
rent I in both coils is of the same strength but of different circular direction.
The individual fields are thus different in sign and cancel between the coils.
This generates a quadrupole field, which is a gradient field with zero field
at the centre. The gradients are determined by the distance d, the radii r and
the current I. This field configuration is employed in our MOT.

4.2.2. Realization

The implementation of magnetic coils in an environment with typically very
limited space gives rise to particular constraints. Depending on the required
field shape and strength, the feasibility of the coil design has to be considered
and adapted, which is a iterative process to find the best possible realization.
The complexity depends on the application, i. e. the design of a MOT field is
far less sensitive than the one of a magnetic trap.
1The coil naming convention is not to be confused with the actual coil configuration. Both,
Feshbach andHelmholtz coils operate almost in Helmholtz configuration. The term Feshbach
coils refers to the Feshbach resonance, which is addressed with high magnetic field strength,
regardless the field curvature. The term Helmholtz coils refers to the ideal Helmholtz config-
uration or field, since these coils are designed to generate highly homogeneous fields with
zero curvature.
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In the following, the main design aspects are briefly discussed. This in-
volves our coil holders, the type of wire we use, and the coil mounts.

Coil Holder and Winding Process All of our magnetic coils are wound
around aluminium coil holders. They offers high thermoconductivity, rigidity
and machinability1. Sandblasting and black anodizing reduces the danger of
reflective surfaces in the vicinity to laser beams.

The winding process was done by a specialized company2. The minimum
possible wall thickness for an aluminium ring holder was specified with
1.5mm. Below 1.0mm, the constantly applied torque during the winding
process leads to deformation of the material. Our coil holders feature a u-
profile to realize a good guiding of the wire during the winding and therefore
a high quality of the winding package with an optimal fill factor. The side
of the holder which is facing the vacuum chamber is as thin as possible, i. e.
(1.0 to 1.5)mm. This enables us to place the coils in proximity to the chamber
walls.

Note that it is not necessary to use coil holders to stabilize the winding
package. It is possible to use a removable holder and stabilize the coil by
casting it into an epoxy resin, which improves the thermal conductance of
the winding package significantly which is of particular importance for the
cooling of larger coils. Typically, the adhesive Araldite F is used, which offers
a high heat resistance to withstand high power consumptions when high
current strengths are used3.
The resin can also be used in combination with coil holders, as we did

in the case of the Zeeman slower coils. All remaining coils were wound via
wet winding, where liquid resin is added during the process. The finished
coils are wrapped in a few layers of a resin soaked sheet for resilience and
stabilization.

Hollow Copper Wire Almost all coils are wound with a hollow conductor4
which features a (4×4)mmprofile. The central bore has a diameter of 2.5mm
and the resulting current carrying area is thus 11.1mm2. The copper is cov-
ered with an insulating sheet of slightly fluctuating thickness, which adds
(0.8 to 1.0)mm to the edge length.
A bending radius for (4×4)mm wire of 30mm should not be undercut.

Otherwise, the flow of the cooling water is likely to be significantly reduced
by the compressed bore. In this regard, large winding packages, i. e. long

1All holders and associated parts were manufactured in the university workshop.
2OSWALD Elektromotoren GmbH, www.oswald.de.
3While Araldite F offers a heat stability up to 200 ◦C the corresponding hardener withstands
temperatures of at least 150 ◦C.

4This type of wire is manufactured by an extrusion process of high purity oxygen-free copper
with high electrical and thermal conductivity.
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wires, reduce the water flow as well and make high powered booster pumps
necessary1.
For some applications, hollow conductors are not feasible. Conventional

round or flat wire is the convenient choice for small coils and for coils which
are operated with low currents or with very short duty cycles.

Ohmic Heating In the case of high magnetic field strengths, high current
densities are required. Thus, a high fill factor and therefore a good winding
quality is favourable. Additionally, a minimum distance to the position of
the atoms is advantageous. Since quantum gases are bound to an UHV en-
vironment, the dimensions of the vacuum chamber limits the distance and
higher currents are necessary for compensation. This increases the power
dissipation due to Ohmic heating, which is problematic because it enhances
out-gassing of the vacuum chamber walls.
As a rule of thumb, current densities of about 10Amm−2 require water

cooling. In case of current densities of around 5Amm−2, the use of heatsinks
and fans, peltier elements is typically sufficient. Below 5Amm−2, purely pas-
sive cooling can be sufficient, depending on thematerial of the coil holder and
available airflowThe duty cycle plays an important role when the appropriate
cooling measures have to be considered.
In most cases, passive cooling is insufficient and water cooling is the best

choice. It is typically realized by the implementation of water channels into
the coil holder. But in case of large coils, this lacks a homogeneous cooling
of the winding package and thus high temperature gradients from the outer
to the inner regions of the winding package develop. The use of hollow core
wires omits this problem2.

Calculating Magnetic Fields The magnetic field design was mainly done
with the Windows application BiotSavart3 and the programming language
Mathematica4. In either case, the calculation of the resulting magnetic field
of a given current carrying wire or loop is realized by the implementation of
the Biot Savart law

B=
µ0
4π

∫
C

Il× r
|r|3 , (4.1)

which describes themagnetic fieldB at position r being generated by a current
Il along an arbitrary path C. The quantity µ0 is the magnetic constant.
With the software BiotSavart, arbitrary conductor configurations in 3D

space can be simulated to calculate the resulting magnetic fields. In combi-
nation with the 3D computer-aided design (CAD) drawing of the apparatus
1In our case it is a Wilo MVI 206-1/25/E/1-230-50-2, http://www.wilo.de.
2Note that Bitter type coils, which consist of thin conductive plates and insulating helically
stacked spacers, allow for an even more effective water cooling [77].

3Ripplon Software Inc., www.ripplon.com.
4Wolfram Research Inc., www.wolfram.com.
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4.3. ZEEMAN SLOWER

it is a straight forward yet meticulous work to optimize the coil dimensions
and achievable field shapes and strengths.
Mathematica allows us to address a broader range of tasks, such as the

simulation of the deceleration of an atomic beam in the tapered magnetic
field of the Zeeman slower. Hence, our slower design was carried out with a
modified version of an existing code [78] to account for the shifted MOT field
position and the Zeeman slower field shimming, see Sec. 4.1 and 4.4.

4.3. Zeeman Slower

The Zeeman slower coil generates a tapered magnetic field along the slower
axis. This compensates for the changingDoppler shift of the constantly slowed
atoms which travel towards an anti-propagating laser beam. The working
principle of slowing atoms is presented in Sec. 3.3.2. Here, we present the
technical aspects of different Zeeman slower types and discuss the realization
of our Zeeman slower coils.

4.3.1. General Considerations

The task of slowing atoms can be accomplished with three types of Zeeman
slower coil configurations. Consider the direction ẑ to be the symmetry axis
of the Zeeman slower coil. Depending on the slower type, the magnetic field
Bz, which compensates for the changing Doppler shift along the axis, either
decreases, increases or features a zero-crossing towards the end of the slower,
see Fig. 4.3.

Whether the field strength has to decrease or increase towards the position
of the MOT is determined by the employed slowing transition. Typically,
transitions with |∆mF|± 1 are used, which feature an opposite sign of the
corresponding atomic Zeeman shift. It determines the polarisation of the
slowing light to be σ+ or σ−, respectively.

The ideal field of Zeeman slower coils along the symmetry axis is described
by1

B(z) =
h

µB

[
δ0+

1

λ

√
v2init−2aez

]
. (4.2)

Where µB is Bohr’smagneton,λ is thewavelength of the slowing light,δ0 is the
frequency detuning of the slowing laser in respect to the MOT cooling laser,
ae = κamax the effective deceleration of the atoms and vinit the maximum
initial velocity. The quantity κ depends on the ratio s0 = I/Isat of the intensity
I of the slowing laser we use, and the saturation intensity Isat of the slowing
transition

κ=
s0

1+ s0
. (4.3)

1Here, we repeat Eq. 3.1 for convenience.
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Figure 4.3.: Sketch of ideal axial magnetic fields of different Zeeman slower
types. The green line depicts the field generated by an increasing slower, the
velvet line depicts the field of a zero-crossing slower. We use the decreasing
type, which is denoted by the blue line. The curves are calculated using Eq.
4.2.

A typical design value for the deceleration is ae = 0.5amax, thus I = Isat, to
make the slowing process largely independent from fluctuations of the scat-
tering rate which results in a robust performance.
The difference between maximum and minimum of the Zeeman slower

field strength ∆Bz determines the highest velocity of atoms which can be
slowed. ∆Bz and the length L of the slower define the slope of the Zeeman
slower field. Steep slopes yield a strong deceleration ae, where its maximum
value amax =  hkΓ/2m is given by the maximum photon scattering rate γ= 1/Γ

and the atoms massm. It is important that the change of the magnetic field
is smaller than the Doppler shift at any time, i. e.

µB
∂B

∂z v(z)6
 hkae, (4.4)

otherwise, the atoms are lost from the slowing process.
The resonance condition for the counter-propagating light and the atoms

at the end of the slower determines the detuning δ0. For obvious reasons this
is significantly different for the decreasing and increasing Zeeman slower.
For the latter, the lowest velocities are reached at the highest field strength
where the Zeeman shift is large. Therefore, the detuning δ0 with respect to
the bare atomic, as well as to the MOT transition, has to be large. This is an
advantage, since light induced heating of the atoms in the MOT is negligible.
In addition, the abrupt end of the resonance condition for the atoms prevents
them from being eventually pushed back towards the slower. On the other
hand, the MOT can be easily perturbed by the strong Zeeman slower field.

The magnetic field of a Zeeman slower also introduces a quantization axis
for the atoms. This prevents the atoms from getting pumped into a dark
state, which would exclude them from the slowing cycle. However, this is
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not fulfilled for the magnetic field zero crossing of the zero-crossing Zeeman
slower. Here, an additional laser repumps the atoms from the dark state.

OurDecision Weuse a decreasing Zeeman slower for the following reasons.
Since we employ the 22S1/2,mF = 1/2→ 22P3/2,mF = 3/2 transition, where
∆mF =+1, the light of the slowing beam has to be σ+ polarized. The necessary
detuning δ0 is technically easy to realize and the light can still be far enough
detuned from the MOT light to prevent noticeable heating. Increasing δ0
shifts the position where the atoms reach their lowest velocities away from
the Zeeman slower coils. With a light species like 6Li, we can easily ensure
that this position is still covered by the capture volume of the MOT, which is
not possible for heavier atoms. The deceleration of heavier atoms and atoms
with longer lived excited states is generally more difficult, since both reduce
the possible deceleration significantly.
For initial velocities of approximately 1000ms−1 and a design length of

about 0.5m, the required maximum field strength is below 1000G and thus
relatively easy to accomplish. Another advantage is the absence of noticeable
magnetic disturbance of the MOT field due to the small field strength at the
end of the slower.

A short distance between Zeeman slower andMOT keeps the divergence of
the atom beam small. Strongly diverged atomic beams would eventually ex-
ceed the capture volume of the MOT. Finally, we were already experienced in
the design process and the utilization of a decreasing Zeeman slower. There-
fore, the time needed for development and manufacturing was presumably
short.
Other methods to slow atoms are, for instance, using a chirped laser to

compensate for the Doppler shift of the atoms, which prevents continuous
loading. It is furthermore possible but very inefficient and time consuming to
load a 6Li MOT from a hot background gas. An appropriate alternative is the
2D MOT which employs transversal cooling while the atoms are decelerated
to realize high fluxes with a compact design [79].

4.3.2. Realization

To accomplish the analytically ideal parameters with a Zeeman slower coil in
an experimental setup is neither easy, nor necessarily practical. Thus, we first
identify the mechanical constraints, calculate the field of a feasible slower coil
and then simulate the performance of the design. In the following, the consid-
erations regarding the dimensions of the slower, the required field strengths
and the realization of the winding package are briefly presented. Afterwards,
the results of the numerical simulations and a comparative characterization
of the manufactured Zeeman slower are given.
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General Considerations The length L of the Zeeman slower coil is deter-
mined by the initial and the final velocity, vinit and vend, and the effective
deceleration ae, as

L=
v2init−v

2
end

2ae
. (4.5)

Reorganization of Eq. 4.5 yields that the longer the Zeeman slower, the higher
the possible initial velocities vinit. Thus, a larger fraction of atoms could be
captured in the MOT. Despite being favourable, a very long Zeeman slower
has two important downsides. It is not only very space consuming, it also
causes strong divergence of the atom beam due to randomly re-emitted pho-
tons. The repeatedly scattered photons cause the atoms to perform a random
walk inmomentum space,which increasingly broadens the atom jet along the
slower. Especially for long slower coils, where a long time of flight eventually
results in a beam size which exceeds the capture radius of the MOT.

In our case, the best compromise between end velocity and beam broaden-
ing is a Zeeman slower length of about 0.5m. This assumes an end velocity
of vend ≈ 50ms−1, an initial velocity of vinit = 1000ms−1, and an effective de-
celeration of ae = 0.5a. The velocity of the atoms exiting the Zeeman slower
should be smaller than the capture velocity of theMOT, vend 6 vcapture, where

vcapture =

√
 hkΓ

4m
r. (4.6)

For our parameters, i. e. for a radius of r= 15mm of the MOT laser light, Eq.
4.6 yields a capture velocity of 50ms−1. Finally, to minimize the broadening
of the atom beam, the end of the slower coil should be in proximity to the
main chamber and the MOT field, hence a compact mount is required.
The vacuum tube, which is encased by the slower coils, must be large

enough to prevent the slowed atoms from colliding with the wall. Close
to the oven, the outer diameter of our differential pumping tube is 6mm. It
ends where the atoms begin to be decelerated and the divergence of the beam
begins to increase, due to the onset of resonant light scattering. From here,
the outer diameter of the vacuum tube is 22mm, which determines the inner
diameter of the coil holder of the Zeeman slower.

The coil holder, which is placed directly around the vacuum tube, features
a double wall. The inner construction is segmented into two channels along
the tube and joined at one end. The cooling water connections are located
close to the oven. The diameter of the inner tube is (32.0×3.0)mm and the
one of the outer tube (35.0×1.5)mm.1 To prevent vibrations of the vacuum
chamber, the coil holder is not in contact with the vacuum tube. The smallest
diameter of the coil windings is 70mm, set by the water cooled holder.
Combining Eq. 4.2 and 4.5 yields that for a given length and capture ve-

locity of the MOT, the maximum field strength is determined by the initial
1The declaration is outer diameter × wall thickness.
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velocity of the atoms. We want to address an initial velocity of approximately
1000ms−1, which in our case requires a field strength of about 900G. Addi-
tionally, the slope of the field along the Zeeman slower axis should provide an
exact compensation for the changing Doppler shift at any position, as shown
in Eq. 4.4.

Finally, a fail safe design is more important than for any other coil, since in
case of amalfunction, the exchange of the Zeeman slowerwouldbe impossible
without disassembling the oven chamber and therefore opening the vacuum
chamber. Instead of a single wire or separate coils placed side by side along
the axis, we use multiple individual stacked winding packages of (1×3)mm
flat wire to minimize potential issues: if an individual coil fails, we are able to
compensate for it with the remaining windings without causing a significant
change of the slowing field shape. Each winding starts at the front, goes to
the end and to the front again. The distance to the front is reduced with each
of these double layers. Furthermore, in contrast to separate solenoids along
the axis, this winding technique gives us precise control over the field slope.

Simulated andManufacturedSlower The simulation of ourZeeman slower
accounts for all constraints mentioned above and assumes a winding package
consisting of 14 stacked coils in 34 layers in total with a length of 0.52m. The
parameters were optimized to be consistent with the ideal slower parameters
given by the analytic description.

At the MOT position, the 1/e2 atom beam diameter is estimated to be well
below 20mm and thus matches the size of the MOT. With a red-detuning of
δ0/(2π) = −36MHz to the MOT transition, the simulation yields that almost
20% of the atoms which leave the oven are slowed and thus an atomic flux
of about 1×1010 s−1 can be achieved.

The corresponding calculated magnetic field of the final design is depicted
in Fig. 4.4 a. Here, in addition the field sum, the individual fields of the slower
coils, the shim coil, and theMOTfield are shown. Themaximumfield strength
is reached at a distance of about 80mm from the back end of the slower
coils, where the slowing process begins. For comparison, Fig. 4.4 a shows the
ideal slowing field as well, and furthermore Hall probe measurements of the
realized magnetic field.
The slope of the Zeeman slower field transitions smoothly into the MOT

field with negligible deviations from the ideal field slope. Therefore, the
compensation of the changing Doppler shift of the atoms remains fulfilled.

Due to the distance between the end of the slower and the MOT coils, the
smooth transition requires a compensation field which is provided by the
shim coil. The shim coil has a length of 25mm and consists of only 14 turns
of (4×4)mm hollow conductor. It is mounted in a distance of 11mm from
the front of the slower coils.
As shown in Fig. 4.4 b, deviations of the simulated deceleration from the
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Figure 4.4.: a) Measurement and calculation of the magnetic Zeeman slower
field as a function of the relative distance to the position of the maximum
field strength. The solid cyan line depicts the resulting magnetic field sum of
the slower field (solid green line), the field generated by the shim coil, and
theMOT field (solid red line). The calculated field of an ideal slower is shown
as the dashed orange line. The arrows mark the position of the end of the
slower coils and the centre of the shim and MOT coils, respectively. Hall-
sensor measurements of the magnetic field (cyan circles) are carried out 9 cm
off-axis with the slower operated at 5A. The result is in very good agreement
with the corresponding calculated field (solid black line). b) The black line is
the simulated deceleration of the atoms in units of the effective deceleration
aeff = 0.5amax. A significant deviation from the ideal value is noticeable only
where the Zeeman slower field transitions into the MOT field, see text. The
purple line depicts the simulated velocity of the atoms in units of the initial
velocity vinit.
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Zeeman slower

Identification number (ID) QM-00175
Manufacturer serial number (SN) 900456
Coil length 518mm
Coil weight, approx 21 kg
Wire diameter, without isolation (3×1)mm
Wire length 788m
Turns 3918

Minimum number of layers 10

Maximum number of layers 34

Minimum winding radius 35mm
Resistance 4870mΩ
Operating voltage 48V
Operating current 9.9A
Maximum field strength 1250G
Total power dissipated, approx. 480W
Temperature near oven 47 ◦C
Temperature near chamber 29 ◦C
Duty cycle 35%

Table 4.1.: Summarizing overview of the Zeeman slower properties. The given
ID corresponds to our group internal registry. All values regarding the op-
eration of the slower coils correspond to a typical experimental sequence, as
described in Ch. 3. Note that the shim coil properties are listed separately in
Table 4.2.

ideal value become recognizable at the transition point between Zeeman
slower and the MOT field. These ripples are inevitable due to the limited
possibilities to position the shim coil, and tolerable since the design value
ae leaves a wide safety margin. Apart from that, the deceleration along the
slower axis features only negligible oscillations, which are mainly caused by
the beginnings and endings of the individual windings. All specifications of
the final Zeeman slower are given in Table 4.1.

Manufacturing For the winding process, two discs were clamped on the
holder to prevent the wire of from slipping. These supports defined the exact
start and end for the winding package and were removed later.

In order to maximize the thermal conductance of the coils, the entire wind-
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ing package is vacuum casted in Araldite F, see also Sec. 4.2.2. The 14 layers
result in 28 wire leads which had to be sealed individually. For this reason,
a complex casting form had to be built. The first casting attempt failed and
several leads were ripped off. Hence, the manufacturer improved the casting
form design and was able to produce the slower, yet in a time consuming and
complicated process.

With a final weight of approximately 21 kg, the implementation of the Zee-
man slower coil into the experiment was a delicate process. A reliable wire
rope hoist was constructed to slide the heavy weight carefully over the vac-
uum tube. It is also noteworthy that even sowe are using the smallest available
vacuum flange1 to connect the vacuum tube with the oven chamber, a prob-
lem occurred regarding the fit of vacuum tube and Zeeman slower holder.
Small deformations of the water cooled coil holder, which were most likely
caused during the winding process, obstructed the assembly at first. To fix
this, we had to reduce the diameter of the flange by about (1 to 2)mm by
grinding.

4.4. Main Chamber Field Configuration

After the deceleration in the Zeeman slower, the atoms are captured in the
MOT, whose working principle is presented in Sec. 3.3.2. During the MOT
loading, a coil pair generates amagnetic quadrupole field in themain chamber.
When the MOT loading is finished, the MOT field centre is overlapped with
the cooling resonator beam and the atoms are transferred into the standing
wave dipole trap. To perform evaporative cooling we switch the polarity of
the upper MOT coil to generate a Feshbach field.

The magnetic field setup for the MOT and the cooling inside the resonator
consists of five different coils: two MOT coils and three additional offset coils
to shift theMOT field centre in all three spatial directions. The shim coil of the
Zeeman slower acts as one of the offset coils. In the following, the magnetic
field configuration for theMOT loading, the transfer into the cooling resonator
and the evaporation inside the resonator dipole trap are presented.

4.4.1. Magneto-Optical Trap Loading

During theMOT loading, the twoMOT coils generate a quadrupole field. The
vacuum tube of the Zeeman slower is connected to the main chamber with
an offset of 18.5mm in the y-direction to the geometric centre of the chamber.
The push coil is employed to shift the MOT centre onto the slower axis, as
shown in Fig. 4.5.

1Microflange CF 10.
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Figure 4.5.: Contour plot of the magnetic field generated in the main chamber.
a) The red cross marks the centre of the MOT field. Without additional offset
fields, the field centre coincideswith the geometric centre of themain chamber.
b) During the MOT loading, the magnetic offset field shifts the MOT field
minimum onto the Zeeman slower axis.

MOT Coils The MOT coils are recessed in the top and bottom view-ports
of the main chamber to reduce the distance between the coils to 81mm to
conveniently generate lateral field gradients of (10 to 20)Gcm−1.

