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Abstract

This thesis reports on experiments studying the coherence properties
of strongly interacting homogeneous gases of bosonic 6Li dimers con-
fined to two dimensions. The main results of these studies are first
measurements of themomentumdistribution and the density-density
correlation function after time of flight.

The momentum distribution is measured via a matter wave focus-
ing technique where the momentum space is mapped to real space
by letting the gas expand into a harmonic potential. We observe a
fast depopulation of the low-momentum modes for prolonged hold
times in an optical dipole trap and extract the temperature from the
high-momentum modes. The depopulation occurs with only minor
increase in measured temperature, indicating that a non-equilibrium
descriptionmight be required. Additionally, wepresent how the phase
correlation function can be obtained from themomentumdistribution
and discuss the influence of finite size effects.

Properties of the phase correlation function are inferred from the
measurement of the density-density correlation function after short
time of flight. During expansion, the in situ phase fluctuations of the
gas transform into density fluctuations and thus produce an observ-
able density pattern. By fitting the extracted density-density correla-
tion function with theoretical predictions, the scaling exponent of the
phase correlation function can be obtained if a power law decay is as-
sumed. We measure the scaling exponent for extended hold time in
an optical dipole trap and observe a downward trend. However this
trend of the scaling exponent is inconsistent with the behavior of the
high-momentum modes, which indicate constant or slightly increas-
ing temperature. We discuss the numerical analysis and possible is-
sues in detail and arrive at the conclusion that non-equilibrium effects
likely render the employed theoretical framework inadequate.





Zusammenfassung

Diese Arbeit beschreibt experimentelle Untersuchung der Kohärenz-
eigenschaften von starkwechselwirkenden, homogenenGasen aus bo-
sonischen 6Li Dimeren, deren Kinematik auf zwei Dimensionen be-
schränkt ist. Das Hauptresultat der Untersuchung stellt die erste Mes-
sung der Impulsverteilung und der Dichte-Dichte Korrelationsfunk-
tion nach kurzer freier Expansion dar.

Die Impulsverteilung wird mithilfe einer Materienwellenfokussie-
rung gemessen, wobei eine Abbildung vom Impuls- in den Ortsraum
während der freien Expansion in einem harmonischen Potential statt-
findet.Wir beobachten eine schnelle Abnahme der Anzahl derModen
mit niedrigem Impuls, wenn das Gas längere Zeit in einer optischen
Dipolfalle gehalten wird und bestimmen die Temperatur aus der Ver-
teilung der höheren Impulse. Wir beobachten eine Abnahme der Mo-
den mit niedrigem Impuls ohne signifikante Steigerung der Tempera-
tur. Dies deutet darauf hin, dass das System sich nicht im thermischen
Gleichgewicht befindet. Außerdem wird dargelegt, wie aus der Im-
pulsverteilung die Korrelationsfunktion der Phase bestimmt werden
kann und welchen Einfluss die endliche Größe der Probe auf diese
hat.

Die Eigenschaften der Korrelationsfunktion der Phase werden aus
der Messung der Dichte-Dichte Korrelationsfunktion nach kurzer Ex-
pansionszeit abgeleitet. Die in situ Phasenfluktuationen werden wäh-
rend der freien Expansion in Dichtefluktuationen umgewandelt, wo-
durch ein beobachtbaresDichtemuster entsteht. Der Exponent derKor-
relationsfunktion kann unter der Annahme, dass sie einem Potenz-
gesetz genügt, durch einen Fit mit einer theoretischen Vorhersage an
dieDichte-DichteKorrelationsfunktion bestimmtwerden.Wir bestim-
men den Exponenten in Abhängigkeit der Haltezeit in einer optischen
Dipolfalle und beobachten einen fallenden Trend. Dieses Ergebnis ist
jedoch inkompatibel mit dem Verhalten der Verteilung der höheren
Impulse, welches auf eine konstante oder leicht steigende Temperatur
hindeutet. Wir diskutieren die zu diesem Ergebnis führende nume-
rische Analyse und mögliche Einwände eingehend und kommen zu
dem Resultat, dass höchstwahrscheinlich Nichtgleichgewichtseffek-
te die Anwendbarkeit der zugrundeliegenden theoretischen Beschrei-
bung limitieren.
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1 I N T RODUC T I ON

We spend our lives in three spatial dimensions and our way of think-
ing is intimately connected to this dimensionality which we take for
granted. In our everyday liveswe hardly ever encounter objects which
can be considered to be of lower dimensionality, since even for objects
as thin as aluminum foil, the electrons can still move freely in the third
direction.

However, physical systems exist, where the motion in the third di-
rection is frozen out and which exhibit a very different behavior than
their 3D counterparts. A few hundred atomic layers of liquid he-
lium adsorbed on a surface represent such a two-dimensional system:
When the temperature is lowered below 1.22K, the film turns super-
fluid, with a sudden jump in superfluid density1 not present in bulk 1 D. Bishop and J. Reppy: Phys. Rev.

Lett., vol. 40, (1978)4He. Muchmore common, in fact ubiquitous, are two-dimensional elec-
tron gases (2DEGs) which can be found in every semiconductor de-
vice that includes a MOSFET∗. Another prominent man-made two- ∗MOSFET: metal-oxide-semiconductor

field-effect transistor. A 2DEG is
present when in inversion mode.

dimensional material, promising great technological potential, is gra-
phene, a single layer of carbon atoms forming a hexagonal grid. This
material has many astonishing properties not present in its bulk coun-
terpart, found e. g. in the common pencil.

Over 80 years ago, R. Peierls already realized2 that the dimension- 2 R. Peierls: Helv. Phys. Acta, vol. 7,
(1934)ality of a system has a profound impact on its properties. He argued

that the high degree of order in crystals is not at all trivial, since in
lower dimensions perturbations could add up and destroy the sym-
metry over large distances. Thirty years later,P. Hohenberg3,N. Mer- 3 P. C. Hohenberg: Phys. Rev., vol. 158,

(1967)min and H. Wagner4 pointed out that in low dimensional systems of
4 N. D. Mermin and H. Wagner: Phys.
Rev. Lett., vol. 17, (1966)

infinite continuous symmetry the existence of true long-range order,
typically intimately associated with superfluidity, is precluded. This
is due to the fact in addition to the movement of the particles being re-
stricted to two dimensions, the density of states does not vanish when
approaching zero energy, in contrast to 3D systems. Hence, even for
arbitrarily small finite temperature there exist very low energy and
thus long wavelength excitations that destroy true long-range order,
the property associatedwithmany phase transitions in 3D, such as the
freezing of water or Bose-Einstein condensation. A BEC† is a remark- †BEC: Bose-Einstein condensate
able superfluid state driven purely by quantum statistics in which the
wave functions of many indistinguishable particles begin to overlap
below a critical temperature to form a single macroscopic wave func-
tion.

However, V. Berezinskii5, J. Kosterlitz and D. Thouless6 realized 5 V. L. Berezinskii: J. Exp. Theor. Phys.,
vol. 32, (1971)

6 J. M. Kosterlitz and D. J. Thouless: J.
Phys. C, vol. 6, (1973)

that despite the lack of true long-range order, interacting 2D systems
can nevertheless undergo a transition to a superfluid state. This tran-
sition is of a novel type: Above the transition, free vortices proliferate,
whereas below the transition, vortices of opposite circulation bind into

http://prl.aps.org/abstract/PRL/v40/i26/p1727%7B%5C_%7D1
http://dx.doi.org/10.1103/PhysRev.158.383
http://dx.doi.org/10.1103/PhysRevLett.17.1133
http://www.jetp.ac.ru/cgi-bin/dn/e%7B%5C_%7D032%7B%5C_%7D03%7B%5C_%7D0493.pdf%20http://adsabs.harvard.edu/abs/1971JETP...32..493B
http://dx.doi.org/10.1088/0022-3719/6/7/010
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pairs, hence effectively screening each other in the far-field. Yet, the
remaining phononic excitations are still sufficient to destroy true long-
range order but not superfluidity. For their theoretical discoveries of
this topological phase of matter, J. Kosterlitz and D. Thouless were
awarded the Nobel Prize in physics in 2016.

The peculiar phase transition into a regime of quasi-long-range or-
der first came into reachwith experiments on thin films of helium1 and 1 D. Bishop and J. Reppy: Phys. Rev.

Lett., vol. 40, (1978)over time, this behavior has been observed in a wide range of other
physical systems ranging from 2DEGs7, exciton-polariton systems8–11 7 P. Minnhagen: Rev. Mod. Phys., vol. 59,

(1987)

8 D. Snoke: Science, vol. 298, (2002),
9 L. V. Butov: Phys. Status Solidi C,
vol. 238, (2003), 10 J. Kasprzak et al.: Na-
ture, vol. 443, (2006), 11 A. Amo et al.:
Nature Physics, vol. 5, (2009)

to photonic lattices12.

12 G. Situ and J. W. Fleischer: Obser-
vation of all-optical Berezinskii-Krosterlitz-
Thouless crossover in a photonic lattice,
(2012)

With the advent of the first Bose-Einstein condensate in 199513 and

13 M. H. Anderson et al.: Science,
vol. 269, (1995)

degenerate ultracold Fermi gases14–16 shortly after, widely tunable and

14 B. DeMarco and D. S. Jin: Science,
vol. 285, (1999), 15 A. G. Truscott et al.:
Science, vol. 291, (2001), 16 F. Schreck et
al.: Phys. Rev. A, vol. 64, (2001)

very clean quantum mechanical model systems were realized. Here,
unlike e. g. in helium films, the interactions, the density, and the di-
mensionality can be tuned. To freeze out the vertical degree of free-
dom, a strong vertical confinement is needed, making excitations in
this direction energetically inaccessible. A formal definition of this
criterion is to require the energy spacing of the confining trap, ℏω, to
bemuch larger than both the thermal, kBT , and the interaction energy,
gn, i. e. ℏω ≫ kBT and ℏω ≫ gn ∗. This was accomplished for weakly

∗Here kB is the Boltzmann constant, T
the temperature, g the interaction pa-
rameter (tunable) and n the density of
the gas

interacting bosons in 200117,18 and for interacting fermions in 201019.

17 M. Greiner et al.: Phys. Rev. Lett.,
vol. 87, (2001), 18 A. Görlitz et al.: Phys.
Rev. Lett., vol. 87, (2001)

19 K. Martiyanov et al.: Phys. Rev. Lett.,
vol. 105, (2010)

Motivated by the first direct observation of the Kosterlitz-Thouless
(KT) transition showing the proliferation of vortices in ultracold gases
in the group of J. Dalibard20, the phase coherence of ultracold two-

20 Z. Hadzibabic et al.: Nature, vol. 441,
(2006)

dimensional systems were studied in greater detail in that and subse-
quent works21–25, observing evidence for quasi-long-range order20,26.

21 P. Cladé et al.: Phys. Rev. Lett.,
vol. 102, (2009), 22 J.-Y. Choi et al.: Phys.
Rev. Lett., vol. 110, (2013), 23 M. G. Ries
et al.: Phys. Rev. Lett., vol. 114, (2015), 24
V. Schweikhard et al.: Phys. Rev. Lett.,
vol. 99, (2007), 25 T. Plisson et al.: Phys.
Rev. A, vol. 84, (2011)

20 Z. Hadzibabic et al.: Nature, vol. 441,
(2006), 26 P. A. Murthy et al.: Phys. Rev.
Lett., vol. 115, (2015)

The interest stems from the fact that phase coherence is one of the
defining features of the transition. Being of infinite order, the KT tran-
sition is rather peculiar, displaying no discontinuity in any thermo-
dynamic function. However, the phase coherence changes qualita-
tively, from a thermal gas with an exponentially decaying phase cor-
relation function to an algebraically decaying function with no asso-
ciated length scale in the Berezinskii-Kosterlitz-Thouless (BKT) phase.
Superfluid flow is intimately connected with this surprisingly high
degree of coherence and only breaks down when the thermal exci-
tations are strong enough to excite singular vortices, i. e. the “phase
landscape” is changed globally.

This thesis presents measurements of the phase coherence proper-
ties of an ultracold 2D gas of composite bosons with high precision
for the first time in a homogeneous box potential, expanding on prior
work22,27,28. The phase coherence is made accessible in a homodyne

22 J.-Y. Choi et al.: Phys. Rev. Lett.,
vol. 110, (2013), 27 R. Desbuquois: Ther-
mal and superfluid properties of the two-
dimensional Bose gas, (2013), 28 S. Pres:
BKT - phase transition in a strongly inter-
acting 2D Bose gas, (2014)

detection scheme exploiting the self interference of the sample dur-
ing time of flight (ToF) in the far and in the near field of the expansion.
Usingmatter wave focusing26 in the far field, themomentumdistribu-

26 P. A. Murthy et al.: Phys. Rev. Lett.,
vol. 115, (2015)

tion n(k) is measured, from which the phase correlation function g1
is computed. During short ToF, the gas is left to interfere with itself in
the near field, transforming the phase fluctuations partially into den-
sity fluctuations, creating a density amplitude pattern. The density-
density correlation function g2 of this pattern is intimately connected

http://prl.aps.org/abstract/PRL/v40/i26/p1727%7B%5C_%7D1
http://dx.doi.org/https://doi.org/10.1103/RevModPhys.59.1001
http://dx.doi.org/10.1126/science.1078082
http://dx.doi.org/10.1002/pssb.200303150
http://dx.doi.org/10.1038/nature05131
http://dx.doi.org/10.1038/nphys1364
http://dx.doi.org/10.1364/FIO.2012.FW2E.4
http://dx.doi.org/10.1126/science.269.5221.198
http://dx.doi.org/10.1126/science.285.5434.1703
http://dx.doi.org/DOI: 10.1126/science.1059318
http://dx.doi.org/10.1103/PhysRevA.64.011402
http://dx.doi.org/10.1103/PhysRevLett.87.160405
http://dx.doi.org/10.1103/PhysRevLett.87.130402
http://dx.doi.org/10.1103/PhysRevLett.105.030404
http://dx.doi.org/10.1038/nature04851
http://dx.doi.org/10.1103/PhysRevLett.102.170401
http://dx.doi.org/10.1103/PhysRevLett.110.175302
http://dx.doi.org/10.1103/PhysRevLett.114.230401
http://dx.doi.org/10.1103/PhysRevLett.99.030401
http://dx.doi.org/10.1103/PhysRevA.84.061606
http://dx.doi.org/10.1038/nature04851
http://dx.doi.org/10.1103/PhysRevLett.115.010401
http://dx.doi.org/10.1103/PhysRevLett.110.175302
https://tel.archives-ouvertes.fr/tel-00973469/document
http://dx.doi.org/10.1103/PhysRevLett.115.010401
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to the phase correlation function g1 and can hence be used to gain
insights into the latter.

These density ripples are akin to the speckle pattern produced by
the self interference of a laser beam reflected off a rough surface. Here,
varying phase delays are imprinted by reflections off the surface irreg-
ularities, leading to a random intensity pattern when they interfere.
Although the spatial distribution of the noise pattern changes from
realization to realization, the intensity-intensity correlation can be ex-
tracted to gain insights into the phase correlations and thus the sur-
face. In the case of our quantum gas, the correlations of the changing
density noise after time of flight yield information about the phase of
the in situ wave functions.

In order to derive information about the phase distribution, we fit
theoretical predictions for the density-density correlation function g2
with realistic phase correlation functions g1 as input to the experi-
mentally determined density correlations. Due to the large usable
area of the homogeneous gas, a remarkably high data quality can be
reached and hence excellent fits to individual theory curves are ob-
tained. However, the observed trendwhen holding the gas in a dipole
trap for varying time contradicts our expectations for a superfluid gas
being heatedduring the hold time and crossing theKT transition bound-
ary to the normal regime. The assumption that longer hold times lead
to increasing temperature seems plausible since themomentumdistri-
bution shows a clear depopulation of low-momentum modes. Then,
an increase in temperature is expected to be accompanied by an in-
crease in phase fluctuations in situ and therefore increased density
fluctuations after short ToF. Yet, the algebraic fits indicate a reduction
of total phase fluctuations. The analysis arriving at this surprising
contradiction is provided in detail in this work. The joint analysis of
momentum distribution and short ToF interference pattern suggests
that the comparison with the theory employed is most likely limited
by non-equilibrium effects caused by strong heating due to e. g. insuf-
ficient background vacuum pressure.

This thesis is separated into two parts, the theoretical support is intro-
duced in Part I, in preparation for the discussion of the experimental
results presented in Part II and is further organized as follows:

Part I

• In Chapter 2, the experimental apparatus is introduced and the ex-
perimental procedure used to create a degenerate two-dimensional
gas of composite bosons is summarized.

• In Chapter 3 we introduce the basic concepts of coherence and su-
perfluidity and establish the qualitative difference between 3D and
2D regarding the phase transitions. First, the coherence proper-
ties of the three-dimensional ideal gas are discussed as an instruc-
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tive example and compared to the two-dimensional case. Subse-
quently, interactions are introduced and the resulting superfluidity
is discussed on the basis of the Landau criterion.

• Chapter 4 discusses the coherence properties of two-dimensional
interacting Bose gases in greater detail and presents the theoretical
framework from which these are derived. We show how the KT-
phase transition can be explained by the creation of free vortices.

• In Chapter 5, a short overview of the previous experimental stud-
ies relevant for this work is given, from the first experiments on
superfluid 4He films to the studies of coherence and superfluidity
in 2D systems of ultracold atoms. The theoretical foundation for
this work is introduced briefly.

• Chapter 6 highlights two methods required to study the momen-
tum distribution experimentally, namely the matter wave focusing
technique, enabling the access of phase properties, and the reduc-
tion of the expansion perpendicular to the 2D plane by a brake
pulse, ensuring high resolution optical imaging.

Part II

• In Chapter 7, we present the first measurements of the momentum
distribution n(k) of a single homogeneous 2D layer of composite
bosons, demonstrating the challenges associated with extracting
the first order correlation function g1 due to the strong impact of
the imaging system. Further, the experimental results are inter-
preted assuming a heating process for prolonged hold time in an
optical trap.

• Chapter 8 introduces the measurements of the coherence proper-
ties via the analysis of the self-interference patterns appearing af-
ter short time of flight. The analysis is presented in detail and the
results are interpreted. Possible issues, especially when also con-
sidering the measured momentum distribution, are pointed out.

• In Chapter 9, we present the calibration and compensation proce-
dures performed in order to limit the dependence of the measure-
ments on systematic errors.

Publications in the context of this thesis
• Two-Dimensional Homogeneous Fermi Gases

K. Hueck, N. Luick, L. Sobirey, J. S., T. Lompe, and H. Moritz
Phys. Rev. Lett, 120(6), 060402-1 (2018)

• Calibrating high intensity absorption imaging of ultracold atoms
K. Hueck, N. Luick, L. Sobirey, J. S., T. Lompe, H. Moritz, L. W. Clark,
and C. Chin
Opt. Express, 25(8), 8670–8679 (2017)

• Probing superfluidity of Bose-Einstein condensates via laser stir-
ring.
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Moritz, and L. Mathey
Phys. Rev. A, 93(2), 1–14 (2016)

• Critical Velocity in the BEC-BCS Crossover
W. Weimer, K. Morgener., V. P. Singh, J. S., K. Hueck, N. Luick, L. Mathey,
and H. Moritz
Phys. Rev. Lett., 114(9), 1–5 (2015)





Part I

Preparation





2 F ROM 3D TO 2D I N THE L A BOR ATOR Y

2.1 Trapping and cooling 11
2.2 Reaching kinematic 2D 12
2.3 High resolution imaging 14

This chapter outlines the process of creating an interacting 2D gas
of composite bosons. It will cover the most important aspects of the
trapping, cooling and squeezing of a cloud of 6Li to reach a highly
anisotropic degenerate gas. For additional details pertaining to the
construction of the experimental apparatus and the technical specifics
in the preparation of a degenerate two-dimensional sample, refer to
the theses of W. Weimer29 and K. Morgener30. For a more detailed 29 W. Weimer: Probing superfluid proper-

ties in strongly correlated Fermi gases with
high spatial resolution, (2014)

30 K. H. Morgener: Microscopy of 2D
Fermi Gases Exploring excitations and ther-
modynamics, (2014)

description of the experimental setup required to obtain the homoge-
neous density and the applied process see the thesis of K. Hueck31.

31 K. Hueck: A homogeneous, two-
dimensional fermi gas. Measurements in
Position- and Momentum-Space, (2017)

.   

A technical drawing of the most important elements in trapping and
cooling neutral lithium atoms is presented in Fig. 2.1. The process of
creating a degenerate gas in this experimental apparatus can be con-
ceptually divided into four stages. In a fifth step, detailed in the next
section, the vertical degree of freedom is frozen out. The process ends
with an absorption image of the studied gas, destroying the sample.
Hence, the complete sequence of creating, cooling an imaging is re-
peated approximately every 13 s.

250 ms
MOT transfer

1.4 s
transport

500 ms
squeeze evap.

400 ms
2D transfer

time720 K K mK
1 s

transport
1.6 s

resonator evap.
5 s

MOT
evap. & transfer

µK nK

(a)

(b)

(c)

Figure 2.1: Overview of the trap-
ping and cooling procedure. Fermionic
lithium is evaporated (left) at ≈ 720K
and subsequently decelerated by the
Zeeman slower (middle) in order to
be captured in the MOT. After multi-
ple forced evaporation steps, the cooled
gas is transported into the experiment
cell pictured on the bottom. Here
the sample is transferred into a highly
anisotropic attractive dipole trap (a to
b) and subsequently loaded into a sin-
gle node of a blue detuned lattice (c).
During this cycle, the temperature of the
gas is reduced by about twelve orders of
magnitude in less than 13 seconds. Fig-
ure is adapted from30.
30 K. H. Morgener: Microscopy of 2D
Fermi Gases Exploring excitations and ther-
modynamics, (2014)The sequence is as follows:

http://photon.physnet.uni-hamburg.de/fileadmin/user_upload/ILP/Moritz/Publications/PhD_Theses/Wolf_Weimer_PhD_thesis_for_electronic_reading.pdf
http://photon.physnet.uni-hamburg.de/fileadmin/user_upload/ILP/Moritz/Publications/PhD_Theses/Kai_Morgener_PhD.pdf
http://photon.physnet.uni-hamburg.de/fileadmin/user_upload/ILP/Moritz/Publications/PhD_Theses/Kai_Morgener_PhD.pdf


12

• In the first step, fermionic 6Li is evaporated at approximately 450 ∘C
in a high vacuum oven chamber. This creates a jet of hot gas of
approximately 1400m/s in a mixture containing mostly the lowest
two hyperfine states.

• Second, the jet of hot 6Li gas is decelerated in a Zeeman slower.
Here, collisions with counter-propagating photons reduce the ve-
locity of the atoms. Themagnetic field decreases along the direction
of travel so that the changing Doppler shift is compensated by the
Zeeman shift, which ensures that the slowed atoms are constantly
in resonance with the counter-propagating laser light.

• Third, the slowed atoms are captured and cooled in a magneto optical
trap (MOT). AMOT consists of amagnetic quadrupole field and six
beams of near resonant laser light from all spatial directions. This
results in a spatial and velocity dependent radiation force which
confines the atoms to the center of the trap and reduced the aver-
age temperature of the gas to be on the order of one mK. Roughly
50× 106 atoms are captured and after evaporative cooling in a res-
onator dipole trap approximately 10× 106 atoms are ready to be
transported out of the MOT chamber.

• In a fourth step, the atoms are transferred into a far detuned dipole
trap with movable focus and transported to the experiment cell.
This octagonal non-magnetic cell with good optical access features
a high resolution imaging system and magnetic field coils in close
proximity in order to reach high magnetic fields. At this point, the
number of 6Li atoms has been reduced to approximately 1× 106 but
the temperature has also decreased to ≈ 100µK.

The lithium isotope employed is fermionic and hence requires an in-
teracting spin mixture for effective cooling. However, only negligible
interaction between the spin states exists naturally. Hence, the inter-
action is facilitated by coupling the scattering properties of the two
hyperfine states of 6Li via a magnetic field, a so called Feshbach res-
onance. The existence of this Feshbach resonance allows us to tune
the interaction strength from repulsion to attraction and when work-
ing at a magnetic field of 834G, the scattering length even diverges
enabling efficient evaporative cooling in a strongly interacting many-
body state. Further details pertaining to the scattering properties of
ultracold lithium can be found in Section 3.3.4.

.   

The final step in preparing a single layer of two-dimensional compos-
ite bosons is performed in the experiment cell. A pre-cooled Fermi
gas containing two hyperfine states is transferred into an oblate pan-
cake shaped dipole trap with an aspect ratio of ≈10. Here, a magnetic
field close to the Feshbach resonance is applied and the trap depth is
lowered, thus removing the fastest atoms by evaporation. This results
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in atom numbers on the order of 3× 105 at a temperature of approxi-
mately 100 nK. Next, a radial confinement is provided by a repulsive
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Figure 2.2: Sketch of the setup used
to reach the kinematic 2D regime. In
the center, the two microscope objec-
tives above and below the 6Li gas are de-
picted. In order to freeze out the ver-
tical motion, we shine in two blue de-
tuned laser beams at an enclosing an-
gle of 10.4° (lower left). This results in
a comparatively wide lattice spacing of
2.9 µm which is sufficient to load a sin-
gle layer of compressed 6Li atoms into
a single node. The homogeneous den-
sity is facilitated by the application of
a repulsive ring potential created by a
cascade of three axicons. The size of
the resulting box potential can be freely
tuned in between 50–200µm by varying
themagnification of the image. Figure is
adapted from30,31.
30 K. H. Morgener: Microscopy of 2D
Fermi Gases Exploring excitations and
thermodynamics, (2014), 31 K. Hueck:
A homogeneous, two-dimensional fermi
gas. Measurements in Position- and
Momentum-Space, (2017)

ring potential generated by a cascade of three axicons and projected
into the gas by a high-resolution objective. This potential cuts away
the outer high-entropy region of the cloud which is subsequently re-
moved from the observation volume by switching off the radial mag-
netic confinement. In order to reach kinematic 2D and freeze out the
movement in the vertical direction, strong axial confinement is applied
bymeans of an optical lattice formed by two blue-detuned laser beams
intersecting at an angle of 10.4°.

To transfer the atoms into a single layer, we re-compress the gas ax-
ially by increasing the laser power in the oblate trap, thus reducing the
width of the cloud below the lattice spacing of 2.9 µm. Thewide lattice
spacing allows the loading of a single layer, containing approximately
90% of the atoms. The relative number of atoms in adjacent layers
is ascertained by a matter wave focusing technique which magnifies
the separation before imaging. If need be, the relative population of
the layers can be adjusted by changing the position of the oblate trap
relative to the lattice nodes. Subsequently, the magnetic fields are re-
duced to form the bosonic molecules and a homogeneous 2D Bose gas
is obtained. The single homogeneous 2D layer is confined axially by
the lattice potential with a trap frequency of (12.4± 0.1) kHz and ra-
dially by the ring potential. A weak magnetic field curvature is used
to counteract the anticonfinement introduced by the lattice potential.

[git] • Branch: jonas@422514d • Time of Commit: 2018-09-12 19:43:02 +0200

Figure 2.3: Schematic illustrating the
confinement of the ultracold gas to the
lowest oscillator level. Note that the
Fermi energy EF as well as the thermal
energy kBT are well below the oscilla-
tor spacing ℏωz. Hence, all motion is
frozen out in the direction of the confine-
ment. Figure is adapted from30.
30 K. H. Morgener: Microscopy of 2D
Fermi Gases Exploring excitations and ther-
modynamics, (2014)

If the confinement in the vertical direction is sufficient, all the atoms
occupy the lowest oscillator mode and are thus only able to move lat-
erally, a situation sketched in Fig. 2.3. For the temperatures of our
experiment, the level spacing in comparison to the available thermal
energy ET is approximately ℏωz

kBT ≈ 5, thus suppressing the thermal
excitation of higher levels significantly. For an interacting system to
be considered two-dimensional, the energy associated with the inter-
action must also be well below the confinement energy, which is also
reasonably well satisfied with a ratio of level spacing to mean field
interaction energy of ℏωz

g2Dn2D ≈ 6.8. Thus, a single homogeneous 2D

http://photon.physnet.uni-hamburg.de/fileadmin/user_upload/ILP/Moritz/Publications/PhD_Theses/Kai_Morgener_PhD.pdf
http://photon.physnet.uni-hamburg.de/fileadmin/user_upload/ILP/Moritz/Publications/PhD_Theses/Kai_Morgener_PhD.pdf
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layer of composite bosons is attained.

.   

The complete experimental apparatus contains a multitude of com-
ponents, many of them essential for the measurements presented in
this work. However, due to the pivotal role of the imaging system in
acquiring the data to be analyzed, it is highlighted in the following.

The experiment is performed in an octagonal ultra high vacuumcell
sandwiched between two magnetic field coils. Concentric to the coils,
two high resolutionmicroscope objectives are positioned such that the
upper objective can be used to imprint arbitrary potentials onto the 2D
quantum gas and the lower objective is used to acquire an absorption
image. During the imaging, the gas is illuminated through the upper
objective with an approximately homogeneous beam of resonant laser
light on the so calledD2 line of atomic lithium, i. e. between the states
with spectroscopic notation: 22S1/2 ⟷ 22P3/2. Hence, depending
on the exact detuning, the population in the lower or upper hyperfine
state can be measured. A sketch of the imaging system, without the
magnetic field coils, is shown in Fig. 2.4.

imaging
light

experiment
cell

microscope
objective

telephoto
lens

CCD
camera

Figure 2.4: Sketch of the high resolu-
tion imaging setup used for manipula-
tion and imaging. Two NA=0.62 mi-
croscope objectives are installed above
and below the experiment cell in or-
der to achieve high resolution imaging
and the ability to impart detailed ar-
bitrary potentials. The imaging beam
is subsequently focused onto a highly
efficient CCD camera by a large tele-
photo lens, thus decreasing the neces-
sary beam length. Note that the pic-
tured steel cell has since been replaced
by a glass cell after the completion of the
presented experiments. Amore detailed
schematic can be found in Section 9.2.2.
Figure is adapted from30.
30 K. H. Morgener: Microscopy of 2D
Fermi Gases Exploring excitations and ther-
modynamics, (2014)

When the gas is released from the trap, it expands quickly in the
highly confined direction. On the one hand, this process is beneficial
to suppress interactions during time of flight due to the rapidly de-
creasing density. On the other hand, the available depth of field (DoF)
is limited to less than ±2µm due to the large numerical aperture (NA)
of the microscope of NA=0.62. This DoF is quickly exceeded by the
expanding atoms. Hence, the theoretical diffraction limited resolution
of ≈ 700 nm cannot be reached due to the blur acquired from atoms
out of focus.

Fortunately, the size of the observable features expected in this ex-
periment are typically on the order of multiple micrometers which al-
lows us to trade lateral resolution for DoF by reducing the NA. Since
the size of the expected density features increases with the square root
of the time of flight, Llateral ∝ √tToF but the axial extent of the cloud in-
creases approximately linear for small time of flight (ToF) , Laxial ∝ ttof,

http://photon.physnet.uni-hamburg.de/fileadmin/user_upload/ILP/Moritz/Publications/PhD_Theses/Kai_Morgener_PhD.pdf
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the compromise between time of flight and resolution can be opti-
mized. To this end, the numerical aperture is reduced to values of The size of the expanding cloud only

deviates noticeably from linear for ToF
larger than T/4 ≈ 9ms due to the anti
Helmholtz configuration of the mag-
netic field coils introducing an axial de-
confinement.

≈0.1 by placing an iris diaphragm in the Fourier plane in the imaging
path, limiting the available wave vectors of the light field to |𝐤| < |𝐤|iris.
Hence, the lateral resolution is decreased to approximately 4µm but
the depth of field is increased up to±67µm. Althoughmost of the im-
aged atoms are therefore in focus, we have lost lateral resolution and
hence small lateral features are stronger effected by the influence of the
imaging system. This is illustrated best in the broadening of the point
spread function (PSF), shown in Fig. 2.5. However, since this effect is
known it can be compensated for in the quantitative analysis of the
absorption image, which is presented in more detail in Section 9.2.2.

(µm)

NA=0.62
NA=0.097

Figure 2.5: The effect of reducing the lat-
eral resolution via the placement of an
iris diaphragm in the dark field. The
result of the suppressed high frequen-
cies yields an effective numerical aper-
ture of NA=0.097 which in turn leads
to a much broader and shallower PSF
shown in red (dashed) compared to the
original NA=0.62 shown in blue. Note,
the curves have been normalized to unit
area instead of volume to ensure compa-
rable amplitudes.
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This work focuses on the study of ultracold strongly correlated 2D
gases, their phase coherence properties and the possibly associated su-
perfluidity. Remarkably, the superfluid Bose-Einstein condensate (BEC)
can only exist in more than two dimensions. It turns out that in 1D,
dynamical superfluidity is notably absent32 and 2D is the marginal 32 A. Y. Cherny et al.: Front. Phys., vol. 7,

(2012)dimension for frictionless flow. Hence, it is instructive to consider ul-
tracold 3D gases first, where the concepts of condensation and super-
fluidity aremuch easier understood. The line of reasoningwill loosely
follow the excellent review of Z. Hadzibabic and J. Dalibard33. 33 Z. Hadzibabic and J. Dalibard: Riv.

Nuovo Cimento, vol. 34, (2011)First, an infinite homogeneous 3D Bose gas at low temperatures is
considered and it is shown that the gas undergoes a phase transition to
a regimewhere the ground state ismacroscopically populated below a
critical temperature Tcrit > 0. This is due to the rapid decrease of the
density of states (DoS) towards low energies and thus an insufficient
number of excited states for the particles to inhabit. Hence, they will
condense into the ground state and form a BEC where the constituent
wave functions exhibit identical phase. Thus, investigating the coher-
ence of the phase over a distance x by means of the first order phase
correlation function G1(x), yields a constant value. The gas exhibits
long-range order (LRO).

In case of inter-particle interaction, the condensate will exhibit su-
perfluidity, i. e. frictionless flow below a critical velocity vc > 0. This
velocity is given by the minimal slope of the Bogoliubov dispersion
relation, i. e. the group velocity of the lowest excitation. The Landau
criterion34 states that below this velocity the gas is energetically sta- 34 L. Landau: Phys. Rev., vol. 60, (1941)
ble under small perturbations. Thus, in a 3D Bose gas, the onset of
condensation and superfluidity coincide.

In contrast, in an infinite homogeneous 2D gas at low temperatures,
a macroscopic population of the ground state for all temperatures ex-
cept T = 0 is notably absent. This is due to a constant DoS even for the
energy approaching zero, which enables the distribution of the parti-
cles to the excited states at any temperature T > 0. Hence, there exists
no BEC in an infinite homogeneous 2D system for any finite tempera-
ture.

Investigating the phase of the order parameter, one can show that in
an infinite 2D system a continuous symmetry can not spontaneously

http://dx.doi.org/10.1007/s11467-011-0211-2
http://dx.doi.org/10.1393/ncr/i2011-10066-3
http://dx.doi.org/10.1103/PhysRev.60.356
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be broken. This implies that for any distance x → ∞, the correla-
tion functionG1(x) vanishes for any finite temperature. This has been
shown for the 2D Heisenberg model by N. Mermin and H. Wagner4, 4 N. D. Mermin and H. Wagner: Phys.