Thewidth of the recess determines the inner andouter coil radii. The design
also requires an axial wire exit port in the coil holder. The final coils consist
of 48 turns, which results in a length of the winding package of 40mm and a
width of ∼ 25mm. Due to the recess, increasing the number of turns is only
possible by adding height and does not significantly increase the available
field strengths. The MOT coils are wound with (4×4)mm hollow core wire
to operate the coils with currents of up to 100A without difficulties. The
optimal loading perfomance is achieved with a current of 63A and lateral
field gradients of 17Gcm−1. A typical duty cycle of 65% leads to an increase
of the coil temperature by only one degree Celsius to 22 ◦C.

During theMOT loading, a small offset field is applied to adjust the position
of the MOT in the vertical z-direction. The field is generated by a coil which is
directly wound onto the upper MOT coil and consists of ∼ 75 turns of round
wire with a diameter of 1.25mm. It is powered with only 0.5A to shift the
centre of the MOT about 450µm downwards.

Push Coil The push coil is placed around the CF40 main chamber view-
port, through which the transport dipole trap enters, and consists of 49 turns
of (4×4)mm hollow core wire. The winding package features two different
outer radii. Further away from the main chamber, the radius of the winding
package increases from (75 to 110)mm. With this, we realize the maximum
number of turns, hence the highest achievable field strengths, without ob-
structing the neighbouring view-ports. The distance from the coil to the centre
of the main chamber is 176mm.
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MOT Shim Push Vertical

ID QM-00130-1 QM-00130-2 QM-00130-3 -
Manufacturer SN 900449/50 900543 900457 -
Wire diameter (4×4)mm (4×4)mm (4×4)mm 1.25mm
Turns per coil 48 14 49 100
Resistance per coil 45mΩ 6mΩ 25mΩ -
Operating voltage 9.1/8V 3.3/7.5V 9.8/9.3V 1.0V
Operating current 63.0/55.5A 124.0/280A 190/180A 0.5A
Total power diss. 600W 400W 1900W 1W
Temperature 22 ◦C 23 ◦C 29 ◦C 22 ◦C
Duty cycle 40% 36% 36% 40%
Distance to centre 40.5mm 132mm 176mm 40.5mm
Field gradient ∂x̂B 20Gcm−1 - - -
Field gradient ∂ŷB 13Gcm−1 - - -
Field gradient ∂ẑB −33Gcm−1 - - -

Table 4.2.: Overview of the properties of the magnetic coils which are placed
around the main vacuum chamber. The given resistance corresponds to the
coil winding package only, i. e. it does not account for cables. The operating
current and voltage includes cables and components of the circuitry, e. g.
protective diodes. If two values are given, they correspond to theMOT loading
phase and the cooling resonator transfer phase, respectively. The voltage
corresponds to the first current value. The distance to the centre depicts the
minimum distance of the winding package to the geometric centre of the
main chamber. The given magnetic field gradients are calculated. Since the
shim coil is important for both said phases, it is listed here.

The push coil enables us to shift the MOT field centre by 100µmA−1. A
current of 190A generates the offset field during the MOT loading. The mean
temperature of the push coil is below 23 ◦C. Table 4.2 summarizes the prop-
erties of the MOT and offset coils.

Performance While the gradients of the MOT field are isotropic for the not
shifted case, applying the push field introduces an anisotropy. The resulting
magnetic field gradients are 13Gcm−1 and 20Gcm−1 in x- and y-direction.
We estimate the radius of the MOT volume in direction i, depending on

the corresponding gradient ∂B∂i and the detuning δ0

rMOT,i =
 hδ0

µB
∂B
∂i

. (4.7)
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Figure 4.6.: Normalized atom number in the MOT as a function of the current
through the MOT and offset coils. a) For stronger MOT fields, the push coil
current has to be increased to shift the MOT field centre onto the Zeeman
slower axis. The measurement is carried out with the shim coil powered with
95A and the slower with 9.5A. b) The performance of the MOT for shim coil
currents is largely independent of the current through the MOT coils. The
measurement is carried with the push powered with 195A and the slower
with 9.5A.

This results in an elongatedMOT volumewith an extent of 17mm and 10mm
in x- and y-direction. Hence, with a final radius of about 10mm, the beam of
slowed atoms is expected to stay well inside the capture radius of the MOT.

To adjust the optimal MOT position, we determine the atom number in the
MOT depending on the current MOT coils and the offset coils, as shown in
Fig. 4.6. Stronger MOT fields and thus larger gradients compress the MOT
volume and result in higher densities. This leads to heating since two-body
losses and the probability for the re-absorption of emitted photons from the
atomic cloud are increased. For higherMOT currents, the required offset field
strength increases accordingly while the inevitable asymmetry of the MOT
remains unchanged. Smaller MOT field gradients result in more dilute cloud
densities and a shallower trap so that captured atoms are more vulnerable to
off-resonant light scattering by the slowing beam.

4.4.2. Cooling Resonator Loading

When the MOT loading is finished, the atoms are transferred into the res-
onator enhanced dipole trap to perform evaporative cooling, see Sec. 3.3.3.
During the transfer, the Zeeman slower coils are switched off and the cur-
rent through the MOT and offset coils are changed according to an optimal
transfer efficiency.

When no additional offset fields are applied, the MOT field minimum coin-
cides with the centre of the chamber and thus with the centre of the resonator
beam. This is due to the recessed design of the MOT coils and the symmetry
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of the main chamber. At the centre position, the beam waist of the resonator
beam features a minimum, and transferring the atoms into the centre of the
resonator beam thus results in extremely low transfer efficiencies. We there-
fore refrain from this option and perform the transfer at a position where the
diameter of the resonator beam has increased to ∼ 400µm, instead.
The axis of the cooling resonator is tilted to the y-axis of the chamber by

about 25◦, which results in optimal design transfer coordinates of x= 8.5mm
and y = 18.5mm with respect to the geometric chamber centre. While the
y-offset is already applied during the MOT loading, we realize the offset in
x-direction with the shim coil of the Zeeman slower. This requires a fairly
high current of 280A due to the small size of the coil.
Finally, about 60% of the atoms are transferred from the MOT into the

standing wave resonator dipole trap for the subsequent evaporative cooling
step.

4.4.3. Evaporation in the Resonator Dipole Trap

The 6Li scattering length of the lowest two hyperfine states features a local
maximum of |a3D|= 300a0 at a magnetic field strength of 300G. For efficient
evaporation in the main chamber, we address this maximum with the MOT
coils.
When the resonator transfer is finished, all magnetic fields in the main

chamber are switched off. Then, the polarity of the upperMOT coil is changed
via insulated-gate bipolar transistor (IGBT) h-bridges, and the current through
both is switched on again1. With the MOT coils in Helmholtz configuration,
we are able to generate a magnetic Feshbach field with its maximum at the
centre of the chamber.
We obtain optimal evaporation performance with a coil current of 55.5A

to generate a maximum field strength of ∼ 210G, with lateral field gradients
lower than 1.5Gcm−1. Therefore, despite the fact that the atoms are trapped
in the standing wave dipole trap roughly 20mm away from the centre, they
are exposed to a fairly similar field strength.

Due to the complex nature of evaporative cooling in a standingwave dipole
trap, we have reason to believe that the efficiency can be further improved.
During evaporation, the standing wave interference pattern only allows hot
atoms to escape in the direction of small trap frequencies, i. e. orthogonal
to the beam axis. It is conceivable that an additional vertical magnetic field
gradient, generated by, e. g. increasing the current through only one the MOT
coils, improves the evaporation efficiency. This is yet to be tested.

1The IGBT setup in presented at the end of this chapter in Sec. 4.6.
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4.5. Science Chamber Field Configuration

Once the cooling procedure in the main chamber is finished, the atoms are
transported into the science cell, where the preparation of quantum degener-
ated atomic clouds is continued. For the final evaporation and experiments,
several different magnetic field configurations can be generated in the sci-
ence cell for manifold applications. Thus, a nested and compact coil holder
accommodates 16 coils in total.

The Feshbach coils allow us to address a wide range of interaction strengths
around the Feshbach resonance at 834G, with field strengths up to 1400G. A
set of Helmholtz coils provides highly homogeneous fields with negligible
gradients along the extent of the samples. In addition, there is a pair of jump
coils, levitation coils and eight small racetrack coils, called cloverleaf coils.
These are located below and above the metal cell, outside the science coil
packages. In the following, we present details about the different coils and
their specific tasks.

4.5.1. Feshbach and Helmholtz Coils

The mechanical constraints to the coil construction are as follows. The mini-
mum distance between the science coil holders is determined by the dimen-
sions of the science cell and by the fact that we want to maintain the optical
access through the top and bottom science cell window from the side, i. e. un-
der a steep angle from in between the coil holders. This leads to a minimum
distance between the coil holders of about 60mm.

The minimum winding radii of the coils is determined by the microscope
objectives. To place them at the centre of the coil holders and to maintain
lateral freedom of movement, the inner radii is chosen to be 25mm.
The winding packages of the Feshbach coils feature two different outer

radii, as shown in Fig. 4.7. The resulting coils feature the maximum possi-
ble number of current carrying turns within a cone from the position of the
atoms, to contribute to the maximum field strength regardless the field curva-
ture. As a consequence, we are able to place the Helmholtz coils around the
Feshbach coils to conveniently achieve an optimal position to generate highly
homogeneous fields, since their distance to the atoms is similar to their radii,
see also Sec. 4.2.

Both,Helmholtz and Feshbach coils, consist of (4×4)mmhollow conductor
to achieve high current densities and to maintain optimal cooling properties.
The outer radius of a Feshbach coil is 91.5mm and 66.5mm, where the total
height is 59mm. The inner radius of the Helmholtz windings is 66.5mm,
which extends to a outer radius of 126.5mm. The height of a Helmholtz coil
is 20mm. Feshbach fields of 7.9GA−1 are realized with large gradients of
0.83Gcm−1A−1 along the atomic cloud. The homogeneous Helmholtz field
features gradients of only 0.017Gcm−1A−1, see Table 4.3 for further details.
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Figure 4.7.: Technical drawing of the magnetic coils which are positioned
around the science chamber. a) Isometric view. The science vacuum chamber
is hidden underneath the large coil packages. b) Section view of the science
chamber coils. The Helmholtz coils, which are wound around the Feshbach
coils, are depicted in cyan. The Feshbach coils are depicted in red, and all
auxiliary coils in orange.

Feshbach Helmholtz

ID QM-00130-4/-5 QM-00130-4/-5
Manufacturer SN 900460/61 900560/61
Wire diameter (4×4)mm (4×4)mm
Turns per coil 146 54
Resistance per coil 80mΩ 50mΩ

Inductance per coil 470µH 145µH
Maximum voltage 30V 15V
Maximum current 165A 99A
Total power diss. 4.4kW 1.5kW
Temperature 32.5 ◦C 23 ◦C
Duty cycle 10% 10%
Field strength 7.9GA−1 4.7GA−1

Field gradient ∂x̂,ŷB 8.32 mG
A·mm 0.17 mG

A·mm
Field gradient ∂ẑB -16.6 mG

A·mm 0.33 mG
A·mm

Table 4.3.: Properties of the Feshbach and Helmholtz coils around the science
chamber. The givenmaximum values are limited by the corresponding power
supplies, listed in Table 4.5. The givenmagnetic field gradients are calculated.
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Zero-Curvature Feshbach Fields The 6Li hyperfine states we are using in
the experiment are high field seekers, i. e. they are attracted by strong mag-
netic fields. As a consequence, the of the magnetic Feshbach field generates
a horizontal magnetic trapping potential. At field strengths between (700 to
1000)G, the resulting horizontal trap frequencies are ∼ 30Hz, where the high
radial symmetry is typically advantageous for experiments.
However, for evaporative cooling in the 1D optical lattice, it is favourable

to realize Feshbach fields with a negligible radial confinement. The reason
is that due to the blue-detuned lattice, the hot atoms could easily leave the
trap in the radial direction, since they are neither restrained by a magnetic
nor an optical potential. Moreover, the anti-confining lattice promotes the
evaporation in the radial direction.
Instead of using the dedicated Feshbach coils, one way to realize a zero-

curvature field is to employ the Helmholtz coils, which are designed to gen-
erate highly homogeneous fields. However, we are currently limited by the
available power supply, which provides a maximum current of 99A to gen-
erate a maximum field strength of 480G. A further reduction of the radial
confinement could be achieved by the employment of an appropriate power
supply, which is planned for the near future. Until then, a convenient op-
tion to reach field strengths of (700 to 1000)G is to power the Feshbach and
Helmholtz coils simultaneously. This combination generates a field of the
required strengths with radial trap frequencies reduced by ∼ 40%.

Miscellaneous The direction of the current through the upper Helmholtz
coil can be changed to generate and to superimpose a quadrupole field with
the evaporation field which is generated by the Feshbach coils. We employ
a current of 10% of the Feshbach coil current during evaporation to shift
the field maximum about 1mm downwards. With this, we compensate for a
vertical displacement of the science coils.

4.5.2. Auxiliary Coils

In addition to the Feshbach and Helmholtz coils, various smaller coils for
specific tasks are placed above and below the science cell. They all consists of
round cooper wire with a diameter of 1.25mm and were wound by ourselves.

There are two groups of four racetrack coils each. An individual racetrack
coil consists of 45 turns with a profile of (10×10)mm and an size of approxi-
mately (20×40)mm. They enable us to generate arbitrary field gradients at
the position of the atoms. In a configuration, where the current in two neigh-
bouring racetrack coils is of the inverse direction in regard to the opposing
two coils, maximum gradients of 7.2mGmm−1A−1 are realized.

Around the four racetrack coils, there are levitation coils to provide 2.1GA−1

to compensate for the gravitational drag on the atoms. Finally, on top of the
Helmholtz coils and around the Feshbach coils, there is a pair of so-called
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4. MAGNETIC FIELD SETUP

Jump Levitation Cloverleaf

Wire diameter 1.25mm 1.25mm 1.25mm
Turns per coil 130 70 45
Resistance per coil 1.25Ω - -
Maximum current 10A 10A 10A
Distance to centre 62.5mm 103.0mm 103.0mm
Field gradient ∂x̂,ŷB 0.9 mG

A·mm - 7.2 mG
A·mm

Field gradient ∂ẑB 1.8 mG
A·mm - 7.2 mG

A·mm

Table 4.4.: Summary of the auxiliary coil properties. The distance to the centre
depicts theminimumdistance of the winding package to the geometric centre
of the main chamber. The maximum current is limited by the purely passive
cooling. The givenmagnetic field gradients are calculated. Themissing values
were not determined.

jump coils. They feature a low inductance of 6.9mH to realize fast changes of
the magnetic field strength with up to 9GA−1. All details about the auxiliary
coils are summarized in Table 4.4.

4.6. Current Control and Interlock System

Realizing magnetic fields for various applications requires a large set of dif-
ferent power supplies and the ability to precisely control and switch currents.
Here, we briefly summarize our current control methods and the safety mea-
sures we take.
The main coils, i. e. the MOT, offset, Feshbach and Helmholtz coils, are

powered by high performance switch power supplies. The Zeeman slower
coils, and all coils consisting of 1.25mm round wire, are connected to smaller
devices, as listed in Table 4.5.
All power supplies are remotely controlled from the experiment control

computer. An analogue input signal enables us to set the current and power
off the supplies directly on a time scale of about 30Hz. This is slow compared
to typical time scales in a quantum gas experiment and can be increased
significantly by using an external switching method, for instance, an IGBT.
With IGBTs, we realize switching speeds on the order of 1 kHz, see Fig. 4.8.
Furthermore, IGBTs offer low power consumption and a high robustness.
IGBT h-bridges are employed to change the direction of the current through

a coil, e. g. in the case of one of the MOT and the Helmholtz coils. In some
cases, the circuitry to operate the magnetic coils contains an additional pro-
tective diode to prevent fault currents. Varistors secure the IGBTs against
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Power supply Load Imax Vmax ID

Delta SM15-200D MOT 200A 15V QM-00116-3
Delta SM15-200D Helmholtz/push 200A 15V QM-00116-2
Delta SM30-200 Feshbach 200A 30V QM-00116-4
Delta SM15-400 Shim 400A 15V QM-00116-1
EA PS3065-10B Zeeman slower 10A 65V QM-00091
Statron 16V/64A Z push 10A 65V QM-00183-1
EA PS3065-10B IGBT driver 16A 64V QM-00072-2
Delta 5 U 15-15B IGBT driver 0.2A ±15V QM-00201

Table 4.5.: List of the power supplies and the corresponding loads. For each
power supply, the rated maximum current and voltage is given.
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Figure 4.8.: Switching speed obtained with a Delta SM15-200D power supply
and an IGBT. The time in ms denotes the duration in which a given current
has asymptotically decreased to zero. The time is given as a function of the
switched current strength. Regulating currents with the power supply is
rather slow compared to the external switching method via an IGBT, which
results in switching speeds on the order of 1 kHz. For illustration purposes,
the given IGBT times are increased by a factor of ten.
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high induction voltages after rapidly switching off coil currents. For the same
reason, the coils are equipped with varistors and furthermore fuses to limit
the maximum possible current.
Fast switching of IGBTs requires a driver board which provides the ap-

propriate gate voltage and gate current. Therefore, the drivers output stage
features an operational amplifier to provide up to 20V and 3A. For galvanic
isolation, the trigger signals at the input stage are fed through opto-couplers.
As a consequence, each IGBT is powered by its own, decoupled power supply.

A hard wired logic realizes the correct triggering of the various IGBTs.
For switching of the IGBT gate driver, two transistor-transistor logic (TTL)
signals to are connected to a comparator (AND) module. The combination
of both allows us to address each IGBT separately, and also to change the
configuration of an h-bridge. When an h-bridge realizes a certain current
direction, the corresponding IGBTs are controlled in pairs. Therefore, neither
the bypassing of current nor an unintentional powering of more than one coil
is possible.
Safety measures are realized by an interlock system which is based on a

field programmable gate array (FPGA) combined with a real-time processor1.
It employs fifteen temperature sensors, water flowmeters and leak sensors to
control the cooling system. Visual feedback and control is maintained with a
LabView based graphical user interface (GUI).

4.7. Thermal Stability

Many optical components of the experimental setup, particularly the squeeze
dipole trap and the 1D optical lattice, are constant thermal environment. Only
then, constant atom numbers, high transfer efficiencies, and a reliable prepa-
ration of a single 2D atomic cloud is possible.

Despite an optimal cooling of the magnetic coils, the dissipated heat of the
coils and the power supplies cause the experiment to be fully thermalized
only after a few hours of operation. This long time-scale was significantly
reduced by implementing a pre-heater to the water supply of the Feshbach
coils and the Zeeman slower. Together with an additional active heat shield
on the lower surface of the optical table of the experiment, the temperature
stability was significantly improved.

The pre-heater consists of three separate water circuits with PI controls and
copper heat exchangers, each powered by 900Wheating foils. The heater unit
is securedwith its ownwater leakage sensors, sensors connected to the global
interlock system, and several temperature sensitive circuit breakers. A timer
switch starts the heating procedure four to five hours prior to the beginning
of the experiments. The temperature of the Feshbach- and the Zeeman slower
coils is increased to 30 ◦C and the surroundings thermalize.
1National Instruments, www.ni.com, CompactRIO chassis 9114 and controller 9022.
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During operation, a water cooled heat shield prevents the various power
supplies below the optical table to heat the table which otherwise causes
significant temperature fluctuations of ±1◦C on the table surface. The heat
shield consists of a water cooled intermediate ceiling covered with a 12µm
aluminium foil. This reduces the temperature increase on the table surface by
a factor of two and thusmakes temperature fluctuations negligible. A constant
temperature difference of 12 ◦C in respect to below the table is maintained
and we obtain thermally stable operation of the apparatus in approximately
one hour.
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5. Critical and Sound Velocity in 3D
Fermi Gases

This chapter supplements work reported in the following publication: W. Weimer,
K. M., V. P. Singh, J. Siegl, K. Hueck, N. Luick, L. Mathey, and H. Moritz, "The
critical velocity in the BEC-BCS crossover", see Ref. [80], and closely follows the
presentation therein. The discussion can be found in greater detail in the Thesis of W.
Weimer [29].

Frictionless flow of charged or neutral particles is one of the most striking
macroscopic phenomena arising from quantum physics. Its appearance is
remarkably widespread, ranging from superconductivity in solids to super-
fluidity in liquids and dilute gases with flow of either bosonic or fermionic
particles. Here, we map out the critical velocity in the crossover from BEC
to BCS superfluidity with ultracold 6Li gases by moving a small attractive
potential along lines of constant column density. In the same samples, we
measure the speed of sound vs by exciting density waves and compare the
results to the measured values of vc. We perform numerical simulations in
the BEC regime and find very good agreement, validating the approach.

Section 5.1 briefly motivates and relates our results to previous work. The
measurement procedure, our results, and simulations are presented in Sec.
5.2 The conclusion is given in Sec. 5.3.

5.1. Motivation and Previous Work

For technological applications, stability against thermal fluctuations or exter-
nal perturbations is crucial. The corresponding quantities, i. e. critical tem-
perature and critical velocity, are typically highest in the strongly correlated
regime, where the interactions stabilizing the many-body state are particu-
larly strong. Attaining a full understanding of the underlying microscopic
mechanisms in this regime is one of the major challenges of modern physics.
Ultracold atomic gases have emerged as an excellent platform to study the in-
fluence ofmicroscopic physics onmacroscopic observables [8,81–85]. Friction-
less flowof charged or neutral particles is one of themost strikingmacroscopic
phenomena arising from quantum physics. Here, we explore the stability of
superfluids against external perturbation in the crossover from Bose-Einstein
condensation (BEC) of composite bosons to BCS pairing of fermions. An ob-
stacle consisting of a small attractive potential is moved through an oblate su-
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Figure 5.1.: A red detuned laser beam with waistwmoves through the cloud
with velocity v, where the obstacle size is on the order of the inter-particle
separation d (inset). After stirring, the column integrated density ñ0(v) at the
centre of the cloud is reduced for v > vc compared to the unperturbed value,
indicating heating. For a superfluid gas (blue circles), the critical velocity vc
can be determined from a bilinear fit (blue line) and in a thermal cloud (red
circles and line), no critical velocity can be observed. The data is acquired at
B= 806G, a= 13500a0 with ñ0 = 1.11µm−2, N= 6100 for the superfluid.

perfluid gas. Above a critical velocity heating is observed, as shown in Fig. 5.1.
For a point-like weak perturbation, the Landau criterion vc =minp(ε(p)/p)

makes the direct connection between the critical velocity vc as a macroscopic
observable and the microscopic excitations of the system with energy ε(p)

and momentum p. One source of heating is the excitation of phonons. For
these excitations, the Landau criterion predicts that the critical velocity equals
the sound velocity vs, which can be calculated within the Bogoliubov approx-
imation for a weakly interacting Bose gas. Consequently, we measure vs as
well by exciting and tracking density modulations. The obtained results are
compared to the critical velocities. In the strongly correlated regime, where
theoretical predictions only exist for the speed of sound, our measurements
of vc provide a testing ground for theoretical approaches.