Rev. Lett., vol. 17, (1966)applied to 2D quantum field theory35 and rigorously proven for any
35 S. Coleman: Commun. Math. Phys.,
vol. 31, (1973)

2D system by P. Hohenberg3. Thus, a uniform two-dimensional sys-

3 P. C. Hohenberg: Phys. Rev., vol. 158,
(1967)

tem does not exhibit LRO.
A qualitatively different behavior occurs if the particles of the 2D

Bose gas are interacting with each other. Below a critical temperature
TKT , the correlation functionG1(x) changes froman exponential decay
to an algebraic decay G1(x) ∝ (ξ/x)η, where ξ is the healing length
and η is called the scaling exponent. Since the correlations decay with
no associated length scale this situation is called quasi-long-range order
(QLRO). Surprisingly, this gas is nevertheless superfluid. In fact, the
occurrence of a superfluid density ns is intimately linked to the exis-
tence of QLRO since both only break down when free vortices prolif-
erate, as will be detailed in Section 4.2.

Interestingly, an unusual phase transition accompanies the change
from exponential to algebraic decay of phase correlations as explained
by the theory of V. Berezinskii36, J. Kosterlitz and D. Thouless6. It is 36 V. Berezinskii: J. Exp. Theor. Phys.,

vol. 34, (1971)

6 J. M. Kosterlitz and D. J. Thouless: J.
Phys. C, vol. 6, (1973)

remarkable in the sense that the change from a high-temperature nor-
mal state to a low-temperature superfluid state does not involve any
spontaneous symmetry breaking. This quantum phase transition re-
volves around another source of phase fluctuations: vortices. As will
be shown later, the unbinding of vortices of opposite charge defines
the transition from a superfluid to a normal fluid.

In the following, the concepts of condensation and coherence are
described in more detail. Initially, infinite ideal homogeneous 3D and
2D gases are compared and then interactions are introduced. Con-
cluding, the 2D case will be examined in the presence of a trapping
potential and some finite size effects will be discussed.

.    

In this section, the mean occupancy of a state b(ϵ) is briefly derived
and subsequently used to show the effect of Bose-Einstein condensa-
tion in 3D. This yields the basis for the discussion of the coherence
properties in Section 3.1.4.

.. Recapitulation of relevant statistical mechanics

The framework of classical statistical mechanics can be used to de-
scribe many of the important properties of cold gases also when ap-
proaching low temperatures.

An interactionless atomic gas can be adequately described by the
grand partition function

𝒵(z, ϵ, β) =∏
ν
(1 ± ze−βϵν)±dν with μ = (

∂U
∂Nν)S,V

. (3.1)

Here, it is multiplied over every microstate νwith the inverse temper-

http://dx.doi.org/10.1103/PhysRevLett.17.1133
http://dx.doi.org/10.1007/BF01646487
http://dx.doi.org/10.1103/PhysRev.158.383
http://www.jetp.ac.ru/cgi-bin/e/index/e/34/3/p610?a=list
http://dx.doi.org/10.1088/0022-3719/6/7/010
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ature β = 1/kBT , the fugacity z = eβµ and the degeneracy of each
state dν. The chemical potential of the reservoir, for example, can be
defined as the partial derivative of the internal energy U evaluated at
constant entropy S and volume V . Since Bose and Fermi gases satisfy
different statistics the minus sign is taken for bosons and the plus sign
for fermions. It is useful to introduce the grand potential from which
many basic properties of the gas can be derived

𝒬(z, ϵ, β) = ln(𝒵(z, ϵ, β)) =∑
ν
±dν ln(1 ± ze−βϵν). (3.2)

An equation of state (EOS) like the total number of particles, can be
attained by differentiating the grand potential with respect to z

N = z ∂∂z𝒬(z, ϵ, β) =∑ν
±dν(eϵν−µ ± 1)−1. (3.3)

From this, the mean occupancy of a single-particle state νwith energy
ϵν can be seen to be

b(ϵν) = (eβ(ϵν−µ) + γ)−1. (3.4)

The constant γ describes the nature of the distribution of the particles:

γ = +1 Fermi-Dirac

γ = 0 Maxwell-Boltzmann

γ = −1 Bose-Einstein

Note, if ϵ0 = 0 is chosen as the minimum energy of the single-particle
spectrum, one immediately requires−∞ ≤ μ ≤ 0 for the Bose-Einstein
distribution since the occupation has to be positive semidefinite. For
the other distributions, the chemical potential can take on either sign.
The different behaviors of the distributions for small β(ϵν − μ) are
shown in Fig. 3.1. In the limit of high excitations, or eβ(ϵ−µ) ≫ 1, all
distributions approach the Maxwell-Boltzmann distribution.

Fermi-Dirac
Maxwell-Boltzmann
Bose-Einstein

Figure 3.1: Comparison of mean oc-
cupancy 〈b(ϵ)〉 for different particle
statistics in dependence of the energy ϵ
shifted by the chemical potential µ and
scaled by the inverse temperature β =
1/kBT . Note that only the Fermi-Dirac
distribution (blue) is bounded and ap-
proaches 1 for ϵ ≪ µ, the Bose-Einstein
distribution (yellow, dotted) diverges
for ϵ ⟶ µ while both approach the
Maxwell-Boltzmann distribution (red,
dashed) for high excitations i. e. ϵ ≫ µ.

Analogous to the approximationmade in the Thomas-Fermimodel,
if the temperature of the system is sufficiently high or the size is suffi-
ciently large, the spacing of the single-particle energy levels becomes
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small enough to replace the sum over discrete excited states by an in-
tegral over the energy weighted by the density of states g(ϵ). Hence,
the particle number can be written as

Nexcited ≈ N =∑
ν
±dνb(ϵν) ≈

∞

∫
0

b(ϵ)DoS(ϵ)dϵ . (3.5)

Here, b(ϵν) denotes the probability that a state is populated and the
density of states ,DoS(ϵ), describes the states that are available. Re-
placing the discrete sum in Eq. (3.5) with an integral is a good ap-
proximation if the density of states is large. For a vanishing density of
states, this approximation breaks down.

The mean occupancy depends on the nature of the considered par-
ticles and their properties. The density of states in contrast, depends
on the properties of the system the particles are in.

.. The density of states

The DoS is given by the space a particle inhabits in phase space. Ac-
cording toHeisenberg’s uncertainty principle, theminimal phase-space
volume is quantized to (2πℏ)3. Let V = ΔxΔyΔz be the real-space
volume a particle occupies and Vm = 4/3πp3 be the volume a particle
with momentum up to p occupies in momentum space. As a function
of the energy ϵ = p2/2m, the total number of states can be written as

# States(ϵ) = V 43πp3
(2πℏ)3 = V

√2
3π2ℏ3 (mϵ)

3/2. (3.6)

For simplicity, no internal degrees of freedom are considered here, ef-
fectively setting a multiplicative constant to unity. From this, the DoS
for a homogeneous 3D system can be calculated by taking the deriva-
tive with regard to the energy

DoS(ϵ) = d
dϵ# States(ϵ) = V √2

2π2ℏ3 (m)
3/2√ϵ. (3.7)

In other dimensions, substitution with the appropriate volume ele-
ment leads to the respective density of states. The DoS can usually be
written as a power law of ϵ

DoS(ϵ) = ζαϵα−1, (3.8)

where ζα is a constant. The exponentαdepends on the dimensionality
of the system. For the homogeneous case inddimensionsα = d/2 and
for the harmonically trapped gas in d dimensions α = d.

.. 3D Bose-Einstein condensation

The effect of condensation of bosons to the ground state can already be
seen by investigating Eq. (3.5). Replacing the total number of particles
N by the total number density ntot = N/V the equation reads

ntot =
N
V = 1

V

∞

∫
0

dϵb(ϵ)DoS(ϵ) = C
∞

∫
0

dϵ √ϵ
eβ(ϵ−µ) − 1, (3.9)
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with the constant C = m3/2/√2π2ℏ3. The particle density as a func-
tion of chemical potential and temperature is thus attained by evalu-
ating the integral on the right hand side. Since this type of integral
yields a special function called the polylogarithm, it is instructive to
study some its elementary properties. It turns out, for example, that
the value of the integral is finite for any finite T > 0 and thus facilitates
the creation of a Bose-Einstein condensate. Additional details can be
found in Extra 3.1.

Extra 3.1: The polylogarithm

The polylogarithm appears naturally as the
closed form solution of Bose-Einstein and Fermi-
Dirac type integrals with positive α and the fu-
gacity z = eβµ

∓Liα(∓z) =
βα
Γ(α)

∞

∫
0

dϵ ϵα−1
eβϵ
z ± 1

Here Γ(α) is the Gamma function, i. e. the ex-
tension of Γ(n) = (1 − n)! to real and complex
numbers. The upper sign is chosen for fermions
and the lower sign for bosons. The polyloga-
rithm is in general defined for arbitrary complex
z and α but in terms of a physical quantity like
the particle density n only a non-negative and
real valued polylogarithm is meaningful. For
bosons, this restricts the argument z to the in-
terval 0 ≤ z ≤ 1. This coincides with the re-
quirement −∞ ≤ μ ≤ 0. Note that for μ → 0−

and thus z → 1 the Li3/2 has a finite value of
ζ(3/2) ≈ 2.612 at z = 1 whereas Li1/2 diverges.
ζ denotes the Riemann Zeta function, a solu-
tion of Eq. (3.10) for the special case of z = 1.

−0.2 0 0.2 0.4 0.6 0.8 1
0

2

4

z

Li
α
(z
)

Li 3/2(z)
Li 1(z)
Li 1/2(z)

Figure 3.2: Plot of the polylogarithm for α = 3/2 (solid
blue line), α = 1 (dashed red line) and α = 1/2 (dot-
dashed yellow line).

Using the polylogarithm to solve Eq. (3.9) the total particle density
ntot is found to be

ntot =
Γ(3/2)C
β3/2 Li3/2(z). (3.10)

This result can be simplified by replacing the Gamma functionwith its
numerical value Γ(3/2) = √π/2 and realizing that the prefactors can
be written with the thermal de Broglie wavelength λT = √2πℏ2β/m
as

ntot =
1
λ3T

Li3/2(z). (3.11)

Now, when adding particles to the system to increase the density, the
chemical potential has to increase from μmin = −∞ → μmax = 0.
The polylogarithm is a monotonically increasing function, thus this
is synonymous with increasing z = 0 → z = 1. Since Li3/2(z = 1) ⪅
2.612, the achievable density seems to be bounded. This is certainly
unphysical.

The error must lie with the only approximation applied. Replacing
the sum in Eq. (3.5) with an integral is only viable for a finite density
of states. Since for the 3D case the DoS(E → 0) → 0 the contribution
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of the ground state is effectively ignored. Taking the ground state cor-
rectly into account yields a first order correction to the total density in
Eq. (3.9)

ntot =
1
V

1
eβ(ϵ0−µ) − 1 +C

∞

∫
0

√ϵ
eβ(ϵ−µ) − 1 dϵ

= 1
V

1
1/z − 1 + 1

λ3T
Li3/2(z) (3.12)

= nground +nexcited.
Setting the energy of the ground state ϵ ≡ 0 one sees immediately that
the first term, representing the particles in the ground state, nground
diverges for z → 1while the second term, representing the particles in
the excited states,nexcited is bounded. Thus, when the excited states are
saturated, the additional particles are accommodated in the ground
state. Ultimately, a significant part of all particles inhabit the ground
state. This is known as a BEC.

It will be shown in the next section that the same calculation for a
2D Bose gas shows that the excited state population is not bounded.
Hence all particles remain in the excited states and the ground state
exhibits no macroscopic population for any finite temperature.

The dependence of the fugacity and the chemical potential on tem-
perature can be extracted by solving Eq. (3.9) numerically and is plot-
ted in Fig. 3.3. A universally useful property in the description of con-
densation phenomena is the phase-space densityD = nλdT with d be-
ing the dimension. The phase-space density describes the occupation
of a phase-space volume cell. Thus, there exists a critical phase-space
densityDcrit = Li3/2(z = 1) ≈ 2.612 above which the particles begin to
condensate.

(a)
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Figure 3.3: (a) Chemical potential µ
and (b) fugacity z = eβµ obtained from
numerical solution of Eq. (3.9)37 in de-
pendence of reduced temperature T/Tc
in the thermodynamic limit. Note that
the chemical potential is µ ≤ 0 for non-
interacting bosons and only approaches
0 at T = Tc. Thus, the fugacity is also
bounded.
.

In addition to increasing the density, the change in chemical po-
tential can also be facilitated by a change in temperature. Hence, it is
possible to populate the ground statemacroscopically by lowering the
temperature of the system. The critical temperature Tc below which
the ground state is significantly populated is

Tc =
n2/3tot 2πℏ2

ξ(3/2)2/3kBm
. (3.13)
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With this, the fraction of particles in the ground state can be written
as

nground

ntot
= 1 − (

T
Tc)

3/2
. (3.14)
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Figure 3.4: Fraction of particles in the
ground statenground/ntot (blue) and in
the excited states 1−nground/ntot (red,
dashed) in dependency of reduced tem-
perature T/Tc, see Eq. (3.14).

As can be seen in Fig. 3.4, the discontinuous slope of the ground state
fraction indicates that the Bose-Einstein condensation is a second or-
der phase transition.

.. 3D coherence properties

The condensate has additional interesting properties apart from the
macroscopic population of the ground state, for example, its coher-
ence properties. To measure the degree of coherence of a system –
such as the coherence of the constituent wave functions – the first or-
der correlation function can be used. If a system is fully coherent, the
information at point 𝐱 is sufficient to describe the properties of the
system at point 𝐱′ and vice versa. For a translationally invariant sys-
tem, all observables only depend on the distance between two points
x = |𝐱 − 𝐱′| and the first order correlation function can be retrieved
from the momentum distribution by a Fourier transform

G1(𝐱) =
1

(2π)3
∞

∫
−∞

b(𝐤) ei𝐤𝐱 d𝐤 . (3.15)

Details on the derivation for a homogeneous system can be found in
Extra 7.4 in Chapter 7.

Extra 3.2: Definition of the Fourier Transform

There exist a multitude of conventions to define
the Fourier transform. The definition for the
Fourier transform used in this thesis is

F(𝐤) =
+∞

∫
−∞

ddx f(𝐱)e−i𝐤𝐱

and for the inverse Fourier transform

f(𝐱) = 1
(2π)d

+∞

∫
−∞

ddk F(𝐤)ei𝐤𝐱,

with the dimensionality d.

In the following,G1(x) is calculated from n(𝐤) to show the appear-
ance of LRO in a three-dimensional BEC.

With Eq. (3.15), the first order correlation function of the infinite
homogeneous 3D Bose-Einstein condensate can be calculated via sub-
stitution of the free particle dispersion relation into the energy distri-
bution b(ϵ(𝐤)) given by

b(ϵ(𝐤)) = 1
eβ(ϵ(𝐤)−µ) − 1 , with ϵ(𝐤) = ℏ2𝐤2

2m . (3.16)

These relations are evaluated readily in the limits of low and high
phase-space density, i. e. the non-degenerate and the degenerate limit,
respectively.
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Non-degenerate limit
In a non-degenerate gas, the polylogarithm is approximately Liα(z) ≈
z and thus, Eq. (3.11) yields z ≈ nλ3T ≪ 1. In this regime |μ| ≫ kBT
and all momentum states are weakly occupied, hence

b(𝐤) ≈ ze−βϵ(𝐤) ≈ nλ3Te−𝐤
2λ2T/4π ≪ 1. (3.17)

Since the Fourier transform of a Gaussian is again a Gaussian, the cor-
relation function G1(x) reads

G1(x) ≈ 2πne−πx2/λ2T . (3.18)

Thus, thermal gases exhibit only short-range correlationswhich decay
on the length scale λT/√π.

Degenerate limit
In the presence of a condensate, the ground state has to be separated
out before replacing the sum over single-particle states with an inte-
gral. Due to the divergence of the ground state population b(𝐤 → 0) ≈
δ(𝐤) ⋅ b0 the first order correlation function for distances larger than
λT is then given by38 38 K. Huang: Statistical mechanics, (1987)

G1(x) ≈
⟨b0⟩
V + 1

(2π)3
∞

∫
−∞

d3kb(𝐤) ei𝐤𝐱 (3.19)

≈ ⟨b0⟩V + m
β2ℏ2

e−x/lc
x , for x ≫ λT (3.20)

with the mean ground state occupation ⟨b0⟩ and the characteristic de-
cay length lc = ℏ/√2m|μ|. The second term in Eq. (3.20) vanishes for
x = |𝐱 − 𝐱′| → ∞ but due to the significant occupation of the ground
state the first term does not. Hence, in a degenerate infinite ideal 3D
Bose gas, the first order correlation function shows a finite degree of
coherence for all distances. For such a system, knowledge of point 𝐱
enables conclusions about the properties at any point 𝐱′. Such sys-
tems with finite coherence over infinite distances are said to exhibit
LRO. Since the influence of dimensionality on the gas is of interest
here, this process is now repeated for an ideal two-dimensional Bose
system.

.    

This section aims to illustrate the profound change introduced by re-
ducing the dimensionality from 3D to 2D on the example of an ideal
gas. To contrast the 3D Bose gas to the 2D case, this section will fol-
low the structure of Section 3.1 in brevity. Where similar, details of
the derivation are left to the reader or where appropriate presented
in separate boxes denoted Extra which can be skipped. It is shown
that not only condensation, and hence a true BEC, is precluded in 2D
but also that the coherence vanishes for any uniform system of finite
temperature manifested in the absence of long-range order.

https://books.google.de/books?id=M8PvAAAAMAAJ
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.. 2D Bose-Einstein condensation?

Here, the thermodynamic calculations are reiterated for the two-di-
mensional case, showing that the difference in the density of states
precludes the existence of a macroscopic population of the ground
state, i. e. a BEC.

The grand potential function is again the starting point and differ-
entiation with respect to the fugacity z yields the total atom number
as

N = z ∂∂z𝒬(z, ϵ, β) =∑ν
±dν(eϵν−µ ± 1)−1. (3.21)

The Thomas-Fermi approximation is applied and the sum is replaced
by an integral, hence the total atom number is given by

N =
∞

∫
0

dϵ DoS(ϵ)
eβ(ϵ−µ) − 1. (3.22)

Extra 3.3: Density of states of a homogeneous system in two dimensions

In two dimensions, the minimal phase-space cell
size is quantized to be (2πℏ)2. Let A = ΔxΔy be
the real space area a particle occupies and Am =
πp2 be the area in momentum space a particle
with momentum up to p occupies. As a function
of the energy ϵ = p2/2m the total number of states
can be written as

# States(ϵ) = Aπp2
(2πℏ)2 =

Am
2πℏ2 ϵ.

From this, the density of states for a homogeneous
2D system can be calculated by taking the deriva-
tive with respect to the energy

DoS(ϵ) = d
dϵ# States(ϵ) = Am

2πℏ2 .

Repeating the procedure for the 2D case, see Extra 3.3, the DoS is
found to be

DoS(ϵ) = Am
2πℏ2 = constant with resp. to ϵ (3.23)

with A = ΔxΔy denoting the real space area the system occupies.
Note that in contrast to 3D, the density of states in 2D does not de-
pend on the energy but is constant. Hence, the approximation made
in Eq. (3.22) is valid even for low energy states. If this result is inserted
into Eq. (3.22) and divided by A it yields the 2D number density

n2D =
N
A = m

2πℏ2
∞

∫
0

dϵ 1
eβ(ϵ−µ) − 1. (3.24)

Again, the solution to this type of integral is the polylogarithm. For
α = 1, the polylogarithm reduces to the normal logarithm. Thus, it can
be written with the help of the thermal de Broglie wavelength λT =
√2πℏ2β/m as

n2D =
1
λ2T

Li1(z) = −
1
λ2T

ln(1 − z). (3.25)
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Thus, when particles are added to the system, the fugacity increases,
i. e. z → 1.

This result already displays one major difference between 2D and
3D systems. Whereas in 3D the Li3/2 in Eq. (3.11) is bounded, the log-
arithm in Eq. (3.25) diverges at z = 1. (See for comparison Extra 3.1).
Thus, all particles can be accommodated in the excited states. In two
dimensions, a valid solution for Eq. (3.25) almost always exists. Only
at T = 0, there exists no solution and the ground statewill havemacro-
scopic population. This shows that due to a different dependence of
the density of states on the energy, Bose-Einstein condensation does
not occur in the ideal infinite 2D Bose gas. Next, it is explored if the
coherence properties also exhibit such a drastic difference.

Extra 3.4: Ground state population in large 2D systems

Unlike the 3D case, it is not necessary to separate
out the ground state in Eq. (3.25) under the con-
dition that 2πℏ2/(Am) ≪ |μ| ≪ kBT . This box
will present a rough outline why this is the case.
In the above regime, b0 = b(𝐤 = 0) ≈ kBT/|μ| and
with T2D = 2πℏ2n2D/mkB the chemical poten-
tial can be approximated as

|μ| = |kBT ln(1 − e−T2D/T )| ≈ kBTe−T2D/T .

Thus, the ground state population is approxi-
mated by b0 ≈ eT2D/T . For this to be on the order

of the total number of particles N, the tempera-
ture T would have to obey

b0 ≈ eT2D/T != N ⇒ T = T2D
ln(N) .

In the thermodynamic limitN →∞, A →∞ and
N/A = constant, hence the necessary temper-
ature will become increasingly small. For finite
temperature the ground state is therefore not sig-
nificantly occupied and Bose-Einstein condensa-
tion can not occur in a uniform two-dimensional
gas in the limit of a large system.

.. 2D coherence properties

To evaluate the coherence of the two-dimensional system, the first or-
der correlation function is again employed. In analog to Section 3.1.4
it is instructive to treat the degenerate and the non-degenerate limit
separately.

Non-degenerate limit
Analogous arguments to those that lead to Eq. (3.17), here z ≈ n2Dλ2T ,
lead in the two-dimensional case to

b(𝐤) ≈ ze−βϵ(𝐤) ≈ n2Dλ2Te−𝐤
2λ2T/4π ≪ 1 (∀𝐤). (3.26)

Hence, a fast Gaussian decay of the correlation function on the length
scale λT/√π is again expected for the normal regime

G1(x) ≈ 2πn2De−πx2/λ2T . (3.27)

Degenerate limit
For a gas with nλ2T > 1, one can see from Eq. (3.25) that z ≈ 1 and
β|μ| ≈ e−nλ2T ≪ 1. Thus, the phase-space density is approximately
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nλ2T ≈ ln(kBT/|μ|). The occupation of high-energy states in the de-
generate gas, with βϵ ≫ 1, is small and the occupation is – similar to
the case of the non-degenerate gas – approximated by the Boltzmann
distribution

b(𝐤) ≈ e−βϵ(𝐤) = e−k2λ2T/4π ≪ 1 , for k2 ≫ 4π/λ2T . (3.28)

However, the occupation of the low energy states in the degenerate gas
is large and for βϵ ≪ 1, βμ ≪ 1 and μ = −|μ| the approximation of
the exponential in the denominator of the Bose-Einstein distribution
for small argument leads to a Lorentzian

b(𝐤) = (eβ(ϵ(𝐤)−µ) − 1)−1

≈ (1 + β(ϵ(𝐤) − μ) − 1)−1

= kBT
ϵ(𝐤) + |μ|

≈ 4πλT
1

|𝐤|2 + k2c
≫ 1 , for |𝐤|2 ≪ 4π/λ2T , (3.29)

where kc = √2m|μ|/ℏ and the energy distribution is ϵ(𝐤) = ℏ2|𝐤|2
2m .

Consequently, the correlation function for the degenerate 2D gas is
bimodal. The Fourier transform of the momentum space distribu-
tion, b(𝐤) of Eq. (3.29), is proportional to the modified first order
Bessel function of the second kindK0(kcx). This results in correlations
dominated by Gaussian decay for short distances of up to ≈ λT but
for larger distances the correlations decay approximately exponential.
Thus, similar to the 3D case in Eq. (3.20) the correlation function for
large distances is approximately given by

G1(𝐱) ∝
e−x/lc

√x
. (3.30)

From the definition of the correlation length lc ≈ λTen2Dλ2T/2/√4π,
one can immediately see that for increasingphase-space densityn2Dλ2T ,
the correlation increases exponentially but the first order correlation
function still vanishes in the limit x → ∞. Hence, the 2D system does
not exhibit LRO which has been shown to be true for any uniform
two-dimensional system with continuous symmetry by N. Mermin,
H. Wagner4 and P. Hohenberg3. However, although Eq. (3.30) shows 4 N. D. Mermin and H. Wagner: Phys.

Rev. Lett., vol. 17, (1966)

3 P. C. Hohenberg: Phys. Rev., vol. 158,
(1967)

that the correlation function vanishes for x → ∞, for any finite system
the correlation length eventually becomes larger than the system size
which has important consequences for real world systems.

Ideal 3D Gas Ideal 2D Gas

Condensation Yes No
Long Range Order Yes No
Superfluidity No No

Table 3.1: Overview of ideal gas proper-
ties for different dimensionality.

It is obvious that neglecting realworld effects such as those introduced
by interparticle interaction or an external trapping potential reduces

http://dx.doi.org/10.1103/PhysRevLett.17.1133
http://dx.doi.org/10.1103/PhysRev.158.383
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the mathematical complexity in a theoretical description but unfor-
tunately simultaneously results in rather unexciting coherence prop-
erties for the two-dimensional system, which are summarized in Ta-
ble 3.1.

.     

Since experimentally accessible quantum gases are neither infinite nor
ideal the influence of a trapping potential and the interparticle inter-
actions must be taken into account. Most magnetic and optical dipole
traps can be reasonably well approximated by a harmonic potential.
Thus, harmonic trapping will be considered in the examples. If inter-
actions between particles are introduced, the system becomes much
more complex. For strong interactions, the system becomes analyt-
ically intractable and thus it is very challenging to develop an ade-
quate theory. For the presented experiment however, the interactions
between particles can be treated to first order in a mean field approx-
imation and the condensate wave function ψ(𝐱) obeys the finite tem-
perature Gross-Pitaevskii equation (GPE)

(−
ℏ2
2m∇

2 + V(𝐱) + U(x) [|ψ(𝐱)|2 + 2nT (𝐱)] − μ)ψ(𝐱) = 0. (3.31)

Here, V(𝐱),U(𝐱), μ are the trapping potential, the two-body interac-
tion potential and the chemical potential, respectively. The nT (𝐱) rep-
resents the density of thermal atoms interacting with the condensate.
For a cold gas, the dominant interaction is s-wave scattering, as ex-
plained in Section 3.3.4. Then, the interaction potential can be re-
placed by an effective contact interaction potential that reads

U(𝐱) = 4πℏ2
m a3Dδ3(𝐱) = gδ3(𝐱), (3.32)

with the Dirac delta function δ, the s-wave scattering length a3D and
the effective interaction parameter g39. The derivations presented here 39 C. J. Pethick and H. Smith: Bose-

Einstein Condensation in Dilute Gases,
(2008)

have been developed originally for weak interactions g̃ ≪ 1 but more
sophisticated methods40 have validated the approach – at least quali-

40 M. Holzmann et al.: Phys. Rev. A,
vol. 81, (2010)

tatively – even for the interaction strengths relevant to the experiment
presented in this thesis.

The addition of interactions to the system is far reaching, whilst
condensation still occurs and the LRO of the order parameter is also
preserved, a new property arises: superfluidity. In preparation for
the discussion of 2D systems, these properties are briefly reviewed
highlighting the phase correlation function g1. Note that in 3D the ef-
fect of interactions on the coherence at long distances is minor and the
onset of superfluidity is still accompanied by condensation and LRO.
However, the same cannot be said for 2D systems. Here, interactions
have a profound impact on the phase correlations and hence drive the
normal to superfluid transition despite the fact that condensation and
LRO cease to exist.

http://books.google.com/books?hl=en%7B%5C&%7Dlr=%7B%5C&%7Did=xmiV4YSEjE4C%7B%5C&%7Doi=fnd%7B%5C&%7Dpg=PP2%7B%5C&%7Ddq=Landau+Fermi-Liquid+Theory:+Concepts+and+Applications+(1991).%7B%5C&%7Dots=6rHO9Wp8h6%7B%5C&%7Dsig=w13EGtyZ3U8sKd6i2ghFvOdoPcQ
http://dx.doi.org/10.1103/PhysRevA.81.043622
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.. Coherence in interacting trapped 3D Bose gases

The first order correlation functionG1(𝐱, 𝐱′) for a trapped system can-
not be expressed in terms of the difference |𝐱 − 𝐱′| anymore and ac-
quires a dependence on the position in the trap. To define a local mea-
sure of coherence, the normalized first order correlation function

g1(𝐱, 𝐱′) =
G1(𝐱, 𝐱′)

√G1(𝐱, 𝐱)√G1(𝐱′, 𝐱′)
(3.33)

is introduced. The most notable property of g1 is its relation to the
achievable contrast in interference experiments. This fact has been
used for example by M. Andrews et al.41 to show that the observa- 41 M. Andrews et al.: Science, vol. 275,

(1997)tion of high-contrast interference fringes is evidence for the spatial co-
herence of 3D condensates when brought into superposition. Figure
3.5a shows a density image with clear interference, confirmation of
a finite g1 for the size of the condensate. For experiments in interact-
ing trapped Bose gases, the normalized first order correlation function
displays no qualitative change in behavior. Similar to the ideal gas, the
correlation function decreases for separations larger than the thermal
wavelength but much smaller than the total size of the condensate,
confer Fig. 3.5b for a theoretical calculation of the decay of g1 with
particle separation. The first order correlation function of interacting
3D condensates approaches the condensate fraction for large relative
distances and thus also exhibits LRO.

(a) (b)
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Figure 3.5: (a) The occurrence of in-
terference fringes is direct evidence for
spatial coherence i. e. a finite first order
correlation function g1 in the experi-
ment of M. Andrews et al.41 (b) Theo-
retical calculation of a volume averaged
ḡ1(x) (red dashed) for a degenerate
interacting Bose gas as well as the lo-
cal g1(x) (blue). Additionally the fast
decay of the Maxwell-Boltzmann dis-
tributed uncondensed atoms is plotted
(yellow, dash dotted). Note the strong
decay on the length scale of λ but the
finite value of g1 due to the existence
of a Bose-Einstein condensate. Figure a)
adapted from M. Andrews41. Figure b)
adapted from M. Naraschewski and R.
Glauber42.
41 M. Andrews et al.: Science, vol. 275,
(1997)
42 M. Naraschewski and R. J. Glauber:
Phys. Rev. A, vol. 59, (1999)

An additional measure applicable to the degree of coherence is the
value of the normalized second order correlation function g2(𝐱, 𝐱′)
which will be introduced more rigorously in Chapter 8. Put roughly,
this function describes the possibility to find two particles at positions
𝐱 and 𝐱′. For bosonic gases, g2 generally increases with decreasing
temperature and thus increasing coherence length ξc. This can be
used to explain the bosonic bunching from i. e. the familiar Hanbury
Brown and Twiss experiment43 or the cold atom analog of the group 43 R. Hanbury Brown and R. Q. Twiss:

Nature, vol. 178, (1956)of A. Aspect44. Interestingly, the presence of a coherent condensate –
44 M. Schellekens et al.: Science, vol. 310,
(2005)

analogous to the coherent state of a laser beam – suppresses the prob-
ability of two particles in close vicinity since all atoms are distributed
maximally random. Accordingly, g2 is decreased in the condensate
as can be seen in Fig. 3.6a. Additionally, if repulsive interactions are

http://dx.doi.org/10.1126/science.275.5300.637
http://dx.doi.org/10.1126/science.275.5300.637
http://dx.doi.org/10.1103/PhysRevA.59.4595
http://dx.doi.org/10.1038/1781046a0
http://dx.doi.org/10.1126/science.1118024
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present in the system the mean field calculation of M. Naraschewski
andR.Glauber42 show a further reduction for very short distances, see 42 M. Naraschewski and R. J. Glauber:

Phys. Rev. A, vol. 59, (1999)Fig. 3.6b. Despite the fact that the hard core repulsion of two atoms
is a local effect, the change in the density-density correlation function
can be observed over much greater distances. However, the length
scales of interest in this work are many times larger than the thermal
wavelength and thus the effects of hard core repulsion are ignored.

(a)

[git] • Branch: jonas@9d918d4 • Time of Commit: 2018-09-19 22:00:24 +0200

density

(b)
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w/o hard core rep.

Figure 3.6: (a) The normalized second-
order correlation function is a measure
of local second-order coherence. Plot-
ted is g2 (solid line) for a harmonically
trapped interacting gas with tempera-
ture T = 0.8Tc. For comparison, the
red (dashed) curve shows the total den-
sity distribution in arbitrary units. (b)
Normalized volume integrated second
order correlation function for an inter-
acting trapped Bose gas at T/Tc = 0.5
(solid line). The dashed line omits the
hardcore repulsion. Due to the presence
of a considerable condensate fraction, a
large degree of second-order coherence
is attained i. e. the curve remains close to
unity. The existence of quasiparticle ex-
citations leads to a remarkably slow de-
crease of the correlation function. Fig-
ure adapted from M. Naraschewski and
R. Glauber42.
42 M. Naraschewski and R. J. Glauber:
Phys. Rev. A, vol. 59, (1999)

.. Condensation of interacting trapped 3D Bose gases

The condensation properties of interacting Bose gases depend subtly
on the consequences of the trapping potential. Whereas calculations
have shown that a repulsive infinite uniform Bose gas condenses at
marginally higher temperature due to a slight increase in local den-
sity by critical fluctuations45,46 the trapped interacting Bose gas behav- 45 G. Baym et al.: Phys. Rev. Lett., vol. 83,

(1999), 46 S. Pilati et al.: Phys. Rev. Lett.,
vol. 100, (2008)

ior shows the contrary47. The repulsion reduces the density of the

47 S. Giorgini et al.: Phys. Rev. A, vol. 54,
(1996)

particles in the center of the trap and therefore also the phase-space
density. To pass the condensation point at a phase-space density of
nλ3 ≈ 2.6124 lower temperatures have to be achieved. This intuitive
result has been quantitatively derived in first order in a3D and reads

Tc − T idealc
T0c

≈ −1.326a3Dlosc
N1/6, (3.34)

with the harmonic oscillator length losc and the atom number N. The
left hand term consists of the critical temperature of the interacting
trapped Bose gas Tc of the ideal trapped Bose gas T0c and the temper-
ature of the ideal homogeneous Bose gas T idealc . The dominant effect
of the trapping potential in comparison to the critical fluctuations has
been verified for typical trap frequencies down to ωtrap/2π ≈ 9Hz48. 48 F. Gerbier et al.: Phys. Rev. Lett.,

vol. 92, (2004)Since the increase of the critical temperature due to critical fluctua-
tions in interacting gases is much smaller than the reduction due to
the repulsion in inhomogeneous traps, it can usually be neglected.

http://dx.doi.org/10.1103/PhysRevA.59.4595
http://dx.doi.org/10.1103/PhysRevA.59.4595
http://dx.doi.org/10.1103/PhysRevLett.83.1703
http://dx.doi.org/10.1103/PhysRevLett.100.140405
http://dx.doi.org/10.1103/PhysRevA.54.R4633
http://dx.doi.org/10.1103/PhysRevLett.92.030405
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.. Superfluidity in interacting trapped 3D Bose gases

The introduction of interactions has the most drastic effect on the vis-
cosity of the Bose condensate. The usual Landau criterion34 states that 34 L. Landau: Phys. Rev., vol. 60, (1941)
a superfluid with elementary excitation spectrum ϵ(𝐤) will become
unstable against perturbations with velocity 𝐯 when ϵ(𝐤) = 𝐤 ⋅ 𝐯 and
the minimum 𝐯critical satisfying this condition is the critical velocity.