Previously, vc has been measured in ultracold Bose and Fermi gases. Three-
dimensional [86] and two-dimensional [85] weakly interacting BECs were
probed with moving repulsive obstacle potentials and critical velocities of
110% and 60% of the Bogoliubov sound velocity were found. It is expected
that vortex excitations limited vc [87] since the healing length was much
smaller than the obstacle size. In Fermi gases, vc was determined in the BEC-
BCS crossover by subjecting the cloud to a moving optical lattice [88]. A
comparison with theory was performed at the universal point yielding vc ≈
70%vs. The precise microscopic excitationmechanism is not fully understood
yet, but theoretical analyses [89–91] suggested that it is quite different from
the one relevant in our measurements. In the crossover, vs was measured as
well [92–94]. However, in those experiments no comparison to vc was made.
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5.2. Experiment

Due to the high optical resolution and lowdensities achieved in our apparatus,
it is finally possible to manipulate and probe superfluids on their intrinsic
length scales. The obstacle size is on the order of the healing length in the
BEC regime, the coherence length in the BCS regime, and the inter-particle
separation in the crossover.

We prepare 6Li atoms with massm in a balanced mixture of the two lowest
hyperfine states with a similar procedure as described in Ref. [95]. Ultimately,
the atoms are trapped in a highly elliptical optical dipole trap with a beam
waist of 10µm×370µm and awavelength of 1064nm. Typical trap frequencies
areωz≈ 2π ·550Hz andωr≈ 2π ·30Hz in the vertical and radial direction. The
radial confinement is mainly caused by the curvature of a radially symmetric
magnetic field.We adjust the final evaporation to obtain a constant line of sight
integrated central density of ñ0= (1.15±0.05)µm−2 per spin state. Depending
on the interaction strength, this corresponds to a total atom numberN of 2500
to 14000 per spin state. We estimate the systematic errors on atom numbers
and densities to be approximately ±20%.

Although the vertical confinement dominates, effects caused by reduced di-
mensionality are negligible since EF/ hωz>4.2 in allmeasurements,where the
Fermi energy EF and wavevector kF are defined as EF =  h2k2F/2m=  h(ω2rωz ·
6N)1/3. A measure for the temperature T is provided by the observed conden-
sate fractions in the BEC regime of approximately 80%. Since we observe no
significant heating duringmagnetic field ramps,we use the theory in Ref. [96]
to estimate the temperature in the BCS regime, yielding values of T/TF ≈ 7%.

5.2.1. Measurements

In the actual stirring experiment, a red-detuned laser beam forms an attrac-
tive potential. This obstacle traces out a circular trajectory with speed v and
radius r= 10µm along lines of constant column density ñ(r)≈ ñ0 within the
superfluid core.

The beam has awavelength of 780nm and is focused to awaistw of 2.4µm×
1.9µm, a size comparable to the interparticle distance d= n−1/3 ≈ 1.5µm at
unitarity. The relative column integrated density increase in the focus is ap-
proximately 85%. The corresponding beam powers were adjusted depending
on the interaction strength.

The stirring sequence proceeds as follows: first, the scattering length a is set
to the desired value by ramping the magnetic field to a value between 750G
and 890G close to a broad Feshbach resonance, followed by 50ms thermal-
ization time. Next, the power of the moving obstacle beam is linearly ramped
up within 10ms and the gas is stirred for 200ms before the power is linearly
ramped down in 5ms. After 100ms thermalization time the magnetic field
is ramped to 680G in 100ms and an in-situ absorption image of the atoms is
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Figure 5.2.: a) Critical velocity vc (green filled circles) and speed of sound vs
(red open circles) in units of the Fermi velocity vF throughout the BEC-BCS
crossover. The error bars correspond to the fit errors. A statistical error for vc
(black open square) was determined from five measurements. The simulated
critical velocities are marked with crosses. The solid (dot-dashed) curve is
the theory prediction for vs assuming that the maximum (column averaged)
density is relevant for sound propagation, see main text. The pair breaking
velocity vpb providing an upper bound for vc in the BCS regime is plotted
with a dashed line. b) Dispersion relations for the BEC and the BCS limiting
cases (red) and the tangent to this curve from the origin to visualize the
Landau criterion (grey).
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acquired.
This sequence is typically repeated ten times for each speed v and extract

the radially averaged and line of sight integrated density distribution ñ(r)
from the mean of those datasets, accounting for optical saturation effects [97].
Since the gas is well in the BEC regime at the time of imaging, we determine
the central column density ñ0(v) as well as the condensate fraction from a
bimodal fit. Heating is indicated by a reduction in either, yet ñ0(v) is the more
robust measure since evaporation upon heating can occur in our trap of finite
depth.
We observe a significant reduction in ñ0(v) and hence heating only above

a threshold velocity which we identify with the critical velocity as shown
in Fig. 5.1. The exact value is obtained from a fit with a continuous bilinear
function [88]. It has a constant value of ñ0 below vc and decreases linearly
above, see blue line in Fig. 5.1. The figure also shows that stirring within the
thermal region of the cloud leads to heating for all obstacle speeds.

The critical velocities for different interaction strengths −1/(kFa) through-
out the whole BEC-BCS crossover and far into the BEC regime is determined
and plotted in units of the Fermi velocity vF in Fig. 5.2 a. Qualitatively, the
data shows a maximum of vc close to 1/(kFa) = 0 and a decrease towards
the BEC and the BCS side of the resonance, in agreement with Ref. [88]. The
absolute values range between 1.7mms−1 6 vc 6 6.3mms−1.

For comparison we also measure the speed of sound vs by creating a small
density excess in the centre of the gas, releasing it and tracking the maximum
of the outgoing circular density wave. Here, the stirrer beam is placed at the
centre of the gas, its power is adiabatically raised to values between 7µW and
40µW in 100ms and suddenly switched off.

5.2.2. Results and Discussion

Our main results are shown in Fig. 2: they consist of measurements of vc, vs,
and a detailed comparison with theory in the entire crossover. The results
for vs are in very good agreement with the theoretical prediction. In the BEC
regime, the critical velocity is found to be significantly smaller than vs but
in excellent agreement with numerical simulations. The simulations take all
experimental details into account and allow us to determine the origins of
the reduction. Having validated the method in the BEC regime, our results in
the strongly correlated regime may provide valuable benchmarks for theory.
In the BCS regime, pair-breaking excitations are expected to limit vc and our
results are in qualitative agreement.

To compare the experimental results with theoretical predictions, it is con-
venient to consider three regimes, the BEC, the strongly correlated regime,
and the BCS regime. In the latter (−1/(kFa) > 1), superfluids are formed
from loosely bound Cooper pairs. The excitation spectrum is sketched in
the r. h. s. of Fig. 5.2 b. Pair breaking excitations limit the critical velocity to
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mv2pb =
(
∆2+µ2

)1/2
−µ [98].

The pair breaking velocity vpb is plotted as the dashed line in Fig. 5.2 a,
where we determined the gap ∆ and the chemical potential µ at T = 0 by solv-
ing the mean field gap the number equations numerically [9, 99]. The curve
can be extended into the strongly correlated regime, where no simple theo-
retical description exists. Here, the mean field approach can at least provide
a rough estimate for vc and our data appears to be in qualitative agreement.
We expect temperature effects to be small since T/Tc < 0.5 [100].

Before discussing the strongly correlated regime in depth, which is theoret-
ically largely inaccessible and hence particularly interesting, we benchmark
our experiment against theory. In the BEC regime (−1/(kFa) < −1), the gas
forms a molecular BEC of tightly bound dimers. Within Bogoliubov theory
the dispersion relation is linear at low momenta with a slope vs, see l. h. s.
of Fig. 5.2 b, and vc should equal vs. The measured sound velocities are in
very good agreement with the two theoretical predictions shown in Fig. 5.2
a. When the sound wavelength is large compared to the vertical extent of the
cloud, the wave effectively probes the column averaged density (dot-dashed
line), provided the gas is fully hydrodynamic [101–103]. Otherwise, the wave-
front observed should be the one travelling with the speed determined by
the maximum density along the z-direction (solid line).
Since the gas is only partially hydrodynamic in the vertical direction, we

expect the experimental data to lie between the two curves. We note that the
measurements of vs presented here probe a new regime since all previous
experiments determining vs were performed in prolate gas clouds [92–94]
described by effectively one-dimensional hydrodynamics [101–103].

The theory curves for vs are obtained by taking thermodynamic derivatives
[104] of the equation of state calculated in numerically exact zero-temperature
quantum Monte Carlo simulations1 [105]. The homogeneous theory is ap-
plied using the local density approximation: the density distribution in the
trap, given by the equation of state, is used to calculate kF and vF of the corre-
sponding trapped clouds2.
Temperature effects should be small since the temperatures in the experi-

ment are smaller than the mean field energy in the BEC regime and the Fermi
temperature in the BCS regime [106].
We now turn to the strongly correlated regime. Due to the lack of a small

parameter, perturbation theories are inaccurate and the quasi-particle descrip-
tion breaks down. Hence, the velocities vs and vpb associated with phonon
creation and Cooper pair breaking excitations can only provide upper limits
for vc. We are not aware of a prediction for vc, even at the universal point
where |a|→∞.
1The change of slope at 1/kFa= 0 is an artefact of the parametrization used to approximate
the QMC data analytically.

2Please note that the commonly accepted definition of kF used also here is not trivially con-
nected to the density.
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Figure 5.3.: Simulated heating rates normalized by the stirrer depth U2. The
complexity is gradually increased: blue squares depict the idealized case of
a very cold homogeneous sample stirred with linear pattern. The relative
density excess η in the weak stirrer potential U= kB ·2nK is only 3%. For all
datasets, the Bogoliubov result for vs is 4.4mms−1. The red open circles depict
a simulation of the experimental case: a trapped sample is stirred circularly
with a stirrer of realistic depth. A lower temperature is chosen for technical
reasons. Here, the y-axis scaling factor is one. In the inset, the results for the
heating observed in the central column density ñ0(v) are compared. We find
very good agreement between the experimental (blue filled circles) and the
simulated results (red open circles). The bilinear fits to extract vc are shown
with solid lines. In the inset U= kB ·35nK.
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The largest value for vc we observe is vc = 0.31(2)vF, close to the univer-
sal point, see Fig. 5.2. Reference [88] found a value of vc = 0.31vF using a
different excitation mechanism. These values are considerably smaller than
the corresponding vs ≈ 0.40(1)vF we measure and the theory prediction vs =
ξ
1/4
B /
√
3vF = 0.45vF

1 [9] employing the local density approximation.
Very recently, a critical velocity of vc = 0.42+0.05−0.11 vF was observed in an

elongated 6Li gas oscillating with respect to a 7Li BEC [107]. Here, the onset
of heating is predicted to occur for a relative velocity that equals the sum of
the individual sound velocities [108].

5.2.3. Simulations

In order to understand the critical velocity in the BEC regime, we perform
simulations and identify the factors reducing vc. These are the finite tempera-
ture, the inhomogeneous density profile along the strongly confineddirection,
the circular instead of linear motion of the stirrer, and to a lesser degree the
finite depth of the obstacle potential. We use a classical field method, which
is the limiting case of the truncated Wigner method used in Ref. [109]. The
time evolution of an ensemble of complex-valued fields is calculated using
classical equations of motion. The initial states are generated from a grand
canonical ensemble via a classical Metropolis algorithm. We employ a real-
space representation on a lattice with 60×60×3 (140×140×11) sites for the
simulation of homogeneous (trapped) systems. The discretization length is
1µm.
All simulations are performed with the same stirring time, stirrer beam

size, dimer-dimer scattering length aDD = 0.6×3634a0, and density n3D =

0.486µm−3 (and column density in the trapped case) as the experimental data
point at −1/kFa ≈ −3.5. When choosing all remaining parameters, i. e. tem-
perature, confining potential, stirrer depth, and motion in accordance with
the experiment, we reproduce the experimentally measured vc. To disentan-
gle the various features of the system that influence these measurements,
it is instructive to start with an idealized case: a homogeneous gas at a low
temperature of 1nK, stirred along a linear path. In this case, the heating rate
increases steeply at a critical velocity which is approximately vs as shown in
Fig. 5.3.

To determine vc, the fit function A ·
(
v2−v2c

)2
/v+B is used for v > vc [110],

with the free parameters A, B and vc. The simulated heating rates are in good
agreement with the second order perturbation theory that predicts a scaling
with U2. Moreover, by increasing the stirrer depth U, we observe that the
extracted vc is slightly reduced.

These results demonstrate that we work with relatively weak perturbations
and that vortex excitations do not limit vc [87], in contrast to previous ex-

1The Bertsch parameter ξB = 0.37 is determined in [51, 54].
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periments in 3D [86] and 2D atomic BECs [85]. The simulations also show
that attractive stirrer potentials are preferable to realize a stirrer. For larger
repulsive potentials [85, 86] the inherent density reduction strongly reduces
the observed critical velocity as shown in Fig. 5.3.

Next, the effects of the finite experimental temperature and of the circular
motion of the stirrer are investigated. The simulations show that both features
reduce vc by approximately 15%. Having both present simultaneously causes
a small further reduction of vc. The reduction at finite temperature might be
due to vortex-antivortex excitations, or rotonic precursors of them. As the
temperature is increased above the mean field energy, density fluctuations in-
crease and vortices can nucleate at points ofminimal density. That the circular
motion can reduce vc can be seen in perturbation theory performed in mo-
mentum space: here, the motion of the perturbation consists of a distribution
of velocities rather than a single velocity.
Finally, we perform a simulation of an inhomogeneous system in a trap,

with a realistic temperature and a circular stirring motion. The simulated
critical velocity of 1.6(1) mm/s agrees excellently with the experimentally
measured value of 1.7(3) mm/s, see Fig. 5.2. We believe that the additional
reduction of 39%with respect to the homogeneous simulation result is mainly
due to probing lower density regions along the stirrer axis. The results for
the central column densities are in good agreement as well, see inset of Fig.
5.3, considering the experimental signal to noise.

5.3. Conclusion

In conclusion, we have demonstrated the breakdown of superfluidity due
to moving obstacle across the BEC-BCS transition, for the first time in close
analogy to Landau’s Gedankenexperiment. We compare the results with
theoretical predictions throughout and achieve quantitative understanding
in the BEC regime by performing numerical simulations. Pointlike defects
also play a role in strongly correlated high temperature superconductors. The
experiment presented here provides the opportunity to isolate relevant effects
in a very clean and controllable environment. Of particular interest for future
studies are strongly correlated two-dimensional superfluids.
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6. Theory of 2D Fermi Gases

The high degree of recent experimental and theoretical interest in 2D Fermi
gases stems from the fact that their physical properties are strikingly different
from the 3D case. As a consequence, 2D Fermi gases remain one of the least
understood interacting many-body systems. Theoretical predictions for the
2D BEC-BCS crossover are rare and sometimes even contradictory.
The purpose of this chapter is twofold. First, we present and discuss the

peculiar physics of strongly confined quantum gases. Second, we introduce
the available theory aiming to describe these systems. This lays the foundation
for the benchmark against the experimental results given in Ch. 7.
In Section 6.1, we focus on the particularly different scattering behaviour

in true and quasi-2D gases. Following basic arguments we demonstrate the
absence of a 2D BEC in Sec. 6.2. Instead, there is the BKT phase transition
which replaces condensation in 3D gases. The qualitative difference to the
physics in 3D systems is the increased importance of phase fluctuations, who
are in the focus of Sec. 6.3. Sec. 6.4 summarizes the progress of theory and
compares different predictions of the 2D BEC-BCS crossover.

6.1. Scattering Problem

One of the striking properties of 2D quantum gases is the drastically changed
collisional behaviour. In contrast to the 3D and 1D case, where collisions are
entirely defined by the s-wave scattering length and the particle mass, planar
scattering behaviour depends on the relative momentum.
Due to its profound importance for the understanding of 2D quantum

gases, we discuss the scattering problem in some detail. First, we examine
the homogeneous system, then we discuss the quasi-2D case of realistic ex-
periments, where scattering is dominantly determined by the confinement
strength of the trapping potential perpendicular to the 2D plane. We empha-
size the characteristic features and point out where divergences occur. Parts
of this chapter follow the discussion in Ref. [39, 111].

6.1.1. Genuine 2D Fermi Gases

We consider an equal mixture of a two-component gas of fermions in the
theoretical case of a purely 2D geometry. Our first task is to model the interac-
tions in a convenient way. Although it is tempting to proceed similarly to the
case of a 3D system, i. e. by introducing a contact potential and formulating a
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coupling term gδ(r) for the contact interaction, it is in general not possible to
describe 2D interactions in this simple fashion. The collisional processes are
more involved and thus we cannot directly transpose the formalism from 3D
to lower dimensions. We have to turn to an energy dependent coefficient, as
we will see in this section.

To give a conclusive outlook let us summarize the main results of the fol-
lowing discussion.

• We consider low energy s-wave scattering and choose an ansatz consist-
ing of an incoming plane wave and an outgoing circular wave to solve
the s-wave Schrödinger equation.

• The solution of the Schrödinger equation logarithmically diverges for
small energies k� 1. As a consequence, the interaction is always repul-
sive in contrast to the 3D case with repulsive and attractive interaction.

• Analogous to the 3D case, the optical theorem yields the scattering cross
section σ. While in the limit of small energies k→ 0, the 2D cross section
tends to infinity limk→0σ=∞, the 3D cross section tends to a23D.

• Using the partial wave expansion we find the phase shift of scattered
s-waves to express the scattering amplitude f(k). For k→ 0, the 2D scat-
tering amplitude tends to zero, whereas in the 3D case, f(k) approaches
minus the 3D scattering length −a3D.

Schrödinger Equation of Relative Motion In general, the low-energy scat-
tering is described by the scattering amplitude for elastic collisions and the
scattering cross section. The starting point to obtain both quantities is the
2D Schrödinger equation for two particles interacting via an isotropic short-
range local potential V(r) at an energy E [39, 112]. The centre-of-mass and
the relative motion are separable and the former drops out of the scattering
problem, simplifying the formalism. The Schrödinger Equation of relative
motion reads

−
 h2∇2

2mr
Ψ(r)+V(r)Ψ(r) = EΨ(r), (6.1)

where the reducedmass of two particles of identical mass ismr =m/2. We as-
sume that the interaction potential only depends on the interparticle distance
r= |r|, where r is the relative coordinate of the two scatterers.
The evaluation of the 2D collisional problem requires that the range of

the scattering potential V(r) decays sufficiently fast. For alkali atoms, this is
fulfilled since the effective potential range R is approximately described by the
van der Waals tail of the potential V(r)≈−C6/r

6. At distances r� R, there is
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no noticeable contribution of the potential so that we can omit the interaction
and the relative motion is free1.

A suitablewavefunction ansatzΨ(r) solves Eq. 6.1. At interparticle distances
in the asymptotic limit r→∞, the scattering state, i. e. the wavefunction of
colliding atoms, is a superposition of the incident plane and scattered circular
wave

Ψ(r)≈ eikr− f(k,θ)
√

i

8πk

eikr√
r
, (6.2)

wherek is the incidentwave vector and thewave is defined by E=  h2k2/(2mr).
The amplitude of the scattered wave f(k,θ) is the scattering amplitude. θ de-
notes the angle between the direction of the incoming and the scattered wave.
For convenience, we restrict this discussion to forward scattering assuming
θ= 0. The pre-factor

√
i/(8πk) accounts for the conservation of the probability

density of the outgoing circular plane wave in 2D.
Since the effective range R of the interaction potential is much shorter than

the average interparticle spacing 1/k and the thermal de Broglie wavelength
λdB, we consider the interaction to be effectively a contact interaction. The
scattering amplitude at low energy is dominated by the contribution from
the isotropic s-wave scattering.

Low-EnergyWavefunction Before we deduce the scattering amplitude and
its connection to the scattering cross section, we can already identify charac-
teristic properties from the low-energy wavefunction.

The scattering potential is assumed to be isotropic, hence we can separate
the
Schrödinger equation 6.1 into the radial and angular part. The former is de-
composed into separate equations for each quantum number l of the angular
momentum. To find the s-wave scattering amplitude f(k) one has to solve
the l= 0 Schrödinger equation 6.1 for the relative motion. In the limit where
r� 1/k and r� R, the solution is the s-wavefunction

Ψs(k,r) = J0(k|r|)−
if(k)

4
H0(k|r|). (6.3)

The outgoing wave is described by the Bessel function J0 and the Hankel
function H0. From the asymptotic behaviour of the Hankel function we can
already infer a meaningful characteristic feature of the 2D scattering problem:
for distances r� R and vanishingly small energies k� 1, the Hankel function,
and thus the whole wavefunction, diverges logarithmically.

In this case, the free relative motion is basically free and the wavefunction
is Ψs ∝ ln(r/a)/ ln(1/ka). Here, a > 0 is a characteristic constant of dimension
1ACoulomb type potential∝ 1/r, for instance, would prevent the definition of a characteristic
length scale R, because one cannot find a spatial region inwhich the strength of the interaction
potential is significantly lowered.
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length that depends on the detailed shape of the potential V(r) and can be
identified with the scattering length.

The probability density |Ψs(k)|
2 of finding two atoms at a given separation

always increases with r, as the condition r > a is always reached. This is only
different in the case of an existing bound state for very large scattering lengths
a→∞.
This means, as a direct consequence of the 2D kinematics particles favour

to be separated, i. e. they repel each other. This exclusively repulsive interac-
tion is fundamentally different from the 3D case, where both attractive and
repulsive interaction is possible.

Scattering Cross Section We consider the 2D total scattering cross section,
which is the area of dimension length in which two colliding atoms interact

σ(k) =
1

k
Imf(k,0) (6.4)

=
|f(k)|2

4k
. (6.5)

Equation 6.4 is the well-known optical theorem, relating the forward scatter-
ing amplitude to the total cross section of the scatterer1. Due to flux conserva-
tion, the imaginary part of the scattering amplitude depicts the change in flux
from the incoming plane wave. In other words, the cross section denotes the
amount by which the forward probability current is lessened by a scattering
event.
Even without an exact expression for the scattering amplitude, we imme-

diately see that for k→ 0 the cross section in Eq. 6.5 tends to infinity

lim
k→0

σ=
|f(k)|2

4k
→∞. (6.6)

This is different to the situation in 3D, where σ(k→ 0) asymptotically ap-
proaches a constant value ∼ a23D.

Scattering Amplitude To find the dimensionless scattering amplitude, we
decompose the wavefunction of the incident and the scattered state into sepa-
rate waves for each quantum number l, which is the partial wave expansion2.
The scattered states experience a phase shift δl(k) relative to the incoming
wave at distances larger than the potential range. Generally, outside the po-
tential range, the solution of the Schrödinger equation will be a superposition
of all these partial waves.
1Generally, the total cross section is σ(k,θ) = 1

8πk

∫
dθ |f(k,θ)|2 and the differential cross section

dσ/dθ= |f(k)|2 /(8πk).
2The partial wave expansion for the scattering amplitude is f(k) = Σ∞l=0(2− δl0)cos(l)fl(k).
The Kronecker delta δ accounts for the degeneracy within the partial wave and should not
be confused with the phase shift [113].
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Figure 6.1.: Sketch of the phase shift of a scattered wavefunction outside the
scattering potential. The dashed red line depicts the effective potential range
R. In case of an attractive potential V < 0, the scattered state experiences a
phase shift δ0 > 0with respect to the unperturbed wave (V = 0). For V > 0, i. e.
for repulsive interaction, a phase shift of the opposite direction δ0 < 0 occurs.

In the low energy limit of s-wave scattering one considers the first l = 0

term in the expansion and compare the general wavefunction 6.2 with the
partial wave to identify

f(k) =
4

i−cotδ0(k)
. (6.7)

Thus, the scattering amplitude is related to the phase shift of the s-wave. In
the limit r� R, the only effect of the scattering potential is to retard the wave
by a fixed phase shift so that the spherical wave fronts are shifted in regard
to the unperturbed plane wave, see Fig. 6.1.
An effective range expansion of cotδ0(k) yields the low energy behaviour

[111,112,114]

cotδ0(k) =
2

π
ln(ka)+O(k2). (6.8)

With this, the scattering amplitude is [8, 39]

f(k) =
2π

ln(ka)+ iπ/2
. (6.9)

In the limit of small energies, the 2D scattering amplitude tends to zero,
limk→0 f(k) = 0. This contrasts the behaviour in 3D, where the scattering
amplitude at zero energy equals the negative scattering length −a3D. This
low-energy behaviour has important consequences which are summarized
below.

• The energy region where k ≈ 1/a corresponds to the resonance with
a peak in |f(k)|, which decreases with increasing or decreasing k. The
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scattering rate peaks accordingly1. In this case are both, the real and
imaginary part of f(k) important. Since the resonance behaviour is of
logarithmic scale, the decrease in α by a factor of 2 requires the energy
E(k) to change by factor of 20.

• When ka � 1, the scattering amplitude is real and negative and its
magnitude increases with decreasing k.

• In the opposite limit, where ka� 1, we may omit the imaginary part
in Eq. 6.9. The scattering amplitude becomes real and positive and
increases with increasing k. Interestingly, the denominator in Eq. 6.9
diverges logarithmically at low energies, and thus the definition of the
scattering length becomes ambiguous2.

Forweak interactions, due to Pauli blocking, only atoms at the Fermi surface
contribute. The coupling strength can then be parametrized by themean-field
parameter

g̃2DMF =−
4π h2/m

ln(kFa2D)
. (6.10)

The limit of zero interaction corresponds to a2D→∞, different to the 3D case
where an infinite scattering length denotes the regime of strongest interaction.
In the mean field approximation of the 2D case however, the regime of strong
interaction arises for ln(kFa2D) = 0. In the strongly interacting regime the
mean field expansions in powers of 1/ ln(kFa2D) breaks down.

6.1.2. Quasi-2D Fermi Gases

Under realistic experimental conditions, the atomic motion in a 2D system is
not strictly planar and we refer to the gas as a quasi-2D system.
In order to realize a quasi-2D quantum gas, the motion along one direc-

tion has to be frozen out. This is typically realized with a 1D optical lattice,
where in the other two directions the atoms are much more weakly and in
all experiments so far harmonically trapped. The energy level spacing in the
strongly confined direction z exceeds the Fermi energy and therefore all rele-
vant energies are well below the excitation energy from the ground state to
the first excited state EF,kBT �  hωz, where ωz is the confinement frequency
in z-direction.
1The rate α equals the intensity of the scattered wave times a pre-factor. The average of α(k)
over the momentum distribution of atoms, multiplied by the number of atom pairs in a unit
area, gives the number of scattering events in this area per unit time.

2In fact, a definition different to Eq. 6.8 for the 2D scattering length can be found in the
literature. The widely used a2D = a

2 e
γ stems from the collisions between hard discs with

radius a, see Ref. [39].
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The extension of the gas perpendicular to the quasi-2D plane remains finite
and the third dimension still plays a role as the particles exhibit zero-point
motion in the confineddirection. However, the strong confinement introduces
a new length scale, the harmonic oscillator length lz =

√
 h/mωz, which is

typically much larger than the range of the van der Waals type interactions R.
Therefore, when r� lz, i. e. for short range two-body interaction, the wave-
function of colliding atoms is determined by 3D scattering potentials. Even
when the gas is energetically and predominantly kinematically 2D, the col-
lisional dynamics remain governed by 3D properties and the 3D scattering
length never becomes irrelevant.

Schrödinger Equation for theRelativeMotion We consider a harmonic po-
tential V(z) = 1

2mω
2
zz
2 in the direction perpendicular to the 2D plane. Again,

the centre-of-mass motion and the relative motion are separable and the non-
interacting two-body problem in relative coordinates reduces to the harmonic
oscillator equation

−
 h2∇2

mr
ψ(r)+(V(r)+V(z))ψ(r)−

 hωz
2
ψ(r) = Eψ(r), (6.11)

which is satisfied by the wavefunction of the relative motion ψ(r) (6.2). The
solution of the quasi-2D scattering problem contains two length scales, the
characteristic length of the scattering potential a3D, and the extension lz of
the wavefunction in the z-direction.

Scattering Amplitude We limit our attention to the case of short range in-
teractions R� lz and low-energy s-wave scattering where kR� 1. To deter-
mine the quasi-2D scattering amplitude, one can express the solution of the
Schrödinger Equation 6.11 through the Green’s function and finds [39]

f(k) =
4π√

2πlz/a3D− ln(π/B ·k2l2z)+ iπ
. (6.12)

Where B= 0.905. In the limit lz� |a3D|, the vertical extend is much larger than
the characteristic scattering length scale. Hence, the influence of the vertical
confinement is negligible, the logarithmic term in Eq. 6.12 is unimportant,
and the scattering amplitude becomes independent of the energy. Under any
other condition, the scattering amplitude is energy dependent regardless
of the value of a3D, i. e. there is no unitary limit as in the 3D case. At a
fixed ratio a3D/lz, there is a resonance behaviour in the energy dependence
of the quasi-2D scattering amplitude f(k) in Eq. 6.12, as shown in Fig. 6.2.
Typically, experiments exploit a different kind of resonance behaviour. While
f(k) logarithmically depends on the particle energy and is quite similar to the
resonance in 2D, there is an additional power law dependence on the ratio
a3D/lz. For positive scattering lengths a3D > 0, this behaviour is shown in Fig.
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6.3 a. For a3D < 0 and fixed values up to k2l2z = 0.02, there is a pronounced
resonance behaviour as a function of a3D/lz, see Fig. 6.3 b.

• If the 3D scattering is positive and large, e. g. close to a Feshbach reso-
nance, the logarithmic term in Eq. 6.9 causes a reduction of the scattering
amplitude.

• For small positive 3D scattering lengths, lz/a3D� 1, the 3D dimer, with
a size of ∼a3D, fits well within the confining potential and is onlyweakly
influenced by the harmonic confinement1. As the scattering length is
increased, the 2D features in the relative motion of atoms become pro-
nounced which is described by the logarithmic term in Eq. 6.12.

• For negative a3D, the logarithmic term can lead to a strong increase in
the scattering amplitude.

• In the limit of small negative scattering length, lz/a3D�−1, the dimer
spreads out in the 2D plane and the relativemotion of atoms is therefore
strongly influenced by the tight confinement.

In summary, there is a subtle difference between resonant scattering which
arises from 2D kinematics as in pure 2D systems, and the enhanced scattering
that results from the finite extent of the gas in the confined direction.

Scattering Length Comparing the 2D scattering amplitude 6.9 to the scat-
tering amplitude of the quasi-2D case in Eq. 6.12 yields the scattering length
[39, 115]

a2D = lz

√
π

B
e
−
√
π
2
lz
a3D , (6.13)

where B= 0.905 and a2D has the dimension length. Alternatively, a2D can be
found from the binding energy of 3D molecules [116, 117].

Eq. 6.13 is a valid in the BEC regime where a3D < 0 and a dimer exists also
in the 3D case. However, as long as the confinement strength exceeds the
scattering energy, i. e. klz� 1, Eq. 6.13 is a valid approximation in the BCS
regime, where no 3D bound state exists. The behaviour of a2D as a function
of the magnetic field strength, i. e. of the 3D scattering length is shown in Fig.
6.4.

We define the dimensionless 2D interaction parameter ln(kFa2D). Positive
values correspond to the BCS regime and ln(kFa2D) < 0 depicts the BEC
regime. It is generally assumed that the crossover occurs at ln(kFa2D) = 0,
which is consistentwith themean-field chemical potentialµ=EF−EB/2 being
1In the BEC limit, dimers will always be smaller than the confinement length. They become
3D bosons confined to a quasi-2D geometry.
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Figure 6.4.: 2D scattering length and binding energy as a function of the
external magnetic field. The magnetic Feshbach resonance, which is depicted
as the dashed grey line, is located atB= 834.15G. The s-wave scattering length
a2D (red solid line) is exponentially small for magnetic field strengths smaller
than the resonance. For higher field strengths, a2D rapidly increases. The
molecular binding energy E2DB is depicted as the solid cyan line. Because a
2D bound state always exists, regardless the sign and strength of interaction,
the binding energy is always finite E2DB < 0. On the l. h. s. of the resonance,
the binding energy strongly increases.

zero. However, numerical simulations show that the chemical potential in
fact vanishes at ln(kFa2D)≈ 0.5 [40, 118].
The quasi-2D interaction parameter is sensitive to changes in the density

n through the Fermi wave vector kF, and the 2D scattering length, which
is usually set by a3D, i. e. through the magnetic Feshbach resonance. Thus,
changing either n or a2D enables us to address the quasi-2D resonance. In
fact, an inhomogeneous density distribution provided, the crossover between
BEC and BCS regime is realized within the same quantum gas. Depending
on the confinement strength, the dependence of ln(kFa2D) on the density n
or the magnetic field in terms of a3D varies, see Fig. 6.5. The weaker the 2D
confinement, the more pronounced is the dependence on the 3D scattering
length, whereas changes in the density become insignificant. While the in-
teraction in a 2D system is always repulsive for low energy collisions, in a
quasi-2D gas where lz� a3D, the sign of the interparticle interaction is the
same as in 3D case.
The coupling strength may be parametrized by the dimensionless mean-

field interaction parameter

g̃2D =
4π h2/m√

2πlz/a3D+ ln(B/πk2l2z)
. (6.14)

When the denominator is zero, a pole in Eq. 6.14 occurs, which may be associ-
ated with the appearance of a confinement-induced resonance (CIR). At the
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Figure 6.5.: Schematic behaviour of dependence of the 2D interaction param-
eter ln(kFa2D) on the ratio lz/a3D. The quantity α denotes the factor which
is required to change ln(kFa2D) by the same amount either due to a varia-
tion in the density n or the 3D scattering length a3D. The velvet solid line
depicts the variation in a3D and the green solid line depicts the variation in
n. For lz/a3D� 1, the gas is deep in the 2D regime and the interaction pa-
rameter dominantly depends on the density n. In the opposite limit, towards
the regime where the gas behaves like its 3D counterpart, the 3D scattering
length becomes important.

simplest level, a CIR refers to any resonantly enhanced scattering resulting
from strong confinement.

Setting the denominator in Eq. 6.14 to zero and solving for the 3D scattering
length yields

a3D =−

√
2πlz

ln(B/(πk2l2z))
. (6.15)

For our experimental parameterswe expect the CIR to be located at amagnetic
field strength of B ≈ 838G and an interaction parameter of ln(kFa2D) ≈ 0.7,
respectively.

Limit ofWeak Confinement With increasing energy EB�  hωz, the regime
continuously transforms to ordinary 3D scattering1.

In particular, if |a3D|� lz the quasi-2D regime is practically absent and for
a large range of energies, the imaginary and logarithmic terms in Eq. 6.12 are
negligible. In this case, the scattering amplitude can be approximated by

f(k)≈
√
8πa3D/lz ≡ g2DMF� 1. (6.16)

1For |a3D|> lz the approximate crossover between the quasi-2D and 3D dominated regime is
reached when E≈ 0.1 hωz [39].
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Here the coupling constant gMF is independent of energy and the resulting
dimensionless coupling constant g̃2DMF =

 h2

m gMF� 1, hence, the gas is weakly
interacting. At very low densities, the dimensionless coupling constant g̃2DMF
should be replaced by the density dependent parameter (6.14).

Bound State There is always a bound diatomic molecular state in 2D. The
reason is that the 2D scattering length is always positive, independent of the
sign and strength of a3D, and independent of the ratio lz/a3D [111, 114].
For lz/a3D�−1, when the dimer spreads out in the 2D plane, the dimer

binding Energy is approximately E2DB =  h2/(ma22D). In the vicinity of the 3D
resonance, the dimer binding energy becomes a universal value in units of
the confinement energy E2DB = 0.244  hωz. Further, the 2D scattering length
(6.13) can be replaced by a2D =  h/

√
mE2DB .

Above the Feshbach resonance, i. e. in our case for fields strengths B> 834G,
where no 3D bound state exists and the binding energy of the induced bound
state is very weak E2DB �  hωz, the dimer binding energy can be found with
the relation [8]

lz

a3D
=

∫∞
0

du√
4πu3

(
1−

2ue
−uE2D

B / hω0

1−e−2u

)
. (6.17)

In the BEC limit ln(kFa2D)� 0, where the size of deeply bound molecules is
smaller than lz, the binding energy approaches the known 3D value E3DB =
 h2/(ma23D).

6.2. Phase Diagram

The kind of order a system can possess is determined by its dimensionality.
One of the most distinct properties of uniform 2D quantum gases is that no
true BEC can emerge at finite temperatures, and even more profoundly that
there is a different type of phase transition instead. This BKT type transition
yields the formation of a quasi-condensate and is strongly connected to the
existence of bound and unbound vortices in the gas.
In this section, we show that the condition for the emergence of a BEC

is strikingly different in 3D and 2D. We then discuss the nature of the BKT
phase transition and the distinct role of vortices.

6.2.1. Bose-Condensation in Reduced Dimensions

Bose condensed gases at very low temperatures are typically characterized by
the presence of a condensed and a thermal part of the cloud. The former corre-
sponds to the macroscopic occupation of the lowest quantum state, whereas
the latter refers to particles in thermally excited states. To these is referred to
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as thermal condensate depletion1. In liquid 4He, the condensate depletion is
up to 90% [119]. In anisotropic weakly interacting dilute 3D quantum gases,
the condensate depletion is usually below one percent, hence negligible.

For quantum gases in lower dimensions, the situation changes dramatically.
In the following, we calculate the number of particles of finite momentum
k, which do not occupy the condensate ground state in 3D and 2D, and find
that no 2D BEC exists at finite temperature.
The starting point of our purely classically treatment is the free, d-dimen-

sional ideal Bose gas consisting of N particles of the same spin with the
single particle energy Ep = p2/(2m), where p is the momentum vector andm
the particles mass. The energy level occupation at a given temperature T is
determined by the Bose distribution function f(Ep,T,N).
For a sufficiently large system size V , the total particle number N is given

by the sum of the particles N0 in the ground state and the excited particles,
given by the integral of f(Ep,T,N) over all momenta

N=N0+Nexc (6.18)

=N0+V

∫∞
−∞ddp

f(Ep,T,N)

(2π h)d
. (6.19)

In the following, we will show that at low temperature, the number of parti-
cles in the excited states in 3D becomes finite. As a consequence, additional
particles accumulate in the ground state, forming a BEC. In 2D, only at zero
temperature a 2D condensate can form.

To our convenience,we transform the integral from to spherical coordinates
via ∫∞

−∞dx1 . . .dxd =

∫∞
0

drSdrd−1, (6.20)

where we have given the surface of the d-dimensional unit sphere using the
Gamma function Γ ,

Sd =
2πd/2

Γ(d/2)
. (6.21)

Due to its formal similarity to the Bose distribution function, it is convenient
to introduce the generalized Zeta function

ζν(z) =
1

Γ(ν)

∫∞
0

dx xν−1

z−1ex−1
. (6.22)

With this, the number of particles in Eq. 6.19 can be rewritten as

N=N0+
V

λd
ζd/2(z), (6.23)

1Even at zero temperature, where thermal excitations are absent, there is quantum depletion
of the condensate due to interaction effects, see Sec. 6.3.
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with the thermal de Broglie wavelength λ=
√
2πβ h2/m, the inverse tempera-

ture β= 1/(kBT), and the fugacity z= eβµ with the chemical potential µ.
When the temperature T is changed, the chemical potential µ will adapt to

conserve the total number of particles. Above the critical temperature T > Tc,
the chemical potential µ is negative. When the temperature approaches Tc, µ
goes to zero. Lowering the temperature further, i. e. T < Tc, µ remains zero
and the number of condensed particlesN0 increases as the number of excited
particles Nexc decreases. That means, the maximum number of particles in
excited states Nmexc is reached and all excess particles N0 =N−Nmexc will then
occupy the ground state and form a condensate. In this case, the ζd/2(z)-
function reduces to the Riemann zeta function ζ(d/2) so that

Nmexc =
V

λd
ζ(d/2). (6.24)

The critical condition for the formation of a 3D BEC follows from Eq. 6.24 as

nλ3 ' ζ(3/2)' 2.612, (6.25)

where n=N/V is the density. The quantity nλd is also referred to as degen-
eracy parameter which depicts the critical phase-space density for condensa-
tion.
The calculation of the parameter for the 2D Bose gas requires special cau-

tion, since when d= 2 is chosen, the ζ-function in Eq. 6.24 diverges due to its
pole at z = 1. A sum expansion for the limit of respectively z→ 1 and µ→ 0

yields the degeneracy parameter

nλ2 ' lim
µ→0−

ln(−βµ). (6.26)

The logarithmic divergence of nλ2 at all finite temperatures signals that the
formation of a BEC is impossible in the limit of a large system, except at
exactly T = 0. In other words, the conservation of the particle number does
not require the BEC ground state to be occupied as the atom number diverges
for β→ 0. The underlying physical reason is that the emergence of the BEC
is precluded by long-wavelength phase fluctuations, see Sec. 6.3.2. Similar
arguments apply in the 1D case, where no Bose-condensation can occur even
at zero temperature.

The generalization from the ideal to the interacting gas is formulated in the
MWH theorem [34–36], which states that there is no spontaneous symmetry
breaking in a 2D equilibrium system at finite temperature with short-range
interactions. As a consequence, there is no transition from a disordered to
an ordered phase and no true 2D BEC emerges. We conclude that phase
fluctuations play a crucial role in 2D, as they are sufficient to prevent the
development of long-range order (LRO), which makes the population of a
macroscopic eigenstate and the formation of a true BEC impossible at finite
temperature.
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However, the system undergoes a different type of phase transitionwhich is
described within the BKT theory. This transition happens at a critical temper-
ature TBKT < Tc without the necessity of an long-range ordered phase [37,38].
The presence of a harmonic trapping potential restores the divergence

problem of the free 2D gas due to the changed density of states. However, the
situation remains particularly different to the 3D case: the cloud density at
the trap centre formally diverges n→∞, which means that in the harmonic
potential condensation should only occur when the density at the trap centre
is infinitely large.

6.2.2. BKT Phase Transition

For a temperature below TBKT , a 2D superfluid phase exists without requiring
the presence of a BEC with a phase coherent over a distance on the order of
the system size.
Instead, the phase is coherent over a much smaller distance [38,120–122]

and thus the signature of the BKT superfluid is disentangled from Bose con-
densation. It rather appears in long-range correlations in the so-called quasi-
condensate.