𝐯critical = min ϵ(𝐤)|𝐤| . (3.35)

Using the free particle dispersion relation of the ideal gas, ϵ = ℏ2𝐤2/
(2m), it is immediately obvious that there exists no energy gap for
excitations and thus vcrit = 0. The ideal 3D Bose gas is hence not su-
perfluid. However, for an interacting homogeneous condensate near
its ground state, the elemental perturbative excitations are described
in good approximation by the Bogoliubov dispersion relation

ϵ(𝐤) = ±
√
ℏ2|𝐤|2
2m (

ℏ2|𝐤|2
2m + 2gn). (3.36)

Assume energy and momentum conservation of a scattering event
with an impurity of massM

M|𝐯before|2
2 =M |𝐯after|2

2 + ℏω(k), (3.37)

M𝐯before = ℏ𝐤 +M𝐯after, (3.38)

with the velocities 𝐯x before and after the collision. Now, the limit
|𝐤| ⟶ 0 immediately yields a minimal velocity vcritical of an impurity
to excite the condensate

vcritical = √
gn
m . (3.39)

Here,m andn are themass and the density of the condensed particles
respectively. Any scattering on an impurity below the critical velocity
does not excite the condensate, it is thus superfluid. The relation to the
interaction parameter g shows the direct dependence of superfluidity
on the presence of interactions. Superfluidity has been shown to also
occur in trapped gases49 in which case this simple derivation of the 49 C. Raman et al.: Phys. Rev. Lett.,

vol. 83, (1999)critical velocity gains a position dependence via n(𝐱) by means of a
local-density approximation.

The coherence properties for 3D Bose gases are – apart from the re-
markable onset of superfluidity – only changed quantitatively by the
introduction of interactions. In contrast, for 2D Bose gases, in addi-
tion to the onset of superfluidity, the coherence properties are altered
fundamentally which is subject of the following chapter. Since the
treatment of the interactions has been presented in terms of the inter-
action parameter g, it is now discussed how this parameter relates to
themicroscopic scattering process in ultracold 6Li in terms of the scat-
tering length. Additionally, the process of controlling the interactions
via a Feshbach resonance is introduced.

http://dx.doi.org/10.1103/PhysRev.60.356
http://dx.doi.org/10.1103/PhysRevLett.83.2502
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.. Tuning the interactions

The control of interparticle interactions is an exceptional feature of
ultracold atom systems, playing a pivotal role in every stage of our
experiment, from the efficient evaporative cooling, to the creation of
bosonic dimers. To this end, the interaction of the two lowest hyper-
fine states of 6Li with an external magnetic field, a so called Feshbach
resonance, is exploited. Since the general quantum mechanical treat-
ment of scattering is somewhat arduous, only an abbreviated sum-
mary of the basic concepts relevant for this work is given, which fol-
lows the excellent review J. Dalibard50. 50 J. Dalibard: Collisional dynamics of

ultra-cold atomic gases, (1999)The non-degenerate densities of the atomic vapors used in the ex-
periment are extremely dilute with configuration volumes of n3Dλ3dB
≪ 1, hence it is reasonable to restrict the treatment to binary collisions. The assumption of dominant binary col-

lisions breaks down with onset of de-
generacy, i. e. n3Dλ3dB > 1. In degen-
erate gases, three-body collisions can ac-
tually present the dominant scattering
channel51.
51 E. Burt et al.: Phys. Rev. Lett., vol. 79,
(1997)

Here, two distinguishable particles are assumed in the derivations, in
the case of ultracold 6Li, for example the two lowest hyperfine states.

Every two-body problem can be reduced to two one-body prob-
lems. The center of mass motion turns out to be trivial while the in-
teresting physics are contained in the relative wave function Ψk(𝐫 =
𝐫1 − 𝐫2) and in the interaction potential V(𝐫). Hence, we seek the so-
lution of the Schrödinger equation

[
𝐩2
2m−

+ V(𝐫)
]
Ψk(𝐫) = EkΨk(𝐫), (3.40)

where m− = m/2 is the reduced mass of the particles of mass m and
Ek = ℏ2𝐤2/(2m−). For any radially symmetric potential V(r), far from
the scattering center the wave function can be written with |𝐫| = r and
|𝐤| = k as

Ψk(r) ∝ eikr⏟
incoming plane wave

+f(k, θ)

scattered spherical wave
⏞eikr
r . (3.41)

Here, the scattering amplitude f(k, θ) describes the probability of scat-
tering for any momentum k and angle θ. Now, the scattering cross Note that only a single angle is required

since the scattering process is confined
to a plane due to the conservation of an-
gular momentum.

section σ(k), a value proportional to the probability that a scattering
event occurs, can be calculated by integrating over all solid anglesΩ

σ(k) = ∫Ω
|f(k, θ)|2 dΩ. (3.42)

For central potentials, as is the case here, there is no θ dependence
and the incoming and scattered wave functions can be expanded in
an angular momentum basis in so called partial waves, one for each
angular momentum number l = 0, 1, 2, 3,…52 52 J. J. Sakurai: Modern Quantum Mechan-

ics, Revised Edition, (1995)

σl(k) =
4π
k2 (2l + 1) sin

2(δk). (3.43)

Here, the effect of the potential is to introduce phase shifts δk for each
partial wave. However, the contribution of higher partial waves is ap-
proximately zero since the collisional energies available in an ultracold
gas are very low. This is intuitively understood when considering the

http://dx.doi.org/10.3254/978-1-61499-225-7-321
http://dx.doi.org/10.1103/PhysRevLett.79.337
http://dx.doi.org/10.1119/1.17781
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relative angular momentum L = p ⋅ d of two particles colliding with
an impact parameter d, sketched in Fig. 3.7. In order to scatter, their
impact parameter must be less than the range of interaction, given by
the van der Waals radius, i. e. d ≲ rvdW. In order to significantly ad-
mix higher partial waves with l > 0, an angular momentum of L ≳ ℏ
is required and hence relative momenta of p > L/d ≈ ℏ/rvdW.

d ≲ rvdW

𝐩

Figure 3.7: Sketch of two atoms collid-
ing, depicting the impact parameter d.
For the two atoms to interact, their im-
pact parameterdmust be less than their
van der Waals interaction radius rvdW.
Figure adapted from R. Fletcher53.
53 R. J. Fletcher: Bose-Einstein Condensa-
tion and Superfluidity in Two Dimensions,
(2015)

The van derWaals radius for 6Li is on the order of 50Å and thus the
required relative momenta would correspond to temperatures orders
of magnitude higher than typically found in ultracold atoms experi-
ments

kBT =
p
2m−

∼ ℏ2
r2vdW2m−

≳ 1000µK. (3.44)

Hence, the scattering in ultracold gases is dominated by the l = 0,
or s-wave scattering. The low energy behavior of the total scattering
cross section can now be simplified by realizing that the phase shifts
introduced by the scattering potential are directly proportional to k,
i. e. δk ∝ k2l+152 52 J. J. Sakurai: Modern Quantum Mechan-

ics, Revised Edition, (1995)lim
k→0

σ0(k) = 4πa23D. (3.45)

Hence, the scattering process can be described by a single number, the
s-wave scattering length a3D, defined by For fermions, the two-body wave-

function must be such that the spatial
wave function is anti-symmetric.
However, since the s-wave scattering
solution is symmetric, scattering be-
tween two identical fermions is strongly
suppressed at low temperatures.
Hence, spin-polarized mixtures are
non-interacting and spin mixtures must
be used in order to tune the interactions.

a3D = − lim
k→0

tan(δ0(k))
k . (3.46)

This is the foundation of the introduction of interactions via an effec-
tive interaction parameter, used at the start of this section. Where we
use the approximation that the scattering is due to a point-like interac-
tion potentialVmf(r) = g3Dδ(r)with g3D = 4πℏ2

m a3D. In alkali atoms,
the phase shifts and thus the scattering length can be controlled via the
interaction with a magnetic field making use of a Feshbach resonance.

(a)
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) Figure 3.8: (a) The two-channel model
of the Feshbach scattering resonance.
Here, the relative Lennard-Jones scat-
tering potential V(r) is sketched for
the open and the closed channel. A
bound state in the closed channel can be
brought into degeneracy with the con-
tinuum of the open channel via an ex-
ternal magnetic field acting on the mag-
netic moments, ∆µB. (b) Scattering
length a3D of the lowest two hyperfine
states of 6Li in dependence of an exter-
nal magnetic field in units of the Bohr
radius a0. How the bound state in the
closed channel is tuned while crossing
the resonance is sketched in the insets.
At the Feshbach resonance, the scatter-
ing length diverges when the bound
state is brought into degeneracy and be-
low it a bound state EB exists, facilitat-
ing the association of dimers. Figure
adapted from K. Morgener30.
30 K. H. Morgener: Microscopy of 2D
Fermi Gases Exploring excitations and ther-
modynamics, (2014)

In a Feshbach resonance, two atoms in one spin state are brought into
resonance with a molecular bound state in a different spin state. The
different magnetic moments μB of the spin states enable us to tune
their relative energies via an external magnetic field and shift the en-
ergetically available open channel into resonance with a bound state in
the closed channel as depicted in Fig. 3.8a. Shifting the bound state en-
ergy above or below the free continuum allows us to set the s-wave

http://dx.doi.org/10.1119/1.17781
http://photon.physnet.uni-hamburg.de/fileadmin/user_upload/ILP/Moritz/Publications/PhD_Theses/Kai_Morgener_PhD.pdf
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scattering length to an arbitrary value, described in the proximity of
the resonance approximately by

a3D ≈ abg(1 −
ΔB

B − B0)
. (3.47)

Here, abg is the off-resonant background scattering length, B0 the po-
sition and ΔB the width of the Feshbach resonance, sketched for 6Li
in Fig. 3.8b. Note that these considerations are made under the as-
sumption of a 3D scattering process. This assumption is still valid for
most of the 2D systems of ultracold gases since the confinement length
scale lz is typically much larger than the scattering length and hence
the scattering itself can be considered three-dimensional. This breaks
down however for very large scattering lengths, i. e. when approach-
ing the Feshbach resonance. In any case, it can be illuminating to de-
scribe the scattering process strictly two-dimensional since it turns out
that even if the microscopic scattering is three-dimensional, many of
the asymptotic phenomena are driven by 2D physics.

.. Effective two-dimensional scattering

The scattering amplitude introduced in the prior section contains the
physics of the collision process. If the scattering is considered strictly
two-dimensional, the 3D amplitude ( f(k)3D ) has to be replaced by
the 2D amplitude ( f(k)2D )33 with the 2D scattering length a2D 33 Z. Hadzibabic and J. Dalibard: Riv.

Nuovo Cimento, vol. 34, (2011)

f(k)3D = −
a3D

1 + ika3D
⟶ f(k)2D ≈

4π
− ln k2a22D + iπ. (3.48)

Note that while the 3D amplitude approaches a finite value for van-
ishing momenta, the 2D amplitude does not. Hence, the scattering
process in 2D is in general momentum dependent. If the 2D scatter-
ing length is rewritten in terms of the 3D scattering length, the vertical
confinement oscillator length lz, and κ ≈ 3.5

a2D = lz√κe−√
π
2

lz
a2D , (3.49)

amapping from 3D to 2D is obtained and the 2D scattering amplitude
can be written as

f(k) ≈ 4π
√2π lz

a3D − ln κk2l2z + iπ
. (3.50)

For the presented experiment, the lz/a3D term in the denominator
dominates over the logarithm and imaginary part. Hence, the scatter-
ing amplitude is approximately k-independent in a regime far away
from the Feshbach resonance and is thus typically written as

f(k) ≡ g̃ ≈ √8πa3Dlz
(3.51)

The removal of the confinement in this abstraction allows the descrip-
tion of a real world, i. e. 3D, system in terms of 2D physics. The di-
mensionless interaction parameter g̃ for example allows a convenient

http://dx.doi.org/10.1393/ncr/i2011-10066-3
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comparison of experiments with varying confinement and scattering
length but identical 2D low-momentum scattering dynamics. The in-
teraction parameters used in the GPE above are thus defined as fol-
lows

g3D =
4πℏ2
m a3D and g2D =

ℏ2
m g̃. (3.52)

Note that the introduction of the confinement has subtle effects such as
the existence of a bound state for all energies. However, these effects
are small for the interaction parameters the experiment is performed
at. However, the accurate description of an ultracold gas closer to res-
onance is still an issue under discussion.
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The coherence properties of interacting 2D Bose gases show a signif-
icant departure from the ideal gas case. An infinite two-dimensional
Bose gas can not undergo Bose-Einstein condensation for any finite
temperature. This implies that the first order correlation function al-
ways vanishes for distances much larger than the thermal de Broglie
wavelength. In 2016, the Nobel Prize in Physics has been awarded to
M. Kosterlitz, D. Thouless and D. Haldane for their work involving
the coherence properties of interacting two-dimensional Bose gases
which exhibit much richer physics compared to the ideal gas approx-
imation. These effects include for example the extension of the criti-
cality to the whole region below the critical point and not only close
to it. This critical phase is characterized by a non-vanishing and only
slowly decaying first order correlation function G1(x) ∝ x−η, with
the scaling exponent η. Additionally, the transition into this critical
region is marked by an unusual – infinite order – phase transition.
This Kosterlitz-Thouless (KT) transition, named after M. Kosterlitz and
D. Thouless, is driven by the creation and unbinding of vortex pairs
having opposite rotation.

The phenomena of this unique regime have been theoretically in-
vestigated by V. Berezinskii, M. Kosterlitz and D. Thouless and are
hence known as BKT-physics. Ultracold gases proved to be a versatile
model system to study BKT-physics and the associated phase transi-
tion. First investigated in the group of J. Dalibard in 2006/200720,54. 20 Z. Hadzibabic et al.: Nature, vol. 441,

(2006), 54 P. Krüger et al.: Phys. Rev.
Lett., vol. 99, (2007)

Later, the coherence properties for bosonic gases were studied in the
groups W. Phillips in 200921 and Z. Hadzibabic55 and for fermionic

21 P. Cladé et al.: Phys. Rev. Lett.,
vol. 102, (2009)

55 R. J. Fletcher et al.: Phys. Rev. Lett.,
vol. 114, (2015)

gases in the group of S. Jochim in 201526. Additionally, the super-

26 P. A. Murthy et al.: Phys. Rev. Lett.,
vol. 115, (2015)

fluid properties of bosonic gases have been studied in the groups of
J. Dalibard56, H. Perrin57 and Y. Shin, where vortices have also been

56 R. Desbuquois et al.: Nature Physics,
vol. 8, (2012)

57 C. De Rossi et al.: New J. Phys., vol. 18,
(2016)

observed58.

58 J.-Y. Choi et al.: Phys. Rev. Lett.,
vol. 109, (2012)
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This work concerns the analysis of two-dimensional Bose gases af-
ter time of flight. Examples of the data to be analyzed is given in
Fig. 5.5, where the expansion of a single highly oblate cloud of ul-
tracold bosons can be seen. The in situ image (left) does not show

http://dx.doi.org/10.1038/nature04851
http://dx.doi.org/10.1103/PhysRevLett.99.040402
http://dx.doi.org/10.1103/PhysRevLett.102.170401
http://dx.doi.org/10.1103/PhysRevLett.114.255302
http://dx.doi.org/10.1103/PhysRevLett.115.010401
http://dx.doi.org/10.1038/nphys2378
http://dx.doi.org/10.1088/1367-2630/18/6/062001
http://dx.doi.org/10.1103/PhysRevLett.109.125301


38

any significant densitymodulations. In contrast, the absorption image
taken after a short time of flight (right) shows strong density fluctua-
tions. The result is clearly incompatible with the expansion of a true
Bose-Einstein condensate (BEC) since the constant phase over the extent
of the condensate would not lead to any density modulation. On the
other hand, a thermal gas can also be ruled out since the length scale
of density fluctuations is incompatible with the de Broglie wavelength
λT at the given time of flight59. As will be shown later, the assumption 59 D. E.Miller et al.: Phys. Rev. A, vol. 71,

(2005)

Figure 4.1: From left to right: In situ
density distribution, after 1ms time of
flight. Note the formation of density
ripples which have been formed by the
transformation of phase excitations into
density ripples.

of coherence governed by BKT physics below the transition temper-
ature TKT is in good agreement with the experimental data. A 2D
Bose gas has quasi-long-range order, i. e. the phase only decays alge-
braically G1(x) ∝ x−η. The scaling exponent η vanishes for T = 0 and
increases with T towards η = 0.25. Hence at higher temperatures the
coherence decays faster. At the transition point η = 0.25, the scaling
exponent is still small and thus a high degree of phase coherence is
sustained also for distances much larger than λT .

In a simplified picture one could imagine the 2D condensate as a
collection of patches of constant phase i. e. numerous smaller BECs
with different but constant phase. Then, expansion during time of
flight would lead to constructive and destructive interference where
the patches overlap thus creating the observed density modulation.

Absorption images similar to Fig. 5.5 and Fig. 5.5 allow us to ex-
tract the scaling exponent η and hence theoretically a measure for the
superfluid density ns. In order to establish the theoretical founda-
tion, the algebraic decay of phase correlations in 2D Bose gases will
be introduced. The transformation of phase correlations to density
correlations will be dealt with formally in Section 4.1.