The critical temperature TBKT is determined by [123]

TBKT =
π

4
nsf(TBKT ), (6.27)

where nsf(T) is the superfluid density1 as a function of the temperature. At
the critical temperature the superfluid density is the only thermodynamic
quantity which shows a discontinuity2, jumping from 0 to the universal value
4/λ2dB [123–126]. The BKT transition thus occurs when the superfluid density
nsfλ

2
dB = 4while an experimental method to determine of the corresponding

TBKT has yet to be found.
For the case ln(kFa2D)� 1, an analytical analysis for the transition temper-

ature of a weakly interacting gas of composite dimers yields [127]

TBKT
TF

=
1

2

[
ln
(
A

4π
ln
(

4π

k2Fa
2
2D

))]−1
, (6.28)

where A= 380±3. In the limit ln(kFa2D)→−∞, the critical temperature ap-
proaches TBKT → 0. In the experiment, one typically obtains TBKT/TF ≈ 0.1

In the BCS limit ln(kFa2D)� 1, the critical temperature can be estimated
from the mean field temperature at which the gap vanishes [128, 129]

TBKT
TF

=
1

πkFa2D
. (6.29)

1nsf refers to the superfluid fermion density which is twice the superfluid pair density.
2The BKT transition is often said to be of infinite order because no thermodynamic quantity
shows a discontinuity at the transition point.
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Figure 6.6.: Phase diagram of a strictly 2D Fermi gas in the BEC-BCS crossover.
The critical temperature TBKT is depicted as the solid cyan line. It corresponds
to an interpolation between the two known limits, see text. The solid red line
depicts the critical temperature T∗ for the onset of pairing without superflu-
idity. The pseudogap region is expected to be bound by TBKT and T∗. The
dashed grey line depicts the situation where µ ∼ 0. The figure is adapted from
Ref. [113].

TBKT is set by the lowest energy scale in the system, which is the pair dis-
sociation energy. Figure 6.6 shows the 2D phase diagram in the BEC-BCS
crossover with an interpolation of TBKT for the corresponding limits.
For temperatures above TBKT , a pseudogap state can exist, allowing for

the existence of pre-formed pairs but no emergence of long-range coherence.
For temperature above the pairing temperature T > T∗, the paired state fully
evolves into the normal state.

The microscopic mechanism of the BKT phase transition is associated with
the presence of vortices. At the centre of a vortex, the density is n = 0 and
increases over the vortex healing length ξ. These vortices are topological
points with a phase winding of a multiple of 2π and represent local phase
defects. In the normal phase of a 2D gas, disordered free vortices proliferate in
the gas and cause an exponential decay of the first-order correlation function
g1.
Below the critical temperature TBKT , the formation of bound vortex pairs

is favourable, see Fig. 6.7. Each pair consists of vortices with an opposite
phase circulation so that the local phase perturbation is negligible. The corre-
lation function g1 decays algebraically, which is characteristic for the phase
fluctuating BKT phase and the existence of a quasi-condensate.
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Figure 6.7.: Sketch of the evolution of vortices along the BKT transition. For
temperatures T < TBKT , a superfluid phase exists. Vortices are present only in
bound pairs which do not destroy the quasi-longrange order in the gas. This
is signalled by algebraic decay of the first-order correlation function g1. For
T > TBKT , vortices proliferate freely and represent strong phase disturbances,
causing the correlation function g1 to decay exponentially.

6.3. Phase Fluctuations

The recent interest in low-dimensional quantum gases stems from the fact
that their physical properties are strikingly different from the 3D case, which
is primarily due to the enhanced importance of phase fluctuations1 [130–133].
In 3D, the influence of fluctuations is in general small and the phenomenon
of superfluidity is closely related to the formation of a BEC2. While the 3D
BEC is a prime example for a coherent state, the coherence properties change
significantly in lower dimensions. Here, the phase does not evolve into a fully
coherent state and only a quasi-condensate emerges. Phase fluctuations in
the homogeneous 1D case preclude a true condensate at any temperature,
and only allow for a 2D BEC at zero temperature, according to the MWH
theorem.

The occurrence of order in a many-body system directly manifests itself in
the correlation functions.

6.3.1. Correlations

Bose-condensation is understood as themacroscopic occupation of one single-
particle quantum state. First, we introduce the basic tools to investigate the
order of a system and then study the role of fluctuations in all three relevant
dimensions.

Correlation Function The occurrence of LRO in a many-body system di-
rectly manifests itself in the normalized first order or one-particle correlation
1Density fluctuations are negligible at low temperatures typical for quantum gas experiments.
2In 3D, phase fluctuations only play a role very close to the critical temperature.
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function

g1(r ′,r ′′) =
〈ψ̂†(r ′)ψ̂(r ′′)〉

〈ψ̂†(r ′)ψ̂(r ′)〉〈ψ̂†(r ′′)ψ̂(r ′′)〉
. (6.30)

where ψ̂† and ψ̂ are the bosonic field operators. The g1-function tells us
whether the presence of two particles at a position r ′ and r ′′ is correlated, i. e.
it describes the loss of phase coherence over a distance r= |r ′− r ′′|. Equation
6.30 yields values between zero and one, for respectively a completely uncor-
related and a perfectly coherent state. In a classical system, the correlation
function is zero for large distances, whereas in a quantum gas, g1 can remain
finite.

In the thermodynamic limit, the first-order correlation function is given by
the Fourier transform of the momentum distribution of the gas, which can
thus be studied equivalently.
In a 2D BKT superfluid below the critical temperature TBKT , the algebraic

decay of the correlation function is due to long-wavelength phase fluctua-
tions. These destroy the condensate without preventing the emergence of the
superfluid. The gas still admits finite regions where the phase is well corre-
lated, but with relatively weak phase correlations between different regions.
For temperatures above TBKT ,g1 decays exponentially.
Correlations are also visible in the one-particle density matrix

ρ(r ′,r ′′)≡ 〈ψ̂†(r ′)ψ̂(r ′′)〉 , (6.31)

which gives the amplitude for removing a particle at the position r ′ and
creating another at r ′′. In case of r ′ = r ′′, the density matrix equals the particle
density n(r ′), so that the density matrix is normalized through the condition∫
drρ(r ′,r ′) =N, where N denotes the total number of particles.
The density matrix is Hermitian and can thus be diagonalized with real

eigenvalues. The coherence of the system, manifests itself in the off-diagonal
elements of ρ [20,134]. If one of the eigenvalues is on the order of the number
of particles 〈N〉 and all other eigenvalues are on the order of one, ρ is said
to have off-diagonal long range order (ODLRO). In this case, the system is
called Bose condensed and for large separations we find a non-vanishing
condensate density.

6.3.2. Thermal Fluctuations

To study the existence of an ordered phase, we first investigate its stability
against classical excitations. The lowest lying excitations in a BEC are phonons,
i. e. sound modes.

In the following,we calculate themean square of thermalphase fluctuations
associatedwith amode ofwave vectorq, as it is discussed in Ref. [119,135,136].
The relevant modes are those which are occupied the most, i. e. the modes
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with low energy. We will see that this deviation diverges in dimensions lower
than 3D.

In the limit of a large volume Vd→∞ of a uniform d-dimensional Bose gas
at finite temperature T 6= 0 in thermal equilibrium, we consider the phase φ
of the condensate wave function

φ(r) =
∑
q
φqe

iqr. (6.32)

Since v =
 h
m∇φ, we relate the phase φ of the mode to the corresponding

velocities vq = iφq
 hq
m . The mode occupancy is given by the Planck function

1/(eεq/kT −1), thus for kT� εq, themean kinetic energy in themode is kT/2=
mnVd/2 · 〈vqv∗q〉. It follows that

〈|φq|
2〉= mkT

N h2
1

q2
. (6.33)

We assume the different modes to be independent and thus write for the
phase variance

〈φ2〉=
∑

q<qcut
〈|φq|

2〉 . (6.34)

Relevant are all wavevectors smaller than a cut-offwavevector q<qcut. Above
q < qcut the approximations fail. This either occurs when the thermal energy
becomes comparable to the phonon energy associated with q and the full
Bose-distributionmust be used, or because the energy dispersion is not longer
linear in the wavevector q. Both effects suppress the occupation of modes
above the cut-off so strongly that they do not contribute significantly to the
phase deviations.

Changing from summation to integration yields

〈φ2〉 ' mkT
N h2

Vd
(2π h)d

qcut∫
1/L

ddq
q2

. (6.35)

Here, the lower boundary 1/L of the integral is determined by the system
size and the upper bound is given by the cut-off wavevector qcut. For d= 3,
the integral in Eq. 6.35 converges at its lower boundary for L→∞. Due to
the cut-off, the entire integral is finite. For d6 2, the integral diverges at its
lower boundary q→ 0. Hence, in the 1D and 2D case, long-wavelength phase
fluctuations destroy the phase coherence. The particular cases yield:

• In 3D, the integral converges at long wavelengths, which means that
LRO is retained and a BEC emerges.
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• In 2D, the integral diverges logarithmically as

〈φ2〉 ∝ T

T2Dc
ln(qcutL). (6.36)

Hence, the phase fluctuations diverge in the thermodynamic limitwhere
L→∞. The critical temperature T2Dc = 2π h2n2D/(mk) for the non-inter-
acting gas marks the point where the de Broglie wavelength is compara-
ble to the interparticle separation and quantum degeneracy sets in. n2D
is the 2D particle density. At zero temperature, there is no divergence.

• In 1D, the phase fluctuations diverge aswell, butwith a linear behaviour

〈φ2〉 ∝ T

T1Dc
L, (6.37)

where n1D is the corresponding particle density and T1Dc =  h2n1D/(mk)

the critical temperature.

Phase Fluctuations in the Density Matrix We now answer the question
how phase fluctuations affect the one-particle density matrix in Eq. 6.31 [135].
Consider a system at finite temperature in thermal equilibrium with the
classical wavefunction [137]

|ψ(r)|eiφ(r). (6.38)

Since the density matrix is a non-local property, the global phase φ(r) con-
tributes. We rely on the fact that the energy of the system can be considered
as the one of a collection of independent harmonic oscillators, so that the
canonical coordinates and momenta have Gaussian distribution [135]. At
large separations r, the density matrix then simplifies to

ρ(r ′,r ′′) = 〈|ψ(r ′)||ψ(r ′′)|ei(φ(r ′)−φ(r ′′))〉 (6.39)

= |ψ|2e−〈(φ(r ′)−φ(r ′′))2〉/2 (6.40)

We consider the mean square phase fluctuations in the exponent of Eq. 6.40
and find using Eq. 6.32

〈(φ(r ′)−φ(r ′′))2〉= 2
∑

q<qcut
〈|φq|

2〉 [1−cos(qr)] . (6.41)

For q→ 0, the cosine term behaves like [1−cos(qr)] ∝ q2. Analogous to the
discussion of Eq. 6.35,we now distinguish the behaviour of the densitymatrix
for different spatial dimensions.

• In 3D, the density matrix ρ(x) ' n3Dc (1+ 1/x) decreases to a constant
value at large separations, i. e. LRO establishes and a BEC emerges.
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• In 2D, for large r, the sum in Eq. 6.41 is cut off at small q by the cosine
function, which introduces an effective lower limit at q ∼ 1/r. The length
r is assumed to be much greater than the characteristic length given
by the cut-off wavevector, i. e. r� rcut with rcut ≡ 1/qcut. For the the
long-wavelength limit we can now use the result 6.33 in Eq. 6.41 and
obtain

〈(φ(r ′)−φ(r ′′))2〉 ' mkT

π h2n

∫1/rcut
1/r

dq
q
' ν ln(r/rcut). (6.42)

where the length rcut may be identified with the correlation length ξ.
The behaviour of the density matrix is thus given by

ρ(r)∝ e−〈(φ(r ′)−φ(r ′′))2〉/2 ∝
(
r

ξ

)ν
, (6.43)

where ν∝ T/T2Dc . Due to thermal phase fluctuations, the density matrix
tends algebraically to zero for large r. No fully coherent BEC exists and
the density nc is identified with a quasi-condensate density, except at
T = 0, where there can be a 2D condensate.

• In 1D, the density matrix decays exponentially ρ(x) ' n1Dc e−x
T1Dc
T , so

that not even a quasi-condensate exists and the system is in the normal
state.

So far, we have only considered long-wavelength excitations of the form of
sound modes. In 2D quantum gases, vortices represent an additional type of
excitation. For temperatures above TBKT , it is their unbinding and free prolif-
eration which causes the density matrix decay to change from algebraically
to exponentially ∝ e−|r|/dv , with the mean vortex separation dv ∝ L/

√
Nv,

Nv being the number of vortices [135]. The corresponding BKT transition
temperature is substantially lower than the critical temperature for quantum
degeneracy TBKT = T2Dc /4.

6.3.3. Quantum Fluctuations

To extend the investigation of phase fluctuations to quantum effects we allow
for particles of finite momenta even at zero temperature. For a quantitative
description of the fluctuations on the quantum level we consider a conden-
sate represented by the order parameter ψ̂(r). The decomposition1 of the
quantum gas order parameter reflects the mathematical representation of the
condensate and uncondensed fraction of the atoms

ψ̂(r)' 〈ψ̂(r)〉+δψ̂(r). (6.44)
1The decomposition of such an operator representation may be called fluctuation expansion
or Bogoliubov shift.
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The fluctuation operator δψ̂(r) describes both, thermal and quantum fluc-
tuations, i. e. quantized excitations (quasi-particles) of the atom field. If the
fluctuating states are orthogonal to the condensate state, the field operator
acquires an expectation value which is the macroscopic condensate wave
function. Therefore, the first term in Eq. 6.44 yields a classical wave function
Ψc(r) that describes the macroscopic state of condensed atoms

〈ψ̂(r)〉= Ψc(r). (6.45)

This replacement of an operator with an ordinary complex number is the
Bogoliubov replacement, which is valid at very low temperatures where a
large number of atoms is condensed Nc 'N, where N is the total number of
atoms in the system.
When the condensate contribution can be treated as a classical field, we

are able to formulate the order parameter (6.44) alternatively as

ψ̂(r)'
√
nc(r)eiφ̂(r), (6.46)

where we focus on fluctuations in phase and all the operator dependence is
contained in the phase operator φ̂(r) which permits a precise treatment of
the phase fluctuations1.

Again, the determination of the one-particle densitymatrix clarifieswhether
the density nc describes a true condensate or a quasi-condensate.

ρ(r ′,r ′′) =
√
nc(r ′)nc(r ′′)e−〈(φ̂(r ′)−φ̂(r ′′))〉/2. (6.47)

In order to calculate the exponent in Eq. 6.47, the Bogoliubov-de Gennes
equations and the Bogoliubov transformation of the phase operator ˆφ(r) =
1/
√
4nc(r)

∑∞
j=1 f

+
j âj+h.c. is required,where â is the annihilation operator of

the mode j and f+j = vj+uj is the wavefunction in terms of Bogoliubov ampli-
tudes with the energy εj. We directly discuss the results without presenting
an explicit calculation and refer to Ref. [135, 138] instead.
The one-particle density matrix (6.47) accounts for fluctuations in phase

even at zero temperature and thus goes beyond the classical result (6.40).

• In 3D weakly interacting gases, quantum fluctuations are strongly sup-
pressed and virtually absent, i. e. there is no significant influence on the
coherent BEC ground state.

• In 2D, the phase fluctuations converges for large separation r ′−r ′′, thus
quantum fluctuations do not destroy the BEC, unlike thermal fluctua-
tions do.

1To account for fluctuations in the density, one would substitute the density operator n̂(r) =
nc(r)+δn̂(r).
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• In 1D, the zero-point phase fluctuations behave like the thermal ones
do in 2D. Even at zero temperature, there is no BEC in a homogeneous
1D gas.

In summary, 2D fluctuations are mainly of thermal origin and true Bose-
condensation is only possible at zero temperature. At finite temperature, the
one-particle correlation function decays algebraically and there is a quasi-
condensate1. The phase fluctuations in 1D are dominantly of quantum origin,
hence even at zero temperature condensation is impossible.

6.4. Equation of State

Full knowledge of the thermodynamics of the gas provided, the equation of
state determines any thermodynamic quantum gas quantity under a given
condition, relating well definedmacroscopic variables as the gas temperature
T , pressure P, or energy E. A full description of all peculiar effects in 2D
quantum gases is a difficult task for theories.

In this section, we first give an incomplete overview of the theoretical work
concerning the BEC-BCS crossover in 2D Fermi gases.We then consider the in-
tuitive description of simple Mean Field Theory (MFT) to discuss the 2D BEC-
BCS crossover qualitatively. This lays the foundation to extend the overview
to more sophisticated approaches, which will be benchmarked against our
experiment in the succeeding chapter. This section therefore ends with a
comparative summary of the corresponding theory predictions for the 2D
equation of state in the BEC-BCS crossover.

6.4.1. Theory Overview

The role of strong interactions makes an exact analytical descriptionof the
equation of state in the crossover impossible so far. We briefly show that even
in the case of a weakly interacting Bose gas, theory results are incomplete
and contradictory.

The dimensionless 2D coupling constant g̃2DMF corresponding to the weakly
interacting 2D Bose gas is described by the Gross-Pitaevskii theory in which
all particles are considered to be in the condensate. Unlike in the 3D and 1D
case, the coupling constant is density dependent thus the construction of a
precise theory is difficult.

In the BEC regime, where ln(kFa2D)� 1, we consider the boson chemical

1The direct connection between the one-particle density matrix and the momentum distribu-
tion via Fourier transformation allows us to equivalently discuss the quantum condensate
depletion. In fact, the depletion and the expectation value of phase fluctuations are identical
quantities.
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Figure 6.8.: Beyond mean field corrections in the energy per particle of a
2D Bose gas. Symbols denote QMC calculations. The lines depict different
equations of state. The figure is adapted from the same Ref. [141], see the
same and references therein for a comprehensive overview and comparison.

potential µMF in terms of a density dependent coupling constant [133,139]

µMF = g̃2DMFn=
4π�h2n/m

| ln(na2
2D)|

. (6.48)

Integration yields the energy per particle equation of state

E

N
=

4π�h2

mna4
2D

Γ(0,2| ln(na2
2D)|), (6.49)

Here, the solution of the integral over µ is given by the incomplete Gamma
function Γ(a,x), which is a generalization of the Gamma function for integrals
which are bound by a finite value. The leading contribution of Eq. 6.49 was
already obtained by M. Schick in 1971 [140]. In order to go beyond mean
field accuracy, the incomplete Γ -function is expanded around the dilute limit
na2

2D → 0. The expansions of Eq. 6.49 results in logarithmically small terms
which are significant for the study of beyond mean field effects. This strongly
contrasts the 3D dilute gas, which is perfectly described by the leading order
MFT term. For the 2D Bose gas, there is an ongoing search for higher order
terms and thus numerous theoretical work, as shown in Fig. 6.8. For further
details see Ref. [141] and references therein.

We now briefly summarize the evolution of theoretical approaches to point
out the arising problems and to emphasize the crucial importance of comple-
mentary experimental work. Our starting point is the early work on the 3D
BEC-BCS crossover from which we progress to the achievements in 2D.

Early Crossover Approaches The equation of state of a 3D Bose gas dates
back to the year 1956, when the first mean field correction was obtained
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by T. D. Lee and C. N. Yang [142]. The first systematic study of the BEC-BCS
crossover at zero temperaturewas developed 1969 byD.M. Eagles [11] andA. J.
Leggett [12] to explore superconductivity beyond weak interactions. Based on
mean field equations, a smooth evolution from the BCS side of the resonance
into the regime where pairs are tightly bound in real space1 was developed.
They used a standard BCS ground state as a variational ansatz, which gives
a qualitative description of the crossover and provides a correct description
in the deep BCS regime.

Thermal excitation of collective modes were outside the range of these theo-
ries, until 1985, when P. Nozières and S. Schmitt-Rink developed a generalized
BCS theory, often referred to Nozières and Schmitt-Rink (NSR) approach [13].
This diagrammatic perturbation method is applicable at finite temperatures
and includes the effects of pairing fluctuations around the Fermi edge. Im-
provements based on the NSR approach added quartic (Gaussian) phase and
density fluctuations around amean field saddle point within time-dependent
Ginzburg-Landau theory and successfully reproduced density profiles, col-
lective excitations and critical temperatures in the crossover [99, 143–145].
Most of these studies fail at strong coupling, and while the BCS MFTs

incorrectly2 predict a dimer-dimer scattering length a3Dd = 2a3D instead of
0.6a3D, the extension including Gaussian pair fluctuations results in a more
accurate scattering length of a3Dd = 0.75a3D. The equation of state was derived
including fluctuations on the Gaussian level in different ways [146–150], and
benchmarked against experiments and simulations [105, 151–154], achieving
an overall good agreement with experiment.

TwoDimensions and the BKTTransition The zero temperature case in 2D
was theoretically first investigated by K. Miyake [128] and later byM. Randeria
[114, 155]. Most of the finite temperature analyses are based on different
extensions of the NSR approach [156], e. g. T-matrix methods3.

Thesemethods account forfluctuations on theGaussian level,which indeed
destroy LRO and thus are in agreement with the MWH theorem. However,
Gaussian fluctuations are inadequate to describe the BKT transition, thus the
related jump of the superfluid density is not reproduced and divergences
in the fluctuation contribution at low temperature occur. Those problems
are remedied by taking higher interaction orders into account, e. g. with an
effective interaction between pair fluctuations [157].
Later, the BKT phase transition became accessible for an extended mean

1Due to the fact, that this evolution shows no non-analytic behaviour, e. g. a symmetry-change,
it is called crossover.

2The dimer-dimer scattering length a3Dd = 0.6a3D is the solution of four-body calculations [39].
3The T-, or transition-matrix method was introduced to solve the scattering problem in a more
convenient way instead of dealing with the scattering states explicitly by replacing the bare
two-body interaction potential. The matrix elements are directly related to the scattering
amplitudes and describe the outcome of a collision process.
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field treatmentwhich includedphase fluctuations via path integral formalisms1
in 2D [129,158] and quasi-2D [159–162].

Finding the 2D equation of state along the entire BEC-BCS crossover is par-
ticularly challenging and thus analytical solutions are rare. In the correspond-
ing limits, one can resort to perturbative methods based on the 2D Fermi liq-
uid theory [163] and the equation of state for a 2D Bose gas of dimers [139,140].
Ab-initio QMC simulations at zero temperature provide the most reliable re-
sults [164, 165], which are proven to agree with experiments [115, 166].
However, we first discuss the qualitatively but not quantitatively correct

mean field approach, since it already offers an intuitive picture of the BEC-
BCS crossover in 2D.

6.4.2. Mean Field Description

In this section, we will first derive the chemical potential µ and also obtain
the gap parameter ∆ as a function of the interaction parameter ln(kFa2D).
The aim is to calculate the energy per particle E/N, which is sometimes the
more intuitive quantity compared to µ. Due to the large contribution from
the binding energy EB, it is convenient to subtract it from the energy density
E/N. In mean field description, we find the constant relation E/N−EB = 1,
which shows that MFT cannot predict the crossover correctly.

MFT approximates a weakly interacting gas by assuming every particle
to be independent and by replacing interactions by a mean field. Generally,
this replacement can be performed in different ways, but none is expected
to be quantitatively accurate. The dimer-dimer scattering length is predicted
incorrectly, and for strong interactions, the ground state energy is too large
compared to experiments and simulations. Thus,MFT only provides an upper
bound on the energy.

In the following, we sketch the derivation of the chemical potential and the
gap parameter, following Ref. [159, 167], and restrict ourselves from detailed
calculations to focus on the results which are relevant for this work.
The typical 2D BCS Hamiltonian is ( h≡ 1) [159]

H=

∫
dx2Ψ†σ(x)

(
−
∇2

2m
−µ

)
Ψσ(x)+g

∫
dx2Ψ†↑(x)Ψ

†
↓(x)Ψ↓(x)Ψ↑(x). (6.50)

The operator Ψσ(x) represents the finite temperature Fermi field, x = r, t,
where r is a 2D vector, and σ =↑,↓. The chemical potential µ fixes the den-
sity n = N/V , where V is the systems volume. The attractive potential is
U0 = gδ(x− x ′). The Hamiltonian (6.50) is solved by rewriting it in terms

1The Feynman path-integral method is a generalization of the classical Lagrange and Hamil-
ton formalism to quantum mechanics. It is a non-perturbative representation of the grand-
canonical partition function. The systems dynamics are determined by the so-called action.
According to the principle of least action the minimum of the functional is determined.

124



6.4. EQUATION OF STATE

of a partition function Z(V,µ,T). The so-called Hubbard-Stratonovich trans-
formation allows condensation regardless whether its due to Cooper pairs
or local pairs. From the analysis of the Hamiltonian (6.50) follows the gap
equation

−
1

g
=
1

V

∑
k

1

2Ek
tanh

(
Ek
2T

)
(6.51)

where Ek =
√
ξk+∆ is the excitation spectrum and ξk = k2

2m −µ. According to
Ref. [168], the gap equation at zero temperature yields

−
1

g
=
1

2V

∑
k

1√
ξ2k+∆

2
=
m

4π

∫∞
−x0

dz 1√
1+z2

, (6.52)

where the integrand is z =  h2

2m∆ − x0, and x0 is the interaction parameter
1/ ln(kFa2D). The δ-function of the interaction leads to a UV divergence of the
gap equation. In 3D, where a bound state exists only on the repulsive side of
the resonance, one must choose an appropriate cut-off. In 2D, where a finite
bound state energy exists for any coupling strength, the divergence can be
eliminated by subtracting the bound state equation

−
1

g
=
1

V

∑
k

1

k2/m+EB
=
m

2π

∫∞
−x0

dz 1

2z+2x0+EB/∆
(6.53)

from the gap equation. After performing the integration of the difference of
Eq. 6.52 and Eq. 6.53 we arrive at

EB
∆

=
√
1+x20−x0. (6.54)

The number equation is given by

n=
1

V

∑
k

(
1−

ξk
Ek

tanh
(
Ek
2T

))
(6.55)

=
m

2π

(√
µ2+∆2+µ+2T ln

[
1+exp

(
−

√
µ2+∆2

T

)])
. (6.56)

At zero temperature, the interaction parameter is related to the gap parameter
∆/EF and the chemical potential µ/EF in units of the Fermi energy EF by

∆

EF
=

2

x0+
√
1+x20

,
µ

EF
=

2x0

x0+
√
1+x20

. (6.57)

With these two equations we finally obtain

µ= EF−
EB
2
, (6.58)

∆=
√
2EFEB. (6.59)
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Figure 6.9.: Mean field chemical potential µ and gap parameter ∆ in the
crossover. a) In the BCS regime, where ln(kFa2D) > 0, the chemical poten-
tial µ almost equals the Fermi energy EF. For ln(kFa2D)→ 0+, µ decreases due
to the increasing pairing energy and is zero when the interaction parameter is
zero. b) The gap is exponentially small in the BCS regime and ∆= 2EF when
ln(kFa2D) = 0. For stronger attraction, the gap increases.

These simple zero temperature results were already found in Ref. [128, 155].
Far in the BCS regime of weak attraction where ln(kFa2D)� 1, the chemical

potential is µ� EF, see Fig. 6.9 a. The two-body binding energy EB � EF and
the gap ∆ � EF are very small thus the pair size is much larger than the
interparticle spacing 1/kF. Just beyond the pairing threshold, the obtained
result is identical to the one of BCS theory of Cooper pairs. In the BCS regime,
the gap becomes exponential small, see Fig. 6.9 a. However, the binding energy
stays finite since in 2D a bound state always exists. In the 3D case, the gap
closes completely and equally the superfluid phase vanishes because no pairs
are left to contribute
In the BEC regime of strong attraction where ln(kFa2D) � 1, there is a

deeply bound two-particle state so that |EB| � EF, and the gas consists of
essentially non-interacting composite bosons. The chemical potential here
is µ � −|EB|/2, which is one half the energy of pair dissociation for tightly
bound pairs. This means that the binding energy of fermion pairs is nearly
identical to the two-body binding energy.
For ln(kFa2D) → 0, the chemical potential µ decreases due the increas-

ing pairing energy and equals zero when the interaction parameter reaches
zero. This point corresponds to µ = 0 and signals a distinct change in the
quasi-particle excitation spectrum Ek =

√
(εk−µ)2+∆2 and marks the natu-

ral crossover. Itmaybe viewedas analogous to the 3Dunitarypoint 1/(kFa3D)=

0. We note that this picture is insufficient since the mean field chemical po-
tential is finite with µ > 0 at the 3D crossover point. Furthermore, QMC sim-
ulations showed that the point in 2D where the chemical potential vanishes
is more on the attractive side of the 3D resonance at ln(kFa2D)≈ 0.5 [40, 118].
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Figure 6.10.: Mean field prediction of the equation of state as a function of
the 2D interaction parameter ln(kFa2D). The solid black line is the mean field
result. In the BCS limit, the energy per particle E/N approaches the energy
per particle of a non-interacting Fermi gas EFG =  h2k2F/(4m) = EF/2. The cyan
green dashed line is the molecular binding energy EB/2= E/N−1.

Equation of State in Mean Field Approximation The energy per particle
is connected to the chemical potential by the thermodynamic relation µ =
∂E
∂N . With the definition of the Fermi energy EF =  h2k2F/(2m), the energy per
particle in units of the energy of a free Fermi gas EFG = EF/2 is

E

NEFG
= 1−

8

(a2DkF)2
, (6.60)

which is shown in the BEC-BCS crossover in Fig. 6.10.
In the BCS regime, the energy per particle approaches the energy of a

non-interacting Fermi gas EFG. On the BEC side, where bound dimers ex-
ist, the particle energy increases exponentially. The analytically predicted
dimer-dimer interaction scales only with density rather than being appropri-
ately renormalized by quantum effects, thus all higher orders are missed by
MFT. The mean field energy is only determined by the binding energy of the
dimers. In fact, subtracting the two-body binding energy from the energy per
fermionic particle results in a constant value for any interaction parameter,
signalling the inadequacy of MFT.

6.4.3. Beyond Mean Field Approaches

MFT provided us with a qualitative description of the chemical potential in
the crossover. However, it fails in predicting the correct binding energy EB and
it is consequently unable to predict the corrected energy per particle E/N−EB.
We now extend our discussion to beyond mean field methods, which will be
compared to the experimental results in the next chapter. The most reliable
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results are given numerical QMC simulations, which are presented at the end
of this section. Before we discuss these, we will compare two perturbative
methods, which are applicable in the two limits of the BCS and BEC regime.

Weakly Interacting Fermi Liquid In 1950,L. D. Landaudeveloped the Fermi
liquid (FL) theory that allows us to derive perturbative expressions that con-
nect the thermodynamic properties of a weakly interacting Fermi gas to those
of an ideal Fermi liquid [163,169–171].
We consider a homogeneous zero temperature 2D Fermi gas with weak

attractive short-range interaction where ln(kFa2D)� 1. The equation of state
for the energy per particle is the one of a normal attractive FL in perturbative
expansion

EFL
NEFG

= 1+2g+A2g
2. (6.61)

The coefficient A2 = 3−4 ln2 of the second order term depends on the chosen
2D coupling constant g=−1/(2 ln(kFa2D)) [165]. Note that the first order term
is already different to the simplest mean field result, see Eq. 6.60. The exact
value results from claiming a consistent g and energies for both, the weakly
interacting regime as well as the strongly repulsive regime1.
To emphasize many-body effects beyond the mean field contribution we

subtract the two-body contribution arising from the molecules. The resulting
equation of state EFL/N+ |EB| in units of EFG is shown as the solid orange
line in Fig. 6.11. Towards the BCS limit of a non-interacting Fermi gas, the
FL theory agrees well with QMC results, which are depicted as the black
circles2. Approaching the resonance ln(kFaaD)→ 0+, the difference between
bothmethods becomes significant as the predictionswithin FL theory diverge.
We also show the results obtained via MFT. These cannot predict crossover
behaviour correctly due to the lack of a correct binding energy EB.

Weakly InteractingGas of Dimers In the BEC limit where ln(kFa2D)�−1,
we consider the equation of state of a 2D gas of weakly interacting composite
bosons [139,140].
We follow Ref. [113, 172] and sketch the perturbative expansion of the

energy per particle. Consider the total energy E=−EBNd+Ed, where Ed is
the energy of a repulsive Bose gas consisting of Nd =N/2 bosons. The grand
potential

Ω= Ed−µdNd (6.62)
1Despite a similar coupling constant, there are different values of the coefficient A2 given in
the literature. In addition to the value obtained within second-order perturbation theory
presented here, A2 = (3−4 ln2)' 0.06 [170,171], recent QMC calulations find the value A2 '
0.17 [40].

2The complete numerical QMC results are presented at the end of this section.
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Figure 6.11.: The equation of state in the 2D BCS regime, corrected by the
molecular binding energy EB/2. The prediction within Fermi liquid theory is
depicted as the solid orange line. For ln(kFaaD)� 1, the perturbative FL re-
sults approach the energy of a non-interacting Fermi gas EFG. For comparison,
we also show results from recent QMC calculations (black circles) and the
MFT results (dashed cyan line). Towards the crossover,where ln(kFaaD)→ 0+,
the FL results diverge and increasingly deviate from the numerical calcula-
tions. MFT cannot the predict the crossover at all, due to the lack of a correct
binding energy prediction, see Sec. 6.4.2.
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in Bogoliubov approximation is

Ω=
2mµ2d
16 h2π

(
1−2 ln

(
1

2mµdα2a
2
2D

))
, (6.63)

with the boson chemical potential µd = 2µ+EB. The factor α accounts for the
modified dimer-dimer scattering in case of deeply bound composite bosons
instead of the collision of individual fermions. The derivative of the grand
potential Ω with respect to µ yields the two-particle density nd

−
∂Ω

∂µd
≡ nd =

2mµd
4π h2

ln
(

4π

2mµdα2a
2
2D

)
. (6.64)

Rearranging Eq. 6.64 provides us with the leading order term of the chemical
potential

µd '
2π h2nd
m

1

ln
(

1
ndα2a

2
2D

)
1− ln ln

(
1

ndα2a
2
2D

)
ln
(

1
ndα2a

2
2D

)
 , (6.65)

where nd = n/2 is the dimer density andmd = 2m the dimer mass. At zero
temperature and considering Eq. 6.62, one arrives at the equation of state
[40, 113, 172]

E/N− |EB|

NEFG
=
1

2
gd (1+gd [ln(πgd)+2γ+1/2]) . (6.66)

Similar to the perturbative FL approach, the coupling constantgd=−1/ ln(ndα2a22D)
has to be chosen appropriately [40]. We parametrize Eq. (6.66) in terms of
the interaction parameter ln(kFa2D) and show the result as the solid cyan
line in Fig. 6.12. Surprisingly, the perturbative expansion of the composite
boson equation of state is applicable beyond the point where ln(kFa2D) = 0.
Over the whole range, it is in reasonable agreement with the numerical QMC
results.

QuantumMonte Carlo Simulations It is tempting to interpolate the results
in the weak interacting limits to derive an analytical description for the BEC-
BCS crossover. However, in order to obtain an accurate prediction of the
equation of state throughout the crossover, we have to turn to numerical
simulations [164,165],which have proven to agreewith experiments [115,166].
The zero temperature QMC technique approaches the microscopic prop-

erties of the 2D Fermi gas, based on the grand canonical many-body Hamil-
tonian in a cubic volume V = L3 with periodic boundary conditions. One
introduces a function f(R,τ) = φT (R)Ψ(R,τ), where Ψ(R,τ) denotes the wave
function of the system. A trial function φT (R) is evolved in imaginary time
τ= it/ h, according to the Schrödinger equation. Finally, finite size analysis is
carried out to extrapolate the results to the thermodynamic limit V →∞.
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Figure 6.12.: The equation of state E/N−EB in the BEC-BCS crossover. Results
for 2D gas of weakly interacting composite bosons are depicted as the solid
blue line. For ln(kFa2D)→� 0, as the dimers get tightly bound and the bind-
ing energy increases, the perturbative predictions approach zero. Numerical
QMC results are depicted as black circles.

The results of the QMC simulations along the entire crossover are reported
as the black circles in Fig. 6.13, which is the central figure of this section. The
solid grey line is a fit to the QMC data

ε(x) = α+βarctan(γ · (x−δ)), (6.67)

with the coefficients α' 0.41, β' 0.33, γ' 0.62 and δ' 1.09. The results ob-
tained from FL theory and the equation of state of composite bosons in the
BEC regime are shown as well.
To summarize, the QMC results provide us with the most reliable pre-

diction of the crossover behaviour. In the next Chapter 7, we compare the
presented theory approaches to the measured 2D speed of sound. Unsur-
prisingly, the inaccurate mean field description wont be able to describe our
results.
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Figure 6.13.: Comparison of different equations of state as a function of the
interaction parameter ln(kFa2D). The dashed cyan line are the MFT results,
the solid blue line depicts the equation of state of composite bosons, and
the solid orange line the prediction within FL theory. The solid grey line is
a fit to the numerical results (black circles), see text. While the FL results
rapidly diverge towards the resonance ln(kFaaD)→ 0+, the equation of state
for composite bosons is applicable even beyond the crossover ln(kFaaD) =
0. Additionally, we show the prediction at ln(kFaaD) = 0 using the Bertsch
parameter (velvet square). The energy per particle reaches a universal value
at the 2D resonance (ln(kFa2D)' 1). After subtracting the binding energy it
is E/N−EB = 0.204EF/2.
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7. Exploring the Thermodynamics of
2D Fermi Gases

The BEC-BCS crossover in 2D Fermi gases presently attracts considerable in-
terest and yet, comprehensive understanding is still lacking. Full knowledge
of the thermodynamics, i. e. the equation of state, would yield a complete
representation and full description of the system, and automatically account
for all its peculiarities. A crosscheck of the equation of state is afforded by
studying the dynamic response of the system, i. e. measuring the speed of
sound. Here, we present the first results on the speed of sound in 2D Fermi
gases in the BEC-BCS crossover, and compare it to the predictions of the equa-
tion of state . Furthermore, we present preliminary results on the pressure
equation of state, from which we obtain the sound velocity as well.

Section 7.1 of this chapter recaptures the distinct features of 2D Fermi gases
and elaborates on the possibility to use the speed of sound to probe these
systems. After a preview of our results in Sec. 7.2, an overview of experi-
mental work is given in Sec. 7.2. Section 7.3 presents the speed of sound
measurements and concludes with an extensive comparison with theoretical
predictions of the speed of sound derived from different equation of state
models. Our results beyond the speed of sound, i. e. the pressure equation
of state, are presented in Sec. 7.4. A recently developed method to measure
the temperature of interacting 2D Fermi gases is discussed in Sec. 7.5. We
conclude and draw the attention to open questions and arising controversies
in Sec. 7.6, emphasizing the importance of advancing the knowledge of these
systems with experiments.

7.1. Motivation

The BEC-BCS crossover physics in 2D systems are remarkably different. The
preceding chapter elucidated that this is mainly due to the BKT phase tran-
sition, the fundamentally changed scattering behaviour and the enhanced
importance of phase fluctuations. Overall, the variety of peculiarities and
great diversity of physical phenomena causes the strong growth in experimen-
tal and theoretical effort to understand the thermodynamic and superfluid
properties of 2D Fermi gases.

Yet, on the theoretical side, analytical and numerical methods predicting
the thermodynamics in 2D BECs of composite bosons and ultracold gases
of Cooper pairs are inconsistent. Now, the ability to realize single layer 2D
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Fermi gases close to a Feshbach resonance provides us with the possibility to
test the theoretical predictions.

Naturally, the question arises how these rich but complicated systems can
be studied adequately. One obvious and appealingly simple answer is a direct
measure of response to, e. g. a small local perturbation. Awell suited example
is a density wave which propagates with the speed of sound. The density
wave can be generated by the creation and the sudden release of a local density
excess. Being a collective excitation it captures all characteristics of the 2D
BEC-BCS crossover and is thus sensitive to scattering, trap and temperature
effects, and superfluid properties.
Here, we present measurements of the sound velocity for a wide range

of interaction parameters ln(kFa2D) in a strongly confined Fermi gas. The
realization of a single 2D quantum system enables us to conduct high pre-
cision experiments. Our studies thus offer the possibility to explore the 2D
thermodynamics, to test theories, and to invalidate some of them. While this
chapter focuses on the speed of sound, we additionally present our prelimi-
nary results on the pressure equation of state. From this, we extract the speed
of sound and find it in excellent agreement with the results of the response
experiments.

7.2. Our Observations and Previous Work

The first low-dimensional BEC was created in 2001 in the group ofW. Ketterle
[63]. Less than a decade later, A. Turlapov and colleagues prepared the first
two-dimensional Fermi gas [173]. Since then, experiments by the groups
of M. Köhl, M. Zwierlein, and J. Thomas aimed for a deeper understanding
of the quasi 2D Fermi gas crossover physics [116, 174–177]. However, the
number studies of the thermodynamic properties in the BEC-BCS crossover
in 2D Fermi gases remains limited. The behaviour of collective excitations,
i. e. the breathing and quadrupole mode has been studied in [45]. C. Vale and
colleagues investigated the influence of dimensionality [178] and conducted
first measurements of the thermodynamic equation of state by analysing in-
situ density profiles [166]. Recent work of the group of A. Turlapov follows a
similar approach and covers the investigation of the ground state pressure of
the gas along the crossover [115] in good agreement with theory [40].
So far, the speed of sound had not been measured in 2D Fermi gases. In

3D BECs, early sound velocity experiments were carried out in the group
of W. Ketterle [179]. The speed of sound in a BEC at high temperatures was
investigated by P. van der Straten and colleagues [180], and was measured as
well in the BEC-BCS crossover by J. Thomas and others [92–94]. Recently, R.
Grimm and co-workers studied the second sound in a resonantly interacting
3D Fermi gas [93, 94]. Theoretical work has mainly been done on 3D gases
[101,181–183] and on dilute 2D Bose gases [184] and recently on unitary 2D
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Fermi gases [185].
Overall, the exploration of the phase diagram of ultracold 2D Fermi gases

has only just begun. Many unresolved questions exist, e. g. regarding the
critical temperature for the BKT phase-transition, the FFLO phase in spin
imbalanced systems, or the nature of the pseudo-gap regime. Another prime
example is the general role of interactions, as recent experiments on dynamical
gas properties yield contradictory results.While spin transportmeasurements
[44] are in agreement with theory, the observation of an undamped breathing
mode [45] surprisingly indicates the opposite case of interaction effects much
weaker than expected.

Against this background, our results are an important addition to the first
direct analyses of the 2D Fermi gas in the BEC-BCS crossover and the under-
standing of these systems. The speed of sound represents a powerful probe
providing important information on key thermodynamic quantities and also
on the systems dynamic behaviour and interactions. Moreover, the sound
velocity is sensitive to the superfluid fraction, and should in principle enable
us to probe the BKT phase boundary [184] and directly determine the critical
temperature for BKT superfluidity. Besides, engineering first sound experi-
ments potentially paves the road to the excitation and observation of second
sound. This has never been measured in 2D [182], and so far, we could not
observe sufficient evidence.

Preview We take a brief look ahead on the experimental results, with the
main focus being on the speed of sound measurements in Sec. 7.3. One possi-
ble representation of the equation of state is given by the relationship between
the chemical potential µ and the density n. The sound velocity is then deter-
mined by the derivative of this equation of state as

v2s =
n

m

∂µ

∂n
. (7.1)

In the experiment,we realize a single 2D 6Li quantumgas, strongly confined
in a blue-detuned 1D optical lattice at the lowest attainable temperatures. The
effective aspect ratio of our trap exceeds most of the ratios of aforementioned
experiments by far, we thus work with pure, cold, and strongly confined 2D
quantum systems.

Making use of a broad Feshbach resonance and a high degree of control
over particle densities, we map out the BEC-BCS crossover measuring the
speed of sound vs. After the creation and sudden release of a local density
excess in the centre of the cloud, we track the outward propagation of the
resulting density wave, see Fig. 7.1. The method is similar to the one we
employed in the 3D experiments, see Ch. 5. The covered distance of the peak
density after a certain delay time τ yields the speed of sound directly. We
follow this procedure for various interaction parameters ln(kFa2D), where
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Figure 7.1.: Denstiy wave in a 2D gas for different propagation times. A small
attractive potential creates a density excess in the superfluid centre of the
cloud. Suddenly switching off the potential releases a density wave which
propagates outwards in a circular symmetric way. The peak density travels
with the speed of sound and is extracted by image analysis. For each value
of the interaction parameter ln(kFa2D) we acquire ten of these snapshots.
The images show clouds with an interaction parameter of ln(kFa2D) = 0.8, a
particle number of 35000, and a central density of about 1.7×1012m−2.

a2D is the 2D scattering length and the Fermi wave vector kF =
√
4πn0, with

the central cloud density n0.
The experimental results are shown in Fig. 7.2. The sound velocity vs, given

in units of the Fermi velocity vF =  hkF/m, is smallest on the BEC side, where
ln(kFa2D)6 0, and increases monotonously when we cross the 2D resonance,
where ln(kFa2D) = 01, towards the BCS regime, where ln(kFa2D)> 0.