The goal of the ensuing discourse is the formal derivation of the
power law scaling of the first order correlation function i. e. G1(x) ∝
n0 |x/ξ|−η. This derivation will follow the formulation of L. Mathey60

based on the theoretical foundationprovided byC.Mora andY.Castin61
61 C. Mora and Y. Castin: Phys. Rev. A,
vol. 67, (2003)and is inspired by the review of Z. Hadzibabic and J. Dalibard62.
62 Z. Hadzibabic et al.: New J. Phys.,
vol. 10, (2008)

The mean field Bogoliubov treatment of a 2D Bose gas is known
to fail due to infrared divergences63. These divergences appear since

63 J. O. Andersen et al.: Phys. Rev. Lett.,
vol. 88, (2002)

the basic operator of any quantum mechanical study, the density, is

http://dx.doi.org/10.1103/PhysRevA.71.043615
http://dx.doi.org/10.1103/PhysRevA.67.053615
http://dx.doi.org/10.1088/1367-2630/10/4/045006
http://dx.doi.org/10.1103/PhysRevLett.88.070407
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defined as
n̂ = Ψ̂(𝐱)†Ψ̂(𝐱). (4.1)

For the regime of quasi-condensates, a small parameter for perturba-
tion is that the fluctuations of n are only minuscule

⟨n̂(𝐱)2⟩ − ⟨n̂(𝐱)⟩2
⟨n̂(𝐱)⟩2 ≪ 1. (4.2)

To evaluate the expectation value of n̂(𝐱)2 however, the field operators
need to be normal ordered and thus a Dirac distribution is introduced
at the origin δ(0)

⟨n̂(𝐱)2⟩ = δ(0)n̂(𝐫) + ⟨Ψ̂†Ψ̂†Ψ̂Ψ̂⟩. (4.3)

Hence, the density fluctuations are infinite for any point with nonva-
nishing density n. It has been shown by C. Mora and Y. Castin that a
self consistent theory is obtained by formulating the Gross-Pitaevskii
equation in second quantization on a discretized lattice of length l.
Thus turning the Dirac distribution δ(0) into a Kronecker δ𝐱,𝐱′ and
limiting the density variance to a finite value for any dimension d

var[n̂(𝐱)] = ⟨Ψ̂†Ψ̂†Ψ̂Ψ̂⟩ − n̂(𝐱)2 + n̂(𝐱)ld . (4.4)

With this approach, the divergence at x = 0 is removed and as it turns
out, the limit x⟶ 0 can even be taken safely.

Therefore, the discretized lattice operators bi are defined from the
field operators ψ̂(𝐱) as

ψ̂(𝐱)⟶ 1
ld/2bi. (4.5)

Here, l is the discretization length, d the dimension of the system and
bi annihilates a particle at site i. The density is then represented by

ψ̂(𝐱)†ψ̂(𝐱)⟶ 1
ldb

†
ibi. (4.6)

With these replacements, the mean field Hamiltonian for a pure con-
densate in continuous space

H = ∫d
2x
(
ℏ2
2m∇ψ̂(𝐱)∇ψ̂(𝐱)

+g2 ψ̂(𝐱)
†ψ̂(𝐱)†ψ̂(𝐱)ψ̂(𝐱)

−μψ̂(𝐱)†ψ̂(𝐱)
)

(4.7)

becomes

H =− t∑
〈ij〉
(b†
jbi + bjb†

i)

+ U2 ∑i
b†
ib†
ibibi

− μ∑
i
b†
ibi. (4.8)
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Here, the hopping energy is given by t = ℏ2/(2ml2) and the on-site
interaction energy by U = g/ld. Additionally, the chemical potential
was shifted by a constant via the substitution: μ − ℏ2/(ml2) ⟶ μ.
Investigating the phase of a condensate becomes more accessible in a
density-phase representation of the operators. To this end, the lattice
operators bi and b†

i are separated into a density operator √ni and an
operatorA that is connected to the phase of thewave functions, as will
become evident later

bi =Ai√ni (4.9)

b†
i =√niA†

i. (4.10)

The bi have to satisfy the usual commutation relations of bosonic lad-
der operators and thus operate on the Fock states |n⟩i with particle
number n at lattice point i as

bi|n⟩i = √n|n − 1⟩i (4.11)

b†
i |n⟩i =√n+ 1|n + 1⟩i. (4.12)

If one inserts the above replacements into Eq. (4.6) and recognizes
that the action of the √ni operator is √ni|n⟩i = √n|n⟩i, then a short
calculation reveals that Ai acts on the number states as

Ai|n⟩i = (1 − δn,o)|n − 1⟩i. (4.13)

Together with an analogous relation for A†
i this leads to the exact re-

lations

AiA†
i = 𝟙, A†

iAi = 𝟙− |0⟩i⟨0|, [Ai, A†
i] = |0⟩i⟨0|, (4.14)

where 𝟙 is the identity operator and |0⟩i⟨0| represents the projection
onto the vacuum state at lattice point i. As is immediately obvious
from the second term in Eq. (4.14), the operator Ai is not Hermitian.
An approximation must be made since any observable must be Her-
mitian and the commutation relation [ni, θi] = i/ld of the phase op-
erator θi and the density ni must be satisfied as well. A Hermitian
operator is obtained if the states |0⟩i do not contribute to the behavior
of the system and the projection is thus zero. This is the case for any
density fluctuation δn which is small compared to the mean density
itself, i. e. ⟨δn2i ⟩ ≪ ⟨ni⟩2. A simple phase operator that obeys the re-
quired conditions in good approximation can be defined by Ai = eiθi
and A†

i = e−iθi .
Next, we expand the density operator around the square root of its

expectation value n0, i. e. ni = n0 + δni and expand the Hamilto-
nian to second order in both the phase and density fluctuations. The
calculation is presented in detail in61 and the result reads 61 C. Mora and Y. Castin: Phys. Rev. A,

vol. 67, (2003)

H ≈∑
〈ij〉 (

tn0(θi − θj)2 +
t
4n0

(δni − δnj)2)+∑i
U
2 δn

2
i . (4.15)

http://dx.doi.org/10.1103/PhysRevA.67.053615
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To diagonalize the Hamiltonian, the phase and density operators are
replaced by their Fourier transforms normalized to the number of con-
densed atoms N0

θi =
1

√N0

∞
∑
𝐤

ei𝐤𝐱iθ𝐤 (4.16)

δni =
1

√N0

∞
∑
𝐤

ei𝐤𝐱iδn𝐤. (4.17)

With these replacements, the second order Hamiltonian, Eq. (4.15),
now reads The approximately equal sign ”≈” for

the second order approximated Hamil-
tonian will from now on be replaced by
the equal ”=” symbol for clarity.H =∑

𝐤 (n0ϵ𝐤θ
†
𝐤θ𝐤 +

ϵ𝐤
4n0

δn†
𝐤δn𝐤 +

U
2 δn

†
𝐤δn𝐤) (4.18)

A Bogoliubov-style transformation of the phase and density fluctu-
ation operators using the Fourier transform of the lattice operators
bi = 1/√N0∑ ei𝐤𝐱ib𝐤

δn𝐤 = √n0(u𝐤 + v𝐤)(b𝐤 + b†
−𝐤) (4.19)

θ𝐤 =
1

2i√n0
(u𝐤 − v𝐤)(b𝐤 − b†

−𝐤) (4.20)

and the usual quasiparticle excitation relations

u2𝐤 =
ℏω𝐤 + ℏ2𝐤2

2m + gn
2ℏω𝐤

(4.21)

v2𝐤 =
−ℏω𝐤 + ℏ2𝐤2

2m + gn
2ℏω𝐤

(4.22)

v𝐤u𝐤 = −
V𝐤n
2ℏω𝐤

(4.23)

results in the diagonal Hamiltonian

H =∑
𝐤
ℏω𝐤b†

𝐤b𝐤 + constant, (4.24)

where ℏω𝐤 is the dispersion relation

ℏω𝐤 = [
ℏ2𝐤2
2m (

ℏ2𝐤2
2m + 2V𝐤n)]

1/2
. (4.25)

The formulation in a density-phase notation of the lattice operators
reduces the complexity of the evaluation of the first order correlation
function of a homogeneous system significantly. Now,G1 can be writ-
ten as

G1(𝐱i) ≡ ⟨ψ̂†(𝐱)ψ̂(𝟎)⟩ ≈ 1
ld ⟨b

†
ib0⟩ ≈

n0
ld ⟨e

−iθieiθ0⟩. (4.26)

Using the moment generating function of any independent Gaussian
distributed random variable, confer Extra 4.1, the evaluation of the
expectation value in Eq. (4.26) can be pulled into the exponential and
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thus the first order correlation function at distance i from the origin is
simplified to

G1(i) ∝ e−〈(θi−θ0)2〉/2. (4.27)

From this, it becomes obvious that the difficulty in evaluating the first
order correlation function is reduced to evaluating the following ex-
pression

⟨(θi − θ0)2⟩ = ⟨(θ0 − θi)(θ0 − θi)⟩. (4.28)

Extra 4.1: Expected value of the exponential of a normally distributed random variable

Let X be a normally distributed random variable
with mean μ and variance σ2. Then, the expected
value of its exponential or its moment generating
function is

⟨eX⟩ =
+∞

∫
−∞

dx ex ⋅ 1
√2πσ2

e−(x−µ)2/(2σ2).

Completion of the square in the exponential
yields

⟨eX⟩ = 1
√2πσ2

+∞

∫
−∞

dx e− 1
2σ2 (x−(σ

2+µ))2+σ2
2 +µ.

Here, the exponential containing the mean and
variance can be pulled out of the integral. The
remaining integral can be rewritten as an integral

over a standard probability density which is nor-
malized to be equal to unity

⟨eX⟩ = eµ+σ2
2 ⋅ 1

√2πσ2

+∞

∫
−∞

dx e− 1
2σ2 (x−(σ2+µ))2

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
=1

.

Since for any quantum mechanical operator the
variance σ2 is calculated as64

Var(Ô) = ⟨Ô2⟩ − ⟨Ô⟩2⏟
µ

≡ σ2,

it becomes obvious that for any independent op-
erator û ofmean μ = 0 andGaussian distribution,
e. g. the phase operator θi, the following expres-
sion is true

⟨eîu⟩ = e− 1
2 〈û2〉.

64 M. G. Bulmer: Principles of Statistics,
(2012)

This problem is most easily solved in momentum space. Hence, a re-
placement of the phase operators by their Fourier transform

θi = 1/√N0∑
𝐤

ei𝐤𝐱iθ𝐤 (4.29)

and
θ0 = 1/√N0∑

𝐤
ei𝐤⋅0θ𝐤 = 1/√N0∑

𝐤
θ𝐤 (4.30)

results in

⟨(θi − θ0)2⟩ = ⟨(θ0 − θi)(θ0 − θi)⟩

=
〈
1
N0 (∑𝐤

θ𝐤 −∑
𝐤

ei𝐤𝐱iθ𝐤
)(∑𝐤′

θ𝐤′ −∑
𝐤′

ei𝐤′𝐱iθ𝐤′
)〉

=
〈
1
N0 ∑𝐤

(1 − ei𝐤𝐱i) θ𝐤∑
𝐤′
(1 − ei𝐤′𝐱i) θ𝐤′

〉
. (4.31)

To simplify the notation even further, Eq. (4.31) can be written as a
double sum over 𝐤 and 𝐤′

⟨(θi − θ0)2⟩ =
1
N0 ∑𝐤,𝐤′

(1 − ei𝐤𝐱i) (1 − ei𝐤′𝐱i) ⟨θ𝐤θ𝐤′⟩. (4.32)

https://books.google.de/books?id=BZi8AQAAQBAJ
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Here, moving the expectation value ⟨∗⟩ around the operators is al-
lowed by themonotone convergence theorem by B. Levi, which allows
the exchange of summation and integration for any non-negative infi-
nite series.

The next step is the evaluation of the expectation value of the phase
operators, ⟨θ𝐤θ𝐤′⟩. As before, a transformation to the Bogoliubov ba-
sis θ = 1

2i√n0 (u𝐤−v𝐤)(b𝐤−b
†
−𝐤) simplifies the expression and enables

easier computation. The expectation value of the phase operators in
momentum space is thus written as

⟨θ𝐤θ𝐤′⟩ =
−1
4n0

(u𝐤 − v𝐤)(u𝐤′ − v𝐤′)⟨(b𝐤 − b†
−𝐤)(b𝐤′ − b†

−𝐤′)⟩. (4.33)

The term consisting of the lattice operators b𝐤 can be further simpli-
fied by expansion, subsequent reordering and the use of the bosonic
commutation relations to

⟨(b𝐤 − b†
−𝐤)(b𝐤′ − b†

−𝐤′)⟩ = −δ𝐤,−𝐤′(2n𝐤 + 1). (4.34)

Here, b†
𝐤b𝐤 = n𝐤 represents themomentumdistribution. If Eq. (4.34)

is inserted into Eq. (4.33) and the Kronecker delta is evaluated, the
sum of exponentials yields a cosine term which results in

⟨(θi − θ0)2⟩ =
1
N0 ∑𝐤

1
2n0

(1 − cos(𝐤𝐱))(u𝐤 − v𝐤)2(2n𝐤 + 1). (4.35)

Since the above expression is true for any dimension, we transform
the discrete sum over 𝐤 into an integral∑𝐤 ⟶ ( 12π)

2
∫d2k and ap-

proximate the terms on the right hand. For non-zero temperature and
weak interaction energy, i. e. kBT > gn, the momentum distribution
can be approximated by n𝐤 ≈ kBT/(ℏω𝐤) and for small momenta the
relation (u𝐤−v𝐤)2 ≈ √2/(ξ|𝐤|) holds. Hence, the expectation value of
the phase operators can be written as

⟨(θi − θ0)2⟩ =
1
ρ0
2mkBT
ℏ2

1
(2π)2

kmax

∫
−kmax

d2k (1 − cos(𝐤𝐱))
𝐤2 (4.36)

≈ 1
ρ0
mkBT
ℏ2

1
π ln(kmaxx) (4.37)

Here, we introduced a short-range cut-off kmax ≈ 1/ξ and the real
space density ρ0 = n0/ld. The logarithmic dependence can be seen
intuitively, since the integral has only significant contributions from
excitations with |𝐤| > 1/|𝐱|, thus we can approximate 1−cos(𝐤 ⋅ 𝐱) ≈ 1. The exact relation ∇2 ∫d2k(1 −

cos(𝐤 ⋅ 𝐱))𝐤−2 = (2π)2δ(𝐱) lets us
infer the logarithmic dependency.Inserting Eq. (4.36) into Eq. (4.26) yields the desired single particle

first order correlation function

G1(|𝐱|) ∝ ρ0 (kmax|𝐱|)−η . (4.38)

The result is a formula that does not depend on the discretization
length l and as such the limit l ⟶ 0 can be made safely without
divergences. From Eq. (4.38) it is immediately clear that the phase The expression ρ = n/l does not di-

verge since bothn as well as l approach
zero in the thermodynamic limit.

correlations of an interacting 2D Bose gas at low temperatures decay
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much slower than exponential at large distances. This is not inconsis-
tent with the Mermin-Wagner theorem since the correlations vanish
for extremely large distances |𝐱| ⟶ ∞. In the degenerate case, how-
ever, the exponent in Eq. (4.38) is never greater than 1/4 and there-
fore the decay is extremely slow and a significant degree of coherence
remains. Hence, this state is, as Y. Kagan, B. Svistunov and G. Shlyap-
nikov65 describe it, a quasi-condensate, i. e. a condensatewith fluctuat- 65 Y. Kagan et al.: J. Exp. Theor. Phys.,

vol. 66, (1987)ing phase. See for example Fig. 4.2 for a graphic representation of the
algebraic decay compared to the case of a true Bose-Einstein conden-
sate with constant phase and a thermal gas with exponential decay.
Interestingly, although the algebraic decay of G1 is a defining char-
acteristic of the interacting 2D Bose gas and the change in functional
form from algebraic to exponential decay is the defining feature of the
KT transition of a 2D Bose gas, the above derivations does not eluci-
date the source of the phase transition at all. The conditions for valid-
ity of the discrete model require only variations of the phase between
two neighboring points to be small. As it turns out, this precludes the
existence of vortices, the driving force behind the KT transition. 0 2 4 6 8 100

1

Distance (1/λT )

g 1 Constant
Algebraic
Exponential

Figure 4.2: The phase correlation func-
tion g1 for constant phase (blue) com-
pared to algebraic (red, dashed) and ex-
ponential (yellow, dotted) decay. Note
the relatively slowdecay andfinite value
at distances of manyλT for the algebraic
decay. Here, a short-range cut-off was
introduced into the algebraic decay, con-
fer Chapter 8.

.   

We explicitly assumed small density fluctuations ⟨δn2⟩ ≪ ⟨n⟩2 and a
slowly varying phase gradient ∇θ ≪ 1 to reach the approximation of
the Hamiltonian in Eq. (4.15). By doing so, phononic excitations were
included but not vortex excitations which exhibit a phase jump across
the vortex core and a vanishing density at the vortex core. This section
will describe the concept of a vortex and vortex pairs in a 2D bosonic
condensate and how the creation and unbinding of these vortex pairs
is responsible for the unusual phase transition in 2D Bose gases.

Since a full thermodynamic description of the role of vortices in 2D
gases is rather involved, a more intuitive picture is presented in order
to illustrate how vortices drive the KT transition. To this end, we will
estimate the Helmholtz free energy of a single vortex in a condensate.
The sign of the free energy enables us to reason if a vortex excitation
is energetically possible, i. e. if energy is gained or lost when creating
a free vortex. The free energy is defined as F = U − TS, where U is
the total internal energy and T and S are the temperature and entropy,
respectively. The temperature is a parameter and hence the internal
energy and the entropy need to be obtained. For a weakly interacting
gas, the internal energy is reasonablywell approximated by the kinetic
energy U ≈ Ekin = m

2 𝐯2. Thus, we require the velocity 𝐯 which is
defined via the phase gradient

𝐯 = ℏ
m∇θ. (4.39)

For anywell behaved, i. e. continuously twice-differentiable, scalar field
Φ, it is true that ∇×∇Φ = 0. Thus, it is implied that the velocity field
must be curlless

∇ × 𝐯 = 0. (4.40)
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However, if the gas contains points of vanishing density, the phase is
not necessarily well behaved and it is possible for the phase to wind
around that density defect in multiples of 2πwith

Δθ = ∮d𝐬 ⋅ ∇θ = 2πlwind, (4.41)

where thewinding number lwind counts the number of turns. Without
loss of generality, a circular system of size R is assumed, which will
tend towards infinity later on. Then, the kinetic energy of a free vortex,
i. e. a condensate that is described by the ansatz ψ = √neilwind𝛗 with
density n and azimuthal coordinate𝛗, is given by the Gross-Pitaevskii
equation (GPE) in cylindrical coordinates

E =
Z

∫
0

dz
R

∫
0

2πrdr
(
ℏ2
2m (

d√n
dr )

2
+ ℏ

2l2wind
2mr2 √n

2 + g2√n
4

)
. (4.42)

Here, integration over the z direction is readily performed and since
the second term in the integrand dominates, the remaining terms will
be discarded. A common estimate of the radial integration is based on
the fact that the vortex under consideration has vanishing density n at
r = 0 and for distances on the order of the healing length, the density
has approached the bulk value of the superfluid density n(r = ξ) ≈
ns. Thus, the integral is considerably simplified by approximating the
densityns as constant over the interval [ξ, R) and omitting the first and
third term

E ≈ Z
R

∫
ξ

2πrdr ℏ
2l2wind
2mr2 ns = Z

πℏ2nsl2wind
m ln(

R
ξ) . (4.43)

From this, it is apparent that the energy of a free vortex diverges log-
arithmically with the system size R. Note that it is assumed that only
the superfluid component rotates under the phase gradient of the vor-
tex which is reasonable since the normal component does not have
any phase stiffness and is thus not affected directly by the presence of
a vortex.

Since the goal is to compute the free energy F ≈ Ekin − TS of a vor-
tex, with the internal energy Ekin which we have calculated above, the
remaining step is to estimate the entropy S.

The number of possible states a single vortex of size πξ2 can occupy
in a system of size πR2 is approximately given by the ratio πR2

πξ2 . Thus,
the entropy of a single vortex can be estimated as

S = kB ln(
πR2
πξ2) = 2kB ln(

R
ξ) . (4.44)

The combination of Eq. (4.43) and Eq. (4.44) for a system size ofZ = 1
leads to the free energy associatedwith one singly charged free vortex,
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i. e. lwind = 1
F
kBT

= E
kBT

− S (4.45)

= ρs
πℏ2
mkBT

ln(
R
ξ) − 2kB ln(

R
ξ) (4.46)

= 1
2(ρsλ

2
T − 4) ln(

R
ξ) (4.47)

From Eq. (4.47), it is clear that the free energy associated with the
creation of a free vortex changes sign at ρsλ2T = 4. Since the logarith-
mic term diverges for large system size, this indicates two strongly
contrasting regimes. If the phase-space density is greater than 4, i. e.
ρsλ2T > 4, the free energy is large and positive. Thus, the creation of a
free vortex is strongly suppressed and the system is stable against vor-
tex excitations. If ρsλ2T < 4 instead, the free energy is large and nega-
tive. Hence, the system becomes unstable against excitations of a free
vortex since the appearance of a free vortex reduces ρs and thus in-
creases the possibility for the creation of additional free vortices even
further. Via this runaway process, the condensate density will be ul-
timately reduced to zero. That means, in contrast to 3D, there cannot
exist a 2D condensate with densities between 0 and 4/λ2T . This fact is
referred to as the superfluid jump or universal jump. This remarkably
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Figure 4.3: Sketch of the proliferation
of free vortices when crossing the KT
transition. For T < TKT, a superfluid
phase exists where vortices only exist in
bound pairs, hence not disturbing the
phase globally. With quasi-long-range
order maintained, the correlations de-
cay only algebraically. When T > TKT,
free vortices proliferate which destroy
phase correlations even for small dis-
tances, hence the first order correlation
function g1 decays exponentially.simple estimate based on a self consistency argument accurately pre-

dicts the phase-space density at the transition temperature TKT . Un-
fortunately, the direct calculation of TKT itself is more involved since
it depends on the exact nature of the short-range physics. Also, the
presented argument does not capture the microscopic reason for the
proliferation of a free vortex. At any non zero temperature, pairs of
tightly bound vortices with opposite rotation are continuously excited
and annihilated, sketched on the left side of Fig. 4.3. As the energy of
a vortex pair is finite and its entropy in this regime is still divergent,
the free energy of vortex pairs is always negative and the system is
stable. As the temperature is increased, the number as well as the size
of the vortex pairs increases. When the pair size becomes comparable
to the distance between pairs, the vortices effectively screen the attrac-
tive interaction within a vortex pair and thus increase the size of the
vortex pair even further. As TKT is approached from below, this leads
eventually to the break up of the vortex pairs and results in a plasma
of free vortices destroying even quasi-long-range order andwith it su-
perfluidity, sketched on the right side of Fig. 4.3.
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(a) (b) (c) Figure 4.4: Illustration how the prolif-
eration of vortices alters the phase of
the quasi-condensate. Here, the phase
is represented by arrows. (a) When
no vortices are present, the phase is or-
dered and only minor deviations oc-
cur. Note that the arrows on the edge
are aligned, i. e. no circular path can be
found that follows the orientation of the
arrows. (b) A vortex (red) and antivor-
tex (blue) pair does not destroy the ar-
rows alignment globally. Despite the ro-
tation in the close vicinity, a path enclos-
ing the pair cannot be found by follow-
ing the orientation of the arrows. Hence,
the phase canvas is only disturbed lo-
cally, quasi-long-range order is main-
tained. (b)A single free vortex alters the
phase canvas globally, when traversing
a closed path around the core, a phase
of 2π will be picked up. At the vortex
core, the arrows must point either into
(or out of) the page, hence changing the
topology of the phase canvas due to the
presence of a ”hole”. Figure is adapted
from66.
66 A. J. Beekman: Vortex duality in higher
dimensions, (2011)

One remarkable feature of this transition is precisely the absence
of any significant thermodynamic features at the critical point. Since
it is of infinite order, no sudden change in thermodynamic proper-
ties occurs. Only the decay of phase correlations changes its func-
tional form. This is the reason why this kind of transition is called
a topological phase transition, illustrated in Fig. 4.4. In this context,
it is related to the fact that as long as the phase of the condensate
can be described locally by a suitable order parameter which varies
smoothly over the extent of the condensate it is topologically identi-
cal to the Bose-Einstein condensate with long-range order (LRO). Long
wavelength phonons which destroy LRO do not alter the topology of
the system. Whereas a free vortex affects the phase globally in the in-
tegration along any path through the condensate and thus cannot be
unwound. This state, which includes free vortices, is topologically dif-
ferent from a BEC and thus not superfluid. Interestingly, the onset of
superfluidity is not associatedwith the phenomenon of condensation,
as is the case in 3D, but with the sudden change of phase topology.

More extensive treatments of the vortex dynamics at the KT phase
transition – first analytically by D. Fisher et al.67 for ultra weak interac- 67 D. S. Fisher and P. C. Hohenberg:

Phys. Rev. B, vol. 37, (1988)tions and later on byN. Prokov’ev et al.68,69 usingMonte Carlo simula-
68 N. Prokof’ev et al.: Phys. Rev. Lett.,
vol. 87, (2001), 69 N. Prokof’ev and B.
Svistunov: Phys. Rev. A, vol. 66, (2002)

tions – led to the numerical solution of the critical phase-space density
Dc at the transition point given by

Dc = (ntotalλ2T )c = ln(
380 ± 3
g̃ ) , (4.48)

where g2D = ℏ2/mg̃ denotes the effective long-wavelength interac-
tion parameter. This result is formally only valid for the weak cou-
pling limit, g̃ ≪ 1. Nevertheless, it is also a very good approximation
for stronger interactions26 almost up to the naive limit of the break- 26 P. A. Murthy et al.: Phys. Rev. Lett.,

vol. 115, (2015)down of Eq. (4.48) atDc > 4which would suggest a valid regime for
the above expression for interaction parameters of g̃ ⪅ 7. Thus, with
the help of Eq. (4.48) it is possible to estimate the transition tempera-
ture for a given total density and interaction. The main differences
highlighted in the prior chapters are presented in Table 4.1, which
show the much richer physics of the interacting 2D system compared
to its ideal or 3D counterparts.

Interacting 3D Gas Interacting 2D Gas

Condensation Yes If trapped
Long Range Order Yes Quasi
Superfluidity Yes Yes

Table 4.1: Overview of interacting gas
properties for different dimensionality.

http://books.google.com/books?vid=ISBN9789085931133
http://dx.doi.org/10.1103/PhysRevB.37.4936
http://dx.doi.org/10.1103/PhysRevLett.87.270402
http://dx.doi.org/10.1103/PhysRevA.66.043608
http://dx.doi.org/10.1103/PhysRevLett.115.010401
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The unusual phenomena of two-dimensional superfluid systems of
bosons, or fermions, have been the focus of scientists even before direct
optical access to single layers of particles has been possible. Thus, a
short overview of relevant studies on two dimensional systemswill be
given in addition to an excerpt of the work in the context of this thesis.
First, the early experimental studies of the KT type phase transition
on 2D layers of superfluid bosons, in this case a film of liquid 4He,
are presented. Then, the pioneering work on 2D Bose gases in the
field of ultracold atoms will be introduced. A short presentation of
the studies of coherence and superfluidity in 2D systems of ultracold
atoms follows, separated into the experiments concerning bosons and
those regarding fermions. Subsequently, the theoretical framework
for the analysis of the phenomena observed during this work will be
introduced.

Superfluidity in 2D helium films
Already in 1978, D. Bishop and J. Reppy showed in an impressive ex-
periment on a film of superfluid 4He adsorbed on a torsional oscilla-
tor that there exists a “fundamental difference between the onset phe-
nomena in two- and three-dimensional superfluids”1. This supplies 1 D. Bishop and J. Reppy: Phys. Rev.

Lett., vol. 40, (1978)strong support for the validity of the Kosterlitz-Thouless picture of the
nature of the phase transition. In their experiment, a thin film of 4He
is adsorbed on a torsional pendulum and subsequently cooled below
the critical temperature for the onset of superfluidity. While the pen-
dulum is driven close to its resonance frequency, the oscillation period
and dampening is measured. Once the adsorbed helium turns super-
fluid it contributes no longer to the inertia of the pendulum and hence
the observed period and dissipation changes. They observe a sudden
change in the period shift and a strong peak in the dissipation which
can be fitted accurately with a dynamic theory by V. Ambegaokar, B.
Halperin, D.Nelson, and E. Siggia70. This theory expands on the static 70 V. Ambegaokar et al.: Phys. Rev. Lett.,

vol. 40, (1978)theory developed by J. Kosterlitz and D. Thouless6,71 and is based on
6 J. M. Kosterlitz and D. J. Thouless: J.
Phys. C, vol. 6, (1973), 71 J. M. Kosterlitz:
J. Phys. C, vol. 7, (1974)

http://prl.aps.org/abstract/PRL/v40/i26/p1727%7B%5C_%7D1
http://dx.doi.org/10.1103/PhysRevLett.40.783
http://dx.doi.org/10.1088/0022-3719/6/7/010
http://dx.doi.org/10.1088/0022-3719/7/6/005
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the creation and dissipation associated with the movement of 2D vor-
tices. The fit parameters show excellent agreement with the theoret-
ical value for the superfluid density at the transition temperature Tc
derived in a previous chapter to be nsλT (Tc)2 = 4. Despite the good
agreement to experiments with torsional oscillators (M. Chester and
L. Yang72) and the propagation of third sound (R. Hallock, J. Mochel, 72 M. Chester and L. C. Yang: Phys. Rev.

Lett., vol. 31, (1973)I. Rudnick73) with the theory proposed by Kosterlitz and Thouless, no
73 I. Rudnick: Phys. Rev. Lett., vol. 40,
(1978)

insight into the microscopic driving mechanism could be gained.

Pioneering work on coherence of bosonic 2D quantum gases
Almost 30 years later, measurements on ultracold atomic gases could
elucidate for the first time the connection between the vanishing al-
gebraic phase decay and the proliferation of vortices. In the pioneer-
ing work of J. Dalibard et al., multiple 2D layers of weakly interacting
87Rb atoms at very low temperatures interfere during ballistic expan-
sion20,74,75. During expansion the atom clouds overlap and the wave 20 Z. Hadzibabic et al.: Nature, vol. 441,

(2006), 74 Z. Hadzibabic et al.: Phys.
Rev. Lett., vol. 93, (2004), 75 S. Stock et
al.: Phys. Rev. Lett., vol. 95, (2005)

functions begin to interfere. After a short time of flight, the expanded
clouds are imaged and a 2D interference pattern similar to the those
depicted in Fig. 5.1a is recored. The resultant interference pattern is
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Figure 5.1: (a) Probing the coherence of
2D atomic gases usingmatter wave het-
erodyning. (b) Examples of average in-
tegrated interference contrast 〈C2〉 are
shown for low (blue circles) and high
(red squares) temperature in depen-
dence of the integration length. From
these curves, the decay exponent α is
determined. (c) Emergence of quasi-
long-range order in a 2D gas, as shown
by the sudden decrease of the expo-
nent α with increasing average con-
trast. The dashed lines indicate the the-
oretically expected values of α above
and below the Kosterlitz-Thouless (KT)
transition in a uniform system. Figure
adapted from20.
20 Z. Hadzibabic et al.: Nature, vol. 441,
(2006)

fitted with a sinusoidal function and the extracted local contrast is in-
tegrated over a variable length Lx in the x-dimension to yield the in-
tegrated contrast ⟨C2(Lx)⟩, proposed by A. Polkovnikov et al76. Ab- 76 A. Polkovnikov et al.: Proc. Natl. Acad.

Sci. U.S.A., vol. 103, (2005)solute values in agreement with the theoretical description have been
measured over the KT transition. The integrated contrast along the
x-axis, for a system of two identical but independent condensates that
has expanded into the z-axis and in which the length Lx ≫ Ly is given
by

⟨C2(Lx)⟩ ≈
1
Lx

Lx

∫
0

dx (g1(x, 0))2. (5.1)

http://dx.doi.org/10.1103/PhysRevLett.31.1377
http://dx.doi.org/10.1103/PhysRevLett.40.1454
http://dx.doi.org/10.1038/nature04851
http://dx.doi.org/10.1103/PhysRevLett.93.180403
http://dx.doi.org/10.1103/PhysRevLett.95.190403
http://dx.doi.org/10.1038/nature04851
http://dx.doi.org/10.1073/pnas.0510276103
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For temperatures above the critical point, for which the phase correla-
tions decay exponentially, the scaling of the fringe contrast is inversely
proportional to the integration distance, ⟨C2(Lx)⟩ ∝ (1/Lx)2⋅0.5. How-
ever, for temperatures below the critical point, T < Tc, the exponent
α is defined in the same manner as the scaling exponent derived in
Chapter 4 and varies as 0 < α < αc = 0.25. Thus, at and below the
phase transition, the integrated contrast scales as ⟨C2(Lx)⟩ ∝ (1/Lx)2⋅α.
The observed sudden jump in the averaged contrast in Fig. 5.1c from
α ≈ 0.5 to α ≈ 0.25 shows strong indication that the phase transition
has been reached. Since the exact relation between the superfluid den-
sity ρs and the condensate density ρc is not completely understood in
2D atomic gases, it is not clear if the superfluid regime has been ex-
plored. Thus, the convergence of themeasured exponent to the critical
value of ≈ 0.25might be explained by the inequality of condensate and
superfluid density, the inhomogeneity of the sample or attributed to
residual heating in the trapping potential. A sharp dislocation in the
interference pattern recorded close to Tc provides evidence for the oc-
currence of the universal jump in superfluid density and the involvement
of free vortices in the crossover region. Subsequently, also the critical
atom number of an array of weakly interacting 87Rb atoms has been
studied54. The results rule out the application of the conventional 54 P. Krüger et al.: Phys. Rev. Lett.,

vol. 99, (2007)Bose-Einstein condensate (BEC) theory of ideal gases to the interacting
Bose gases used in the experiments.

Superfluidity of single bosonic layers
The dynamical properties of single layer Bose systems were studied
by R. Desbuquois56, again in the group of J. Dalibard. They provide 56 R. Desbuquois et al.: Nature Physics,

vol. 8, (2012)the first direct observation of superfluidity in ultracold 2D gases by
stirring a sample with a repulsively tuned laser beam, as sketched in
Fig. 5.2a. A gas of approximatelyN = 35 000− 90 000 weakly interact-
ing 87Rb atoms is prepared in a harmonic trap with an aspect ratio of
≈ 56 and interaction parameter g̃ = 0.093.