Here, we show two theory comparisons. The first is the sound velocity pre-
diction within MFT including phase and amplitude fluctuations [41], which
is depicted as the horizontal line in Fig. 7.2. Clearly, it is not in accordance
with our data even at the qualitative level and emphasizes the difficulties of
theory to capture interaction and pronounced fluctuation effects. The cur-
rently best suited tools to describe 2D Fermi gases in the BEC-BCS crossover
are numerical techniques, such as QMC simulations. The speed of sound,
derived from a fit to a recent QMC equation of state [40, 165] is in very good
agreement with our results.

In addition, we show the speed of sound extracted from the experimental
pressure equation of state, which is obtained from in-situ 2D density profiles.
The excellent agreement of the results of both methods, the measurement of
direct response and the equation of state, confirms the high precision and reli-
ability of the experiment. In the following, the speed of sound measurements
are explained and discussed.

1Despite its imprecise nature,which is discussed inCh. 6, the term resonance is used throughout
this chapter.
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Figure 7.2.: The speed of sound in 2D Fermi gases in the BEC-BCS crossover.
The cyan circles show the results of the direct measurement via the excita-
tion of density waves. The error bars are due to the scatter of the density
peak position for different propagation times. Early speed of sound results
which we derive from the measured equation of state are depicted as the red
circles. The two experimental results are in excellent agreement. The solid
grey line shows the sound velocity we derived from a fit to recent numerical
calculations of the equation of state [40, 165]. The dashed green line is a so-
phisticated mean field prediction which accounts for phase and amplitude
fluctuations [41].
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7.3. Speed of Sound

First, we present the experimental procedure to measure the sound velocity
and discuss the experimental parameters. We then present the complete re-
sults including the different theory approaches presented in Ch. 6. Before
we summarize at the very end of this section, we introduce the foundations
for the thermodynamic nature of the speed of sound and develop a way to
derive the sound from a given equation of state.

Sound velocity experiments were hitherto exclusively done in highly elon-
gated 3D quantum gases by generating a perturbation in the centre of the
trap using a focussed blue-detuned laser beam. As presented in Ch. 5 and
Ref. [80], our group was the first to create a point like density excitation in a
highly oblate Fermi gas using a red-detuned beam to measure the speed of
sound together with the superfluid critical velocity throughout the crossover.
Here, we take this method further and present the first report of a direct

and precise measurement of the sound velocity in the BEC-BCS crossover in
a 2D cloud, strongly confined in a single layer of a 1D lattice.

7.3.1. Sound Wave Excitation

Thepreparation of the 2D clouds followsCh. 3. Details about the blue-detuned
1D optical lattice and its alignment procedure can be found in the correspond-
ing Sec. 3.3.4. In short, an ultracold gas, consisting of a balanced mixture of
6Li atoms in the lowest two hyperfine states, is prepared in the already highly
oblate squeeze dipole trap. We lower the laser power of the squeeze trap from
400mW to 20mW to perform evaporative cooling. The evaporation is done
at a magnetic field close to the 3D scattering resonance at 834G. By ramping
up the power of the squeeze laser beam to 1000mW, the cloud is compressed.
Simultaneously, the 1D optical lattice beam power is increased to a total power
of 600mW. Switching off the squeeze trap transfers 85% of the atoms into a
single anti-node of the optical lattice, loading only an insignificant fraction
into adjacent layers.

The excitation laser beam has a wavelength of 780nm and is pointed at the
centre of the 2D cloud through the upper microscope objective. The beam
power is ramped up linearly in 100ms to approximate values between (100

to 350)µW at the position of the atoms. The beam power is chosen such that
a consistent density excess is created for different values of the interaction
parameter in the crossover. Suddenly switching off the beam causes a den-
sity perturbation which spreads outwards as a circularly symmetric wave in
the 2D cloud. After a certain delay τ from the moment of the excitation, an
absorption image of the cloud is taken.

Figure 7.1 shows in-situ density profiles recorded after different delay times
τ. To determine the speed of sound vs, we analyse an average of several ab-
sorption images taken for different delay times τ and extract the distance
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Figure 7.3.: Evolution of the density wave maximum as a function of the
propagation time. The slope of the linear fit curve is identified with the speed
of sound. The resulting absolute sound velocity is vs = (21.8±0.9)mms−1
and vs/vF = 0.58±0.02, respectively. The measurement is carried out in a 2D
cloud with a central density of 1×1012m−2 at a magnetic field strength of
889G. The interaction parameter is ln(kFa2D) = 1.3.

between cloud centre and peak positions, as shown in Fig. 7.3. The linear
sound propagation is fitted with a linear function where the slope is identi-
fied with vs.
We measure the speed of sound as a function of the dimensionless in-

teraction parameter ln(kFa2D). The magnetic field strength is thus ramped
in a few ten ms to a value between (730 to 890)G, which corresponds to a
change of the 2D scattering lengtha2D= (1000 to 20000)a01. The 2D scattering
length is calculated as a2D = 2

eγ l0
√
π
Be

−
√
π/2l0/a3D with the Fermi wave vec-

tor kF =
√
4πn0 and the central cloud density n0, which is directly accessible

in the 2D geometry.
Since we keep the atom number constant at N = 24000±1000 for each

data point, the atomic clouds get more dilute with increasing Fermi pres-
sure towards the BCS regime. Thus, the central density decreases from n0 =

1.8×1012m−2within the BEC regime ton0= 1.0×1012m−2 in the BCS regime.
The interaction parameter is consequently determined by changing the

magnetic field B and also due to the variation in the density n. With this, the
interaction parameter covers the range of ln(kFa2D) = −1.36 to ln(kFa2D) =
1.32. Reaching further into the BEC regime is impractical due to a reduction
of the lifetime, which is caused by three-body losses2. On the BCS side, we
are limited by weak response signals due to the low density. Nevertheless, we
intended to extend the measurements to magnetic field strengths of ≈ 930G,
but a forced downtime prevented us from doing so.
Ultimately, the absolute sound velocity changes from vs ≈ 16mms−1 in

the BEC regime to vs ≈ 22mms−1 in the BCS regime. A first glance at the
1Correspondingly, the 3D scattering length changes from a3D = (−2700 to 9000)a0.
2The dimers are very deeply bound so that they start to decay into lower (rotational and
vibrational) states, releasing energy which can cause a third constituent to escape the trap.
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results was given in Fig. 7.2, and we turn to the complete analysis in the next
Sec. 7.3.2. But first, we discuss the relevant experimental parameters in the
following paragraphs, to substantiate our observations.

ExcitationBeam Since the atomnumber is kept constant along the crossover,
the cloud density is significantly reduced in the BCS regime. Therefore, larger
beam radii and thus an increased potential size appeared to be favourable for
the excitation of a density wave, assuming that the beam power is increased
accordingly. Since the available laser power is limited, we opted for an in-
termediate beam size, providing sufficient signal in both, the BEC and BCS
regime. The 1/e2 radius of the excitation beam focus is thus 3.6µm×2.8µm
and remains unchanged for all measurements.

Excitation Beam Power Sound propagation is inherently dependent on the
density of its medium. Consequently,when the density excess is too large, cor-
responding to high excitation beam powers, the sound velocity is expected to
increase due to the locally increased density. Beyond linear response, precise
determination becomes ambiguous.

To avoid these effects we ensure that we stay in a regime of small perturba-
tions and choose the excitation power accordingly low, i. e. for each value of
the interaction parameter, we balance the response signal against the excita-
tion beam power. As a result, the laser power was changed from 100µW in
the BEC regime to roughly 350µW in the BCS regime. For higher excitation
beam powers the observed speed of sound vs/vF significantly increases, as it
is exemplary shown in Fig. 7.4.

Local Density Over the distance the propagating density wave is tracked,
the local density essentially remains constant. This prevents the sound wave
from changing its velocity during the propagation through the cloud, which
greatly simplifies the analysis1.
Far in the BEC (BCS) regime, the region of constant density has a radius

of r≈ 30µm (75µm), whereas the corresponding Gaussian width is wBEC ≈
80µm (wBCS115µm).

Temperature In each experimental realization, the 2D quantum gas is pre-
pared at the lowest attainable temperature, which is typically below 10% of
the Fermi temperature TF.
After changing the magnetic field and adapting the particle number, we

conduct a temperature measurement before the actual sound measurements
1The case of a less homogeneous density profile may give rise to interesting experimental
implications. In less uniform density profiles, the interaction parameter ln(kFa2D) becomes
spatially dependent, and one could, in principle, observe the crossover from the BEC to a
BCS regime in a single realization.
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Figure 7.4.: Dependency of the measured sound velocity vS on the excitation
beam power, estimated at the atoms position. The correct speed of sound is
expected to be measured only in the limit of low beam powers. For higher
beam power, i. e. a deeper potential, the sound velocity increases due to the
increase in the local density. The dashed grey line is a linear fit to the data,
which was obtained in 2D clouds with an interaction parameter between
ln(kFa2D) = −2.1 and ln(kFa2D) = −2.2.

are carried out1. We do this by an adiabatic ramp of the magnetic field well
into the BEC regime and applying a short TOF inside the weak harmonic
trap, generated by the magnetic Feshbach field. In short, we map the initial
momentum distribution to the spatial domain, so that the low momentum
fraction of the quasi-condensate collapses and gives rise to a pronounced
display of the thermal atoms. By fitting aGaussian curve to the thermalwings,
we determine the condensate fraction and can thus extract the temperature,
details are found in Sec. 7.5.

Throughout the BEC-BCS crossover, we obtain temperatures ranging from
(18 to 22)nK and 6% to 8% of the Fermi temperature.

Image Analysis For each delay τ we take the averaged density profile n̄ of
ten absorption images or more. To enhance the visibility of the small density
excess in n̄, we subtract a reference picture n̄0, which we obtain by smoothing
an averaged density profile of the unperturbed cloud. The profile n̄∗ = n̄− n̄0

depicts a clearly visible density modulation. This profile n̄∗ is divided into
four quadrants which are evaluated individually, taking the radial average
and determining the peak position. The distance between peak positions and
the cloud centre as a function of time τ yields the speed of sound vs.

In a few particular cases, the density wave does not propagate with perfect
circular symmetry, most likely caused by, e. g. jitter of trap optics. To obtain
1Since we are keeping the atom number constant by adapting the atom number before the
evaporative cooling is carried out, we already expect a slight difference in the final tempera-
ture.
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Figure 7.5.: Schematic of the image analysis to determine the speed of sound.
a) For each propagation time t, the averaged and normalized density picture
is divided into four quadrants to account for an asymmetric density wave
propagation. Each quadrant is radially averaged. b) We evaluate all time
steps t and obtain four linear fit curves, representing the speed of sound per
quadrant. Significant outliers can be easily accounted for. c) The mean of the
separate sound velocities gives us the final result.

reliable and reproducible results, we take radial averages of the four cloud
quadrants, as sketched in Fig. 7.5. This enables us to determine the speed of
sound separately and to identify and exclude outliers. The error bars in Fig.
7.3 are due to the different sound velocities we obtained in the four quadrants.
Furthermore, another type of image analysis was developed to avoid the

influence of local density variations evenmore. Here, the clouddensity profile
is divided into slices of basically arbitrary number, which are then radial
averaged individually. From the obtained density profiles, the local speed
of sound as a function of the increasing distance and the local density is
evaluated. We could not observe a noticeable difference between the results
of both methods.
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7.3.2. Results and Discussion

In general, the speed of sound as a thermodynamic phenomenon depends
on the many-body physics and the quantum statistics of the system. Sound
propagation is therefore expected to changewith the scattering lengtha2D, the
strength of the vertical confinement, and the density of its medium. However,
the behavioural change is smooth — as it is true for any thermodynamic
quantity along the crossover from the BEC to the BCS regime.

Figure 7.6 depicts our measured speed of sound and the full set of results
we have obtained from the theory which was discussed in Ch. 6. The sound
velocity in terms of the Fermi velocity vs/vF is shown as a function of the 2D
interaction parameter in the range ln(kFa2D) =−1.36 to 1.32. Ameasure of the
statistical uncertainty is shown at ln(kFa2D)≈ 0.7, where the given speed of
sound value vs/vF = 0.44±0.05 is the average of five separate measurements.
The given error is the standard deviation. The error of the remaining data is
determined by the image and fit analysis, as discussed in Sec. 7.3.
The corresponding absolute velocities range from vs ≈ 16mms−1 in the

BEC regime, to vs ≈ 22mms−1 in the BCS regime. On the BEC side, where
ln(kFa2D)<0, themeasured speed of sound is about 30%of the Fermi velocity
and increases monotonously by approximately a factor of two towards the
BCS side, ln(kFa2D)> 0.

The data is in remarkably good agreement with the sound velocity results
from our pressure equation of state (red circles), see Sec. 7.4. This has im-
portant indications. Achieving identical results with two different methods
does confirm the high overall quality of our experimental data. Moreover,
it justifies the assumption that we are in the weak response limit. Finally, it
verifies that our equation of state yields a corrects description of our quantum
gases.

Theory Comparison We now comment on the comparison of the experi-
mental results to theory. Afterwards, the thermodynamic definition of the
sound velocity is presented to derive the speed of sound from the equation
of state, see Ch. 6.

The simplest MFT prediction yields vs/vF = 1/
√
2 (dashed green line) [155],

based on BCS theory [12], which is not in accordance with the experiment, as
shown in Fig. 7.6. This is unsurprising, since this method is a rather strong
approximation, completely disregarding fluctuations in phase and amplitude.
However, there is a significantly more advanced mean field approach, which
adds variations to the gap equation, accounting for fluctuations in amplitude
and phase [41]. It is intriguing that this approach yields the same result as the
simple mean field approach, namely vs/vF = 1/

√
2. Clearly, even advanced

mean field techniques cannot describe our data1.

1Even though the stated theory result is valid at zero temperature, no noticeable change for
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Figure 7.6.: Comparison of sound velocities obtained via different experimen-
tal and theoretical methods in the BEC-BCS crossover. This figure shows the
main result of this chapter. The results which we obtained via density wave
propagation are shown as the cyan circles. The red circles show preliminary
results from the measured equation of state. The two different methods are
both in very good agreement with the sound we derived from a fit to numeri-
cal QMC equation of state results (solid grey line) [40,165]. In the BEC regime,
we show the sound velocity which results from a perturbative equation of
state calculation for composite bosons (solid blue line) [140]. In the opposite
limit, we derive the speed of sound from the equation of state calculated
within FL theory (solid orange line) [163]. The green open diamonds depict
results from a non-perturbative approach [186]. The dashed green line is a be-
yond mean field result accounting for phase and amplitude fluctuations [41].
See Ch. 6 for more information about the presented theory. The velvet square
depicts the sound velocity prediction using the Bertsch parameter ξB for a
unitary 2D Fermi gas.
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The best agreement with the experiment is obtained by the speed of sound,
which is derived from the fit to the equation of state from numerical QMC
simulations (solid grey line) [40, 165]. The fact that the QMC simulation is
a zero temperature method suggests that the experimental data is not in-
fluenced by pronounced finite temperature effects. Although, temperature
effects might explain the noticeable residual deviations in the BEC regime.
On the BEC side, the interparticle attraction is strong and the gas is char-

acterized by weakly interacting dimers. Going beyond MFT, perturbation
methods yields the equation of state for composite bosons [140]. The derived
sound velocities (solid blue line) are systematically smaller than the exper-
imental results. It is worth noting that the equation of state for composite
bosons gives reasonable results up to ln(kFa2D) = 0, where the agreement
with our data seems to improve.

On the BCS side, we derive the speed of sound from the equation of state
calculated within FL theory (solid orange line) [163]. Towards the resonance,
the predicted speed of sound diverges. However, the results from the FL
equation of state agrees well with the QMC results. Note that in the BCS
limit, where ln(kFa2D)→∞, the MFT and Fermi liquid result match.

Along the crossover, we furthermore obtain a reasonable agreement from
the comparison to a non-perturbative path-integral formalism (green open
diamonds) [186]. Interestingly, the predicted speed of sound seems to match
with the one from the equation of state for composite Bosons and from Fermi
liquid theory towards ln(kFa2D)→ 0−,+.
In case of unitary interaction, the sound velocity at zero temperature in

a d-dimensional Fermi gas is predicted to be vs/vF =
√
ξ/d, where ξ is the

Bertsch parameter ξB = 0.37measured in 3D [51,54]. The result (velvet square)
is in good agreement with the measurements.

7.3.3. Model

The preceding discussion requires us to understand the speed of sound as
a thermodynamic quantity. In this section, we introduce the hydrodynamic
two-fluid model from L. Landau and L. Tisza [187, 188] and develop a way to
derive the sound velocity from the equations of state which are presented in
Ch. 6.

The two-fluid model yields a convenient description of the speed of sound
in 2D. It is based on a normal component, which behaves like an ordinary
fluid, and a superfluid component with zero viscosity and zero entropy, both
co-existing in one liquid. At zero temperature, the entire liquid is superfluid
and above a certain critical temperature, the entire liquid is in the normal
state. The total density of the liquid is the sum of the independent densities
of superfluid and normal component ρ= ρs+ρn.

any temperature TBKT > T > 0 was found numerically [41].
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To apply the two-fluid model, the thermal component has to be in the
collisional limit where the gas constituents collide frequently so that hydro-
dynamics apply1. In a Fermi liquid, the collision time τ ∝ T2 strongly de-
creases at low temperatures T and the hydrodynamic limit is only reached
for modes of low frequency ω such that τω� 1 [189]. The existence of a
trapping potential gives rise to a lower limit to the sound mode frequency,
i. e. the hydrodynamic regime is not necessarily achieved. However, it was
shown that the assumption of the collisional limit holds in a wide range of
temperature and interaction [145, 190–192]. In a strongly interacting Fermi
gas, the scattering length is much larger than the interparticle spacing, thus
collisions are generally more effective and the thermal component easily en-
ters the hydrodynamic regime. Far on the BEC side, the weakly interacting
thermal component of the BEC is very dilute and the assumption of being in
the collisional regime becomes doubtful.
The two-fluid hydrodynamic equations of motion describe the systems

dynamics of both, Bose or Fermi gases, in three and two dimensions [184,189]

∂ρ

∂t
+∇j= 0, ∂s

∂t
+∇(svn) = 0, (7.2)

m
∂vn
∂t

=−∇(µ+Vext),
∂j
∂t

=−∇P−n∇Vext. (7.3)

With the entropy density s, the current density j = ρsvs + ρnvn, the mass
density ρ, and the chemical potential µ. The trapping potential is denoted by
Vext and s= S/N is the entropy density. From Eq. 7.2 and 7.3 we can predict
the existence of two sound velocities. Assuming a tight confinement in the
vertical direction without additional confinement in the 2D plane, the two
velocities are given by the two non-negative solutions of

u4−
T

m

(
1

nTκS
+
s̄2ns

c̄Vnn

)
u2+

T2s̄2ns

m2c̄VnnnTκT
= 0. (7.4)

Here, the 2D thermodynamic quantities are the specific heat at constant vol-
ume c̄V , the entropy density s̄, the superfluid and normal densities ns and nn,
and the isothermal and adiabatic compressibility κT and κS, respectively [184].
The two solutions of Eq. 7.4 are respectively the first and second sound u1
and u2, where u1 > u2.

In general, the first speed of sound u1 denotes a density modulation where
superfluid and normal component are in phase, see Fig. 7.7, and is essentially
an iso-entropic wave. The second sound u2 corresponds to a local entropy or
temperature perturbationmanifested as an isobaricwavewith the normal and
superfluid components oscillating with opposite phase. At zero temperature
1Hydrodynamic behaviour is characterized by a mean free path of the atoms smaller than
the systems size. Then, the properties of the gas are strongly influenced by inter-particle
collisions.
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Figure 7.7.: Two-fluid description of first and second sound. The symbols in
the lower pictures depict schematically the normal and superfluid density
component. The total density is represented by the sum along a column. a)
In case of first sound, the excitation is a pressure modulation ∆P associated
with a density wave. The two components move in phase with each other. b)
Second sound describes fluctuations in entropy ∆S, driven by temperature
changes in the normal fluid. Normal and superfluid component are out of
phase, such that the density remains constant. The figure is adapted from
Ref. [193]

second sound does not exist and as it depends on the superfluid fraction, u2
vanishes above the critical temperature. First sound exists at zero temperature,
in both, the BEC and BCS regime.
Finite temperatures cause a coupling between density and temperature

oscillations, i. e. the two sound velocities mix. In general, this coupling can be
described in terms of the Landau-Placzek ratio (c̄P− c̄V)/c̄V , where c̄P and
c̄V are the heat capacities at constant pressure and density. To simplify the
discussion, we assume the temperature to be sufficiently low T → 0. Then,
the entropy carrying thermal component vanishes and the heat capacities
become equal, c̄P = c̄V . Therefore, the Landau-Placzek ratio equals zero and
the coupling between first and second sound is insignificant.
According to Landaus hydrodynamic equations, the first sound u1 = vs

is then well represented by the isothermal sound defined by the isothermal
compressibility κT , as

v2s =
1

mn

1

κT
=
1

m

∂P

∂ρ

∣∣∣∣
T

(7.5)

w
n

m

∂µ

∂n

∣∣∣∣
T

. (7.6)

Equation 7.6 connects the speed of sound vs to the chemical potential µ. It is
valid at zero and finite temperature for a trapped 2D system [41]. Below, we
use Eq. 7.6 to derive the speed of sound from the theoretical 2D equation of
state predictions, see Ch. 6.
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Mean Field Theory The speed of sound as a fundamental thermodynamic
phenomenon is directly connected to the equation of state. Yet again, it is
instructive to begin with the appealingly simple mean field picture at zero
temperature [155]. In Sec. 6.4.2, we found µ= EF−

EB
2 for the chemical poten-

tial within 2D MFT. This is valid in the entire crossover. With this chemical
potential, the speed of sound is

v2s =
n

m

∂

∂n

(
EF−

EB
2

)
. (7.7)

We express the speed of sound in terms of the Fermi velocity vF, using the
Fermi energy EF =  h2πn/m, and arrive at

vs

vF
=

1√
2
. (7.8)

This is the result we know from the discussion in Sec. 7.3.2, which is identical
to the one obtained within the beyond MFT formalism taking phase and
amplitude fluctuations into account [41].
Note that the simple MFT substantially overestimated the effective dimer-

dimer interaction in the BEC regime, see Ch. 6. The effective chemical poten-
tial only describes the gas correctly in the limit of a non-interacting Fermi
gas1. We naïvely try to find a statement about the BEC regime by introducing
a boson chemical potential µd = 2EF = 2µ+EB [113]. This, however, produces
the same result 1/

√
2, i. e. we will not improve our description on the grounds

of MFT.

Equation of State We now turn to the speed of sound derivation frommore
accurate crossover theories including higher order perturbative expansions
andQMC quantum simulations. The corresponding equations of state, which
are discussed in Ch. 6, can generally be expressed in the form

E/N− |EB|/2= ε(x)EFG, (7.9)

which is the energy per particle, or energy density E/N. Here, the two-body
bound state energy |EB|/2 is again subtracted to expose the many-body cor-
rections. EFG is the energy of a free non-interacting Fermi gas.

Wewrite ε(x) as a function of the interaction parameter ln(kFa2D). It follows
for the chemical potential

µ(x) =
∂ε(x)

∂N
NEFG+ε(x)N

∂EFG
∂N

+ε(x)EFG (7.10)

=
∂ε(x)

∂x

NEFG
2N

+2ε(x)EEG. (7.11)

1The result for a non-interacting 3D Fermi gas can be identifiedwith the Bogoliubov-Anderson
mode similar to the sound velocity v3Ds /v3DF = 1/

√
3.

148



7.4. EQUATION OF STATE

The first term in Eq. 7.10 is deduced by expanding the partial derivation ∂
∂N

and taking the first derivative ∂
∂x ln(kFa2D). To determine the speed of sound,

we use Eq. 7.6 and the thermodynamic relation µ = ∂E
∂N . We formulate the

total energy E bymultiplying ε(x)with EFG and the total atom numberN. This
finally gives an expression to derive the speed of sound vs from the equation
of state ε(x)

v2s =
v2F
8

(
1

2

∂2

∂x2
ε(x)+3

∂

∂x
ε(x)+4ε(x)

)
. (7.12)

With Eq. 7.12, we calculated all theoretical speeds of sound which are shown
in Fig. 7.6.
To derive the sound velocity from the experimental pressure equation of

state, we follow a similar approach. As it is shown in Sec. 7.4, we fit the
normalized pressure PT/P0 with a typically used arctan-function, where the
pressure is a function of the interaction parameter x = ln(kFa2D). We thus
obtain an analytical representation η(x) of our pressure equation of state.
Using the thermodynamic relation in Eq. 7.5, we get

v2s = v
2
F

(
1

4

∂

∂x
η(x)+

1

2
η(x)

)
. (7.13)

7.4. Equation of State

Understanding the thermodynamics of 2D Fermi gases along the BEC-BCS
crossover is particularly challenging, see Ch. 6. Despite the complexity of
these systems, all microscopic and macroscopic properties are encapsulated
within a single thermodynamic equation of state, yielding access to any ther-
modynamic quantity under a given condition. Due to the preliminary status
of our results on the equation of state, this section is kept deliberately short.

7.4.1. Experimental Procedure

One strategy to obtain the equation of state experimentally is to analyse in-situ
absorption images of the atomic cloud [194]. This gives direct access to the
2D density distribution n(r). With these pictures, we are able to determine,
e. g. the isothermal pressure P(V)|T = PT (V) and the compressibility κ(V)|T =

κT (V) without requiring knowledge of the gas temperature or the chemical
potential.

The 2D clouds are prepared as reported in Sec. 7.3. We acquire the mean of
ten absorption images of identical 2D gases at a certain value of the interaction
parameter ln(kFa2D) in the BEC-BCS crossover.

Towards the BCS regime, the Fermi pressure increases, and the lateral
spread of the 2D clouds becomes larger and eventually exceeds the field
of view of the microscope objective. To avoid losing important information,
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the microscope objective is positioned such that a lateral shift of the objective
of about 100µm enables us to take two different sets of pictures. Each con-
tains the central region and adjacent low-density wings. After averaging, the
images are combined to obtain a 2D density profile n(r).

7.4.2. Pressure and Compressibility

In the next step, we deduce the local density n(V) by calculating the shape of
the harmonic trapping potential V(r) = m

2 ωrr2. The lateral trap frequencies
ωx/2π = 27Hz and ωx/2π = 29Hz are determined experimentally via para-
metric heating. Both, the potential V(r) and local density n(V) are contained
in a n×nmatrix, from which we obtain a vector representation, where each
density value is assigned to a potential strength.

Pressure Numerical integration of n(V) over the potential yields the local
isothermal pressure

PT (V) =

∫∞
V

n(Ṽ)dṼ. (7.14)

In Fig. 7.8 a, we show the resulting pressure PT (V)/P0, normalized by the
pressure per spin state P0 = π h2n2/m of an ideal 2D Fermi gas of the same
local density, as a function of the trapping potential. The two curves depict
data for two different interaction parameters ln(kFa2D)≈−1.36 (red circles)
and ln(kFa2D) ≈ 1.32 (cyan circles). The former corresponds to a gas far in
the BEC regime, whereas the latter depicts a cloud on the BCS side of the
resonance.
At the centre of the cloud, where the potential energy is smallest and the

density is highest, the normalized pressure of the Bose gas is 0.16P/P0. Going
outwards, as the gas is more dilute, the pressure tends to the value of the
ideal Fermi gas PT (V) = P0. In the opposite case of a fermionic gas of loosely
bound Cooper pairs, the central pressure is higher 0.51P/P0, and changes
only gradually over different potential depths.
The central pressure along the BEC-BCS crossover is shown in Fig. 7.8

b. It rises monotonously towards the BCS side as the fermionic character
of the gas becomes dominant. The green line is a fit to the data, using the
formula given in Eq. 6.67 with the additional boundary condition that the fit
approaches the pressure of a non-interacting Fermi gas in the corresponding
limit ln(kFa2D)→∞. We compare our results to the pressure equation of
state which we derived from the numerical QMC data (grey line), and find
excellent agreement with the experiment. The prediction from the composite
boson equation of state is depicts as the blue line, see Sec. 6.

With the thermodynamic relation v2s = ∂P
∂ρ

∣∣∣
T
(Eq. 7.5), we extract the isother-

mal speed of sound and find excellent agreement with the results from the
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Figure 7.8.: Preliminary results on the 2D equation of state in the BEC-BCS
crossover. a) The cyan circles depict the normalized pressure as a function of
the trapping potential for a 2D cloud in the BCS regime. The dimensionless in-
teraction parameter is ln(kFa2D) = 1.32. The position of the smallest potential
energy is at the centre of the cloud, i. e. the region of highest density is on the
l. h. s. of the plot. The red circles show the pressure in the BEC regime, where
the interaction parameter is ln(kFa2D) = −1.36. b) The results of the pressure
equation of state in the crossover are depicted as the green circles. The green
line shows a fit to the data. The obtained pressure equation of state from
the fit to the numerical QMC results is shown as the grey line. Additionally,
the blue line depicts the prediction we obtain from the equation of state for
composite bosons. c) The normalized compressibility of the 2D cloud in the
BEC and BCS regime.
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7. EXPLORING THE THERMODYNAMICS OF 2D FERMI GASES

response experiments, as shown in Sec. 7.3.2. Note that the calculation of
the sound velocity from the QMC pressure equation of state and from the
corresponding energy density equation of state yield the same result, and
thus validates the sound derivation from the experimental equation of state.

In addition to the local pressure, the density n(V) gives access to the local
compressibility of the gas

κT (V) =
1

n

∂n(Ṽ)

∂Ṽ
, (7.15)

which describes the relative change in density in respect to a change in pres-
sure.

In Fig. 7.8 c, we show the normalized isothermal compressibility κT (V)/κ0,
where κ0 =m/(2π h2n2) is the compressibility of an ideal Fermi gas of the
same local density. The curves depict the same two values of the interaction
parameter as in the case of the normalized pressure. The normalized com-
pressibility the gas of composite bosons (red circles) is significantly higher
than in the interacting gas on the BCS side (cyan circles), where, as expected,
the compressibility is higher than that of an ideal Fermi gas without interac-
tions.

The equation of state is subject to ongoing investigations, and in futurework
we may extend the studies to temperature dependent properties as the onset
of superfluidity. In this regard, precise knowledge of the gas temperature is of
great importance. Therefore, thermometry of 2D Fermi gases is in the focus
of the following section.

7.5. Thermometry

Measuring the temperature of a strongly interacting Fermi gas is notoriously
difficult since the corresponding density profile is not known. One method
is to adiabatically transform the gas to a weakly interacting Fermi gas by a
quick magnetic field ramp deep into the BEC regime [195]. In both cases, one
subsequently fits the density profile of a non-interacting gas to the thermal
wings of the cloud to access the gas temperature.

Here,wemeasure the temperature of 2DFermi gases of arbitrary interaction
by combining the iso-entropic formation of deeply bound dimers with a short
TOF. During the TOF, the gas expands in aweakharmonic trap,which enables
us to probe the initial momentum distribution. As a consequence, the fraction
of thermal atoms is more pronounced and hence easier to identify in the
momentum space representation. Inter-particle interactions are suddenly
switched off by the rapid expansion in the beforehand strongly confinement
direction. Therefore, the momentum distribution is not altered and resembles
the one of the trapped gas. Note that the method presented here was also
realized in Heidelberg very recently [196] and used to determine the phase
diagram of a strongly interacting Fermi gas [197].
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Figure 7.9.: Reduction of the cloud expansion during TOF. a) Due to the
strong confinement of the 1D optical lattice in axial direction, the correspond-
ing cloudwidth rapidly increases during TOF. Applying a confinement pulse
by switching on the red-detuned squeeze dipole trap for 200µs with 100mW
leads to a significant reduction of the cloud width (red circles). The cyan cir-
cles depict the axial width after free expansion. b) Corresponding absorption
images, taken from the side after after 0.5ms and 2.0ms, respectively. The
measurement is carried out at a magnetic field strength of 711G.

7.5.1. Experimental Procedure

First, a 2D cloud is prepared with a certain value of the interaction parameter
ln(kFa2D). To perform the momentum space mapping, we adiabatically ramp
themagnetic field to a field strengthof 711G to form amoreweakly interacting
gas consisting of tightly bound molecules.

Then, the 1D optical lattice is immediately switched off. The strong vertical
confinement with a trap frequency of 25 kHz causes the gas to expand rapidly
and to lower its density abruptly. Therefore, interaction effects are negligible
during the TOF, so that the atoms ballistically expand in the residual weak
harmonic trap which is generated by the radial symmetric magnetic field.
Since the atoms trajectories are according to their initial momenta, the motion
during the TOF corresponds to a translation from the position to the mo-
mentum space. After exactly one quarter of the time period of the remaining
magnetic potential t1/4 = 1/4(ωtrap/2π) ≈ 7ms, the spatial position of each
particle represents its initial momentum.

There is a drawback of the rapid decrease in density during the applied
TOF. The obtained imaging signal decreases as the atoms quickly leave the
short depth-of-field of the high NA microscope objective. We counteract this
by limiting the vertical cloud expansion by switching on an additional con-
finement only a moment after the release from the optical lattice and only for
a short amount of time.
This additional confinement is generated by the optical squeeze dipole

trap, which is pulsed on with a power of 100mW for 200µs after a ballistic
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7. EXPLORING THE THERMODYNAMICS OF 2D FERMI GASES

expansion for 250µs. This short pulse slows down the atoms in the vertical
direction and increases the imaging signal significantly. Figure 7.9 shows a
comparison of the axial cloud extent with and without the confinement pulse
applied. Due to the insignificant influence of the low powered squeeze dipole
trap on the radial confinement, the ballistic expansion is not expected to be
perturbed.

Finally, after a time t1/4 we take an absorption image of the cloud. The
spatial distribution now represents the mapped in-situ momentum distribu-
tion. The low momentum fraction collapses into the centre and gives rise to a
clearly visible bimodal distribution with pronounced thermal wings.

7.5.2. Results

To access the temperature, we fit the momentum distribution of an ideal Bose
gas ∝ exp(−p2/(2mkBT)) to the thermal fraction of the momentum profile.
To obtain reliable results, it is important to evaluate the exact extent of the
thermal fraction. This is done by minimizing the Gaussian fit uncertainty in
dependence of the interval of the outer cloud region which is modelled by
the fit function. If the fitted region includes a noticeable non-thermal fraction,
the goodness of the fit decreases. Therefore, we are able to determine the
optimal fit radii1.
The resulting cloud temperatures are very consistent along the crossover.

The absolute values range from (18 to 22)nK corresponding to 6% to 8% of
the Fermi temperature TF.

7.6. Summary

The presented results provide precise information about the thermodynam-
ics of 2D Fermi gases in the regime crossover and help to establish a better
understanding where reliable predictions are rare. The main part of this
chapter focussed on the speed of sound results in 2D, which are in very good
agreement with the sound velocity we derived from recent numerical QMC
calculations, while perturbation theories are in qualitative agreement with
our data and MFT cannot reproduce the experiment. We furthermore mea-
sured the pressure equation of state in the crossover and found the results
to be in very good agreement with corresponding results from simulations.
The speed of sound we derived from our equation of state data and the re-
sults from the direct response experiments are in very good agreement. In
addition, we presented preliminary studies of the temperature of 2D Fermi
gases and the determination of the quasi-condensate fraction in the BEC-BCS
crossover.

1More details can be found in the Master’s thesis of N. Luick [198].
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8. Conclusion and Perspectives

Over the years, the investigation of ultracold atomic Fermi gases developed a
new level of scientific rigor. Experiments became more and more advanced
and reached the technical accuracy for precise studies of quantum gases on a
fundamental level. However, this does not necessarily imply that there are
less questions left to be addressed. On the contrary, we are nowadays faced
with quite the opposite: with studies of increasing accuracy, new surprising
effects are found [45,199].

In this work, we have presented an apparatus for high-resolution studies of
ultracold Fermi gases. The experimental setup incorporates a high precision
optical system for manipulation and imaging of atomic clouds. The broad
magnetic Feshbach resonance of 6Li enabled us to precisely map out the criti-
cal velocity vc in the entire crossover from fermionic to bosonic superfluidity,
as presented in Ch. 5. We created a small attractive potential and dragged it
along the atomic cloud to demonstrate the breakdown of superfluidity, for
the first time in close analogy to Landau’s Gedankenexperiment. Numerical
simulations in the BEC regime validated the experiment and the high preci-
sion measurements made it possible to isolate relevant effects reducing vc.
We furthermore measured the speed of sound in the BEC-BCS crossover and
compared it to the critical velocity.

Being directly connected to the dynamics of amany-body system, the sound
velocity serves as a benchmark for the equation of state, which is a power-
ful tool to describe the equilibrium properties of a physical system. Here,
quasi-2D Fermi gases are of particular interest. As a direct and profound
consequence of the reduced dimensionality, the underlying physics change
dramatically. To unravel the open questions it is desirable to perform high
precision studies of local properties of 2D systems. In this regard, it is of
great importance that we are able to realize isolated single layer clouds under
strong confinement deep in the 2D regime. In Ch. 7, we presented the first
measurements of the speed of sound in quasi-2D Fermi gases in the BEC-BCS
crossover. To benchmark the inconsistent theory predictions for the 2D equa-
tion of state, we calculated the corresponding sound velocities and compared
them to our measurement. We found very good agreement with recent nu-
merical calculations and were able to invalidate a sophisticated mean field
approach. Furthermore, preliminary results on the 2D pressure equation of
state were presented. As a crosscheck, we derived the speed of sound from
the measured equation of state and found it to be in excellent agreement with
the results of the direct method.
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The results presented in this work provide valuable input to the devel-
opment of a comprehensive understanding of the 2D thermodynamics in
the BEC-BCS crossover. Where reliable quantitative theories are still missing,
quantum gas experiments are able to pioneer the work to bring forth both,
theory and experiment. In conclusion, 2D Fermi gases still offer a vast range
for possible studies, and we like to mention selected topics which appear the
most interesting to us in the following.

Role of Interactions in 2D Recent measurements of dynamical properties
appeared to observe that the effect of interactions is much weaker than the-
oretically predicted. Interactions in 2D gases break the otherwise expected
scaling symmetry [200,201]. One consequence of this broken symmetry is the
damping of the breathing mode. Surprisingly, this could not be observed in
the experiment [45], and thus indicates only a very weak role of interactions1.
In contrast, recent spin diffusivity measurements are in accordance with the
theoretical predictions [44].

Our apparatusmight allowus to probe the spin-diffusivity and the viscosity
with different methods, possibly providing new insights into this issue.

Imbalanced 2D Fermi Gases In this work, we emphasized the lack of un-
derstanding of quasi-2D Fermi gases, and yet, we have only considered the
spin-balanced case. The imbalanced case, featuring a minority and a majority
spin species, gives rise to exotic phases. One example is the superfluid FFLO
phase, which shows a deformed Fermi surface due to Cooper pairs with finite
momenta [42, 43].
Experimental verification the 2D FFLO superfluid is still missing. So far,

it has only been observed in condensed matter bulk superconductors [203].
Due to the non-vanishing momenta of the Cooper pairs, the FFLO phase
should display density modulations, which should be resolvable with our
imaging system. The preparation of highly imbalanced quasi-2D Fermi gases
is already possible, as shown in Fig. 8.1.

Mesoscopic 2D Systems We aim to realize mesoscopic systems by imprint-
ing local potentials onto a quasi-2D Fermi gas, creating a small, isolated sys-
tem of intermediate length-scale. Our experimental setup already provides
us with different methods to create arbitrary potential structures.
For instance, using a 2D acousto-optic deflector (AOD) we are in princi-

ple able to prepare a ring of attractive potential minima. Ideally, we would
populate each minimum with a single atom of alternating spin. The high
resolution microscope should enable us to remove one of the atoms in the
1D spin chain. After some evolution of the system over time, the resulting
1In the same experiment, the quadrupole mode was observed to be strongly damped, which
could be later explained by anisotropy of the trap and temperature effects [202].
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Figure 8.1.: Averaged density profile of an imbalanced 2D Fermi gas. The red
circles depict the majority hyperfine state species, the cyan circles the minor-
ity species. The ratio is roughly 70 : 30 and the total atom number is 14000
atoms. The solid lines are fit curves yielding 1/e2 radii of 88µm and 70µm
for the majority and minority, respectively. Identical clouds are prepared at a
magnetic field strength of 760G and both species are imaged sequentially.

hole and the spin excitation should have separated and we could observe the
phenomenon of spin-charge separation in real space for the first time [32].

With a similar technique, we could realize smaller Hubbard type systems
ranging from plaquettes to some 10 by 10 sites. These can be understood as
building blocks for quantum simulation of the 2D Fermi Hubbard model
[204]. It is expected to describe fundamental aspects of high-temperature
superconductors (HTSC) [16,19,205], whose existence has been motivating
research for decades, and yet, thorough understanding of the underlying
processes is still lacking.

The repulsive side of the Hubbard model phase diagram gives rise to the
anti-ferromagnet (AFM) phase. So far, experiments were unable to establish
the AFM phase ordering. This is mainly due to the major challenge currently
to reach low enough temperatures in experiment. This particularly holds for
quasi-2D gases, where the strong strong confinement is typically provided
by red detuned optical lattices. The inherent trapping in the radial directions
makes evaporation in 2D difficult. In this regard, our blue-detuned optical
lattice should enable us to achieve the required temperature regime.

BKT Phase Transition The BKT phase transition has only been successfully
observed in quasi-2D Bose gases [206]. Yet, local properties are beyond the
scope of the applied method, since it probes the self-interference of the entire
superfluid. A different way to investigate the BKT transition is to study the
correlations in the systems, as the algebraic decay of LRO is characteristic
for the BKT superfluid. Furthermore, theory predicts that the corresponding
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Figure 8.2.: Free expansion as a probe of phase correlations. A 2D Fermi
gas consisting of 6Li dimers is released from the tight axial confinement and
expands in a shallow magnetic trap. After short expansion times density
ripples develop. They give access to the initial in-situ phase correlations.

scaling exponent is directly connected to the superfluid density.
Only recently, we have realized the first spatially resolved studies of phase

correlations in 2D Fermi gases. This fundamental quantity is the ideal tool to
locally resolve the BKT phase transition for the first time.

We probe the phase correlations after a short TOF of a 2D cloud on the BEC
side of the Feshbach resonance. During the expansion, fluctuations transform
into density fluctuations, as shown in Fig. 8.2. The spatial correlation analysis
allows us to locally access phase fluctuations in areas of specific density.
In high density regions, we observe evidence for algebraic decay of phase
correlations predicted for the superfluid phase in 2D, whereas towards outer
regions of low density there is evidence for the phase transition where phase
correlations decay on much shorter length scales.
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NSR Nozières and Schmitt-Rink

OD optical density

ODLRO off-diagonal long range order

PD photo-diode

PI proportional-integral

PDH Pound-Drever Hall

QPD quadrant photodiode

QMC Quantum Monte Carlo

rf radio-frequency

SN serial number

TA tapered amplifier

TOF time of flight

TTL transistor-transistor logic

UHV ultra-high vacuum

1D one-dimensional

2D two-dimensional

3D three-dimensional
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