(a) (b)

(c)2D cloud

Objective

Stirring beam

PBS

Imaging

10µm

0 0.5 1.0 1.5 2.0
v (mm/s)

96
98
100
102
104

T f
(n

K)

−0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5
µloc/kBT

0

1

v c
(m

m
/s

)

Figure 5.2: (a) A trapped 2D gas of
87Rb atoms is perturbed by a focused
laser beam, which moves at constant ve-
locity on a circle centered on the cloud.
(b) Typical curves of the temperature
after stirring the laser beam at vary-
ing velocities in the superfluid regime
(c) The critical velocities vc obtained
[…], plotted versus the single param-
eter µloc/kBT . The gray shaded area
represents the expected superfluid re-
gion, whereas the dashed line indicates
the measured transition point. Figure
adapted from56.
56 R. Desbuquois et al.: Nature Physics,
vol. 8, (2012)

After stirring, the temperature and chemical potential of the cloud
is determined via a Hartree-Fock fit to the thermal wings. When the

http://dx.doi.org/10.1103/PhysRevLett.99.040402
http://dx.doi.org/10.1038/nphys2378
http://dx.doi.org/10.1038/nphys2378
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stirrer lies well in the expected superfluid region, a final temperature
Tf curve similar to Fig. 5.2b is recorded. Here, a sharp bend can be
observed close to v = 1mm/s which is identified as the critical veloc-
ity, below which there is no dissipation. For large stirring radii, when
the stirrer is well in the normal regime, no such sharp bend can be ob-
served. This type of measurement is repeated for different values of
the universal ratio μloc/kBT , which is implied by the scale invariance
of the weakly interacting Bose gas. Here, μloc is the chemical potential
in the local density approximation. When the thusly extracted criti-
cal velocities are plotted versus μ/kBT , a sharp discontinuity can be
observed indicating the transition from the normal to the superfluid
phase, see Fig. 5.2c. Here, the gray shading represents the theoretical
prediction for the superfluid region, the authors attribute the small
discrepancy to the non-zero width of the stirrer which has also re-
cently been shown to impact the absolute value of the critical veloc-
ity77. 77 V. P. Singh: Probing Superfluidity of Ul-

tracold Bose Gases via Laser Stirring and
Noise Correlations, (2017)

Asymmetric but simultaneously very different approach to themea-
surement of local superfluidity via global observables in single 2D lay-
ers has been pursued by the group of H. Perrin57. A similar weakly 57 C. De Rossi et al.: New J. Phys., vol. 18,

(2016)interacting Bose gas in the quasi-2D regime is prepared in a highly
oblate elongated harmonic trap at an aspect ratio of ≈ 40 and inter-
action parameter g̃ ≈ 0.1056. After preparation, the trap is rotated
suddenly by 10° which excites a so called scissor mode, sketched on
the left side of Fig. 5.3a. This mode exhibits characteristic frequen-
cies for the nearly collisionless thermal and hydrodynamic, i. e. super-
fluid, fraction. Examples of the oscillations extracted from the cloud
average ⟨xy⟩ after varying hold time can be seen in Fig. 5.3c. Here,
the red open squares (blue open triangles) show the response of the
thermal (superfluid) fraction , respectively. The fit to the observed
oscillations with a simple model retrieves frequencies on a lower and
an upper branch, [0,ω−] and [ωhd,ω+] , respectively. As soon as a
non-superfluid fraction is present, the scissor mode frequency is ex-
pected to shift from 0 ⟶ ω− and ωhd ⟶ω+, which can be clearly
observed in Fig. 5.3b.
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Figure 5.3: (a) Sketch of the experi-
mental setup and procedure. The gas
is set into motion by rotating the trap
10°. At first, the complete cloud is an-
alyzed and subsequently only a an area
around the center with equi-density
radii rc. (b) High frequency (top)
and low frequency (bottom) component
extracted in the analysis for three de-
creasing superfluid fractions (blue cir-
cles, red diamonds and pink squares,
respectively)(c) Examples of the oscil-
lations extracted from the cloud aver-
age 〈xy〉 for varying hold time. The
red open squares (blue open triangles)
show the response of the thermal (su-
perfluid) fraction respectively. Figure
adapted from57.
57 C. De Rossi et al.: New J. Phys., vol. 18,
(2016)

In a second step, the cloud was not averaged as a whole, although
a signal was still observable, but only on a region around the center,
depicted on the right side of Fig. 5.3a. When extending this region

http://dx.doi.org/10.1088/1367-2630/18/6/062001
http://dx.doi.org/10.1088/1367-2630/18/6/062001
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from the center on equi-density lines to radii rc, a very clear transi-
tion can be observed in Fig. 5.3b. The experiment was performed for
varying superfluid fraction which results in no shift towards higher
frequencies when no thermal part is present (blue circles), a sharp
bend when the normal-superfluid boundary is well defined (red di-
amonds) and a gradual transition when the fractions are not clearly
separated (pink squares). With this, the authors have demonstrated
a novel method to study the superfluid to normal boundary and also
provided evidence that the coupling of the two fluids induces “damp-
ing rates larger than the usual Landau damping” for the superfluid.
Recently, this approach has been extended to forgo the dependency on
scattering theory in favor of a model free method based on principal
component analysis78. 78 R. Dubessy et al.: AIP Conf. Proc.,

vol. 1936, (2018)

.     

Studies on a single layer of very weakly interacting (g̃ = 0.02) 23Na
atoms in a quasi 2D geometry in the group of D. Phillips21 have shown 21 P. Cladé et al.: Phys. Rev. Lett.,

vol. 102, (2009)indication of the emergence of a trimodal phase in the thermal to su-
perfluid crossover after time of flight. Low inter-particle interaction
and direct imaging access to the 2D plane allowed the azimuthal av-
erage of density and thus the observation of an intermediary quasi-
condensate component. By applying a Raman pulse in a Ramsey-like
sequence, an in situ interference image of two copies of the Bose gas
is obtained. Similar to the work of J. Dalibard, an averaged contrast
over the central interference fringes is extracted and a slower then
thermal decay of the normalized first order correlation function can
be observed.

Imaging the momentum properties via matter wave focusing
The research on single 2D layers of highly confined bosons was ex-
tended to a flexible 6Li system in the group of S. Jochim23. The in- 23 M. G. Ries et al.: Phys. Rev. Lett.,

vol. 114, (2015)teraction strength of the 6Li dimers can be controlled by means of a
Feshbach resonance. Using direct perpendicular imaging access to
the 2D plane and magnetically focusing the expanding gas, an aver-
agedmomentum distribution can bemeasured26. From this, a Fourier 26 P. A. Murthy et al.: Phys. Rev. Lett.,

vol. 115, (2015)transform produces the normalized first order correlation function,
see Fig. 5.4a. A qualitative change in the decay of g1 can be observed
when increasing the sample temperature across the phase transition,
here the shape of g1 changes from linear to sub-linear in the shown
logarithmic plot. The fitted decay follows the expected power law scal-
ing until a thermal gas is produced. The thermal gas shows clearly a
better agreement with exponential decay as can be seen in Fig. 5.4b,
where a lower χ2 value indicates a better fit. Additionally, the trap av-
eraged scaling exponentswere fitted along the Bose-Einstein to Bardeen-
Cooper-Schrieffer crossoverwith no discernible difference between at-
tractive and repulsive interactions, shown in Fig. 5.4c. Remarkably,
the comparison of the critical central phase-space density D0, with

http://dx.doi.org/10.1063/1.5025465
http://dx.doi.org/10.1103/PhysRevLett.102.170401
http://dx.doi.org/10.1103/PhysRevLett.114.230401
http://dx.doi.org/10.1103/PhysRevLett.115.010401
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bosonic quantum Monte Carlo simulations showed excellent agree-
ment even for large interaction parameters of g̃= 2.76 and only breaks
down for interactionparameterswell into the strongly-interacting regime
at g̃= 7.75, cf. Fig. 5.4d and e.
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Figure 5.4: a) First order correlation
function g1 for different temperatures
t = T/T0BEC. At high temperatures, cor-
relations decay exponentially, whereas
at low temperatures algebraic decay is
observed by the authors. (b) The qual-
itative change in decay is visible in the
the χ2 error for both exponential (red
circles) and algebraic fits (purple cir-
cles). From this, the transition tempera-
ture (dashed line) could be determined.
(c) The critical exponent ηc stays ap-
proximately constant for all ln(kFa2D).
(d) and (e) Peak phase space density
D0. Both panels show experimental
data (purple circles) and simulated data
for bosons (yellow circles) for the cou-
pling strengths g̃ = 2.76 and g̃ = 7.75
respectively. The vertical dashed lines
indicate the corresponding critical tem-
peratures. Even at g̃ = 2.76 excel-
lent agreement between experiment and
simulation can be observed verifying the
relation Dc = ln(380/g̃) at this inter-
action strength. For higher interaction,
however, the simulation is seen to devi-
ate from the measured results. Figure
adapted from26.
26 P. A. Murthy et al.: Phys. Rev. Lett.,
vol. 115, (2015)

Phase properties accessible via interference after short time of flight
The interference property of degenerate gases has recently been the fo-
cus to gain insight into the quasi-condensates coherence, since direct
imaging of the quasi-condensates phase is still technically impossible.
Multiple attempts of the group of Y. Shin have notably shown that the
self interference of a 2D quasi-condensate exhibits distinct density rip-
ples after short time of flight and requires a large degree of precision
and imaging calibration as well as compensation58,79,80, which will be 58 J.-Y. Choi et al.: Phys. Rev. Lett.,

vol. 109, (2012), 79 J.-Y. Choi et al.: Phys.
Rev. Lett., vol. 111, (2013), 80 S.-W. Seo
et al.: Phys. Rev. A, vol. 89, (2014)

expanded on in Chapter 8. Inspired by their work and the results pub-
lished in R. Desbuquois’ doctoral thesis27, which indicated the possi-

27 R. Desbuquois: Thermal and superfluid
properties of the two-dimensional Bose gas,
(2013)

bility to use the phase interference to probe the first order correlation
function, the experiment presented in this work was realized.

Figure 5.5: Density images after freely
expanding for varying time. Demon-
strating the formation of density ripples
from in situ phase fluctuations. From
left to right: In situ density distribution,
1ms, 2ms and 3ms time of flight.

Weachieveddirect high resolution access to one highly confined 2D
layer of bosonic 6Li dimers after short time of flight, which presents
the opportunity to accuratelymeasure the normalized density-density
correlation function g2(𝐱). Using a theoretical prediction of the time

http://dx.doi.org/10.1103/PhysRevLett.115.010401
http://dx.doi.org/10.1103/PhysRevLett.109.125301
http://dx.doi.org/10.1103/PhysRevLett.111.159602
http://dx.doi.org/10.1103/PhysRevA.89.043606
https://tel.archives-ouvertes.fr/tel-00973469/document
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propagation of in situ phase fluctuations developed by V. Singh and
L. Mathey, we are able to infer the functional form and possibly the
scaling exponent of the first order correlation function g1(𝐱) locally.
The absorption images displayed in Fig. 5.5 show an expanding ultra-
cold cloud of bosonic 6Li dimers at increasing time of flight, studied
in our group for harmonically trapped gases by N. Luick81. While the 81 N. Luick: Local probing of the Berezinskii

– Kosterlitz – Thouless transition in a two-
dimensional Bose gas, (2014)

in situ density distribution is smooth, density ripples form after short
time of flight. These density fluctuations stem from the time prop-
agation of the phase fluctuations initially present in the gas. In do-
ing so, the phase correlations are translated into density correlations.
The increasing length scale of the density correlations for longer time
of flight, samples the inherent phase correlations at different length
scales – and thus momenta – in resemblance to the Talbot effect.

Due to the recent development of a single homogeneous 2D layer
of 6Li in our group, the experiment is extended to attempt the quan-
titative study of the interference pattern in larger detail, due to the
increased signal-to-noise ratio (SNR) and good optical access.

.         

Many of the recent quantitative analyses of self interference images af-
ter short time of flight (ToF) are based on the work of A. Imambekov82, 82 A. Imambekov et al.: Phys. Rev. A,

vol. 80, (2009)which has been extended and applied to ultracold 2D 87Rb and 6Li
systems by the group of L. Mathey83. The dependency of the den- 83 L. Mathey et al.: Phys. Rev. A, vol. 79,

(2009)sity ripples on the ToF can be regarded qualitatively as a realization
of the Talbot effect, i. e. a time dependent sampling of the dominant
momentum contribution. Phase excitations with larger spatial wave-
length and thus smaller momenta require a longer time to permeate
the condensate and build up a significant interference pattern. Hence,
at each point in time, there exists a wavelength that reaches maximum
interference amplitude and therefore highest visibility. In contrast
to the interference pattern of Bose-Einstein condensates, the time de-
pendence is not linear but the dominant visible length scale varies as
λl ∝ √t. This is a first indication of the power law decay of phase
correlations in a 2D Bose gas.

However, the quantitative analysis of the density-density correla-
tion function is only made possible by the detailed computation of
the propagation of the in situ phase-phase correlation function with
ToF84. Due to the pivotal role of these numerical results for this work, 84 V. P. Singh and L. Mathey: Phys. Rev.

A, vol. 89, (2014)an outline will be presented in Section 8.1.2 as well as a full derivation
in Appendix A.

http://photon.physnet.uni-hamburg.de/fileadmin/user_upload/ILP/Moritz/Publications/Diploma_Master_s_Theses/Niclas_Luick_Master_s_Thesis.pdf
http://dx.doi.org/10.1103/PhysRevA.80.033604
http://dx.doi.org/10.1103/PhysRevA.79.013609
http://dx.doi.org/10.1103/PhysRevA.89.053612




6 E XP E R IMEN TA L TOO L S AND ME THODS

6.1 Accessing the momentum n(k) after T/4 ToF 57
6.2 Reducing vertical expansionwith a brake pulse 59

All the experiments on ultracold gases require excellent control and
detection in order to elucidate the elusive quantum mechanical pro-
cesses of the microscopic particles. Naturally, the presented study
builds upon the achievements and technical developments of the com-
munity, two of which are pivotal to the ensuing analysis and hence
warrant a detailed description. Twomethods will be presented in this
section which highlight the versatility of the ultracold atom systems
and fully optical control but also the high demands on precisionwhen
dealingwith the ultra small. First, a cornerstone of cold atom systems,
the measurements of the momentum distribution after time of flight
(ToF), is presented in the case of expansion into a static magnetic field
for a quarter of the trapping period, akin to the focusing of a light
beam in a gradient index lens.

Axis

Axis

d
wd

d

f

Figure 6.1: Illustration showing the sim-
ilariy of the expansion into a magnetic
field to the passing of a laser beam
through a gradient index lens (top).
In contrast to the application of a sin-
gle magnetic or optical pulse analogous
to the focusing via a conventional lens
(bottom). Note that the result is identi-
cal although the thickness d is different
and the focal length f is replaced by the
working distance wd.

Second, it is explained how high optical resolution can be main-
tained during expansion by illuminating the sample with a highly
anisotropic laser beam for a short amount of time, effectively stopping
the axial expansion without disturbing the measured quantities.

.    ()  T/4 

Analogous to the focus of a collimated light beam at infinity, that
represents the light field in terms of its k-vector, or momentum, a
quantum gas released from a trap also displays its momentum dis-
tribution after – ideally – infinite expansion. In practice, an expan-
sion time t much longer than the inverse of the trapping frequency
t ≫ 1/ωtrap suffices to yield a good approximation to the true mo-
mentum distribution.

The focus of the light beam can be brought to a finite distance with
the help of a lens, acting on the phase of the light field. Similarly, an
atom cloud can be focused by an electro-magnetic field, imprinting a
parabolic phase profile onto it, thus completing the transformation to
momentum space in a finite amount of time85. 85 P. A. Murthy et al.: Phys. Rev. A,

vol. 90, (2014)Alternatively, free evolution in a harmonic trap yields the same re-
sult. Here, the phase shift is not imprinted only once but continu-
ously, similar to the effect of a gradient index lens. Since the amount
of time after which the gas has reached the focus is precisely a quar-

http://dx.doi.org/10.1103/PhysRevA.90.043611
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ter of the trapping period T of the magnetic trap, these measurements
will henceforth be referred to as T/4-measurements.
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Figure 6.2: Outline of the method used
for imaging the momentum distribu-
tion. The upper two panels ((a) and
(b)) show an artists impression of the
evolution of the atom cloud during the
matter wave focusing procedure. The
originally disk-shaped 2D cloud com-
presses radially due to the radially har-
monic potential and maps its momen-
tum to position space. For a cold gas,
most of the particles end up close to the
origin, i. e. with small momenta. Dur-
ing this process, the gas expands verti-
cally due to the original confinement, in-
teraction energy and deconfining mag-
netic field. The circular frame repre-
sents the size of the cloud in situ. This
detrimental effect is considered in the
following section. The second row of
panels ((c) and (d)) show a sketch
of the x-axis phase space distribution
during the procedure. The horizon-
tal axis indicates the x position while
the vertical axis indicates the kx mo-
mentum distribution. Initially, the gas
is well defined in position space (left
panel) with boundaries at half the di-
ameterD and exhibits an unknownmo-
mentum distribution estimated here via
Hankel transform of the expected al-
gebraically decaying phase correlation
function g1 of a quasi-condensate. The
point where the momentum distribu-
tion has decayed to 1/e2 of its maxi-
mum value is given on the vertical axis.
A vertical integration over the phase
space density akin to the process of
imaging is shown below in (e) which
shows the boundary of the cloud in po-
sition space indicated by dashed lines.
Panel (d) shows the phase space dis-
tribution mapped onto position space
(rotated) for the same quasi-condensate
(blue) and a thermal gas (red) which
exhibits a much broader momentum
distribution. Note that due to the rota-
tion, the momentum distribution is now
imaged when integrating vertically over
the phase space density. The result is
shown below in (f). Here, the momen-
tum distributions of both gases are com-
pared and the points where the momen-
tum distribution has decayed to 1/e2
of its maximum amplitude are indicated
by dashed lines.

The method is outlined in Fig. 6.2. We start with 6.2a, a homogeneous
2D gas in position space. The corresponding phase-space representa-
tion – reduced to a the x coordinate for convenience – is plotted below
in 6.2c. Here, the momentum is plotted vertically and is estimated
by Hankel transforming the expected first order correlation function
with algebraic decay. Since absorption imaging is only able to probe
the location and not the momentum of the atoms, it can be thought of
as an integration of the phase-space density distribution in the vertical
direction. This would result in the integrated density n(x) shown in
6.2e for the in situ case.

The dipole traps are turned off and the gas is left to expand ballis-
tically for a quarter of the trapping period T into a weakly confining
magnetic trap. This results in a drastically different situation. Now,
an atom distribution as shown in 6.2b is imaged. Due to the focusing
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effect of the magnetic trap, the gas is mapped from position space to
momentum space. In our setup, the gas also expands drastically in the
vertical, or z direction due to the tight prior confinement, interaction
energy and the deconfining effect of the applied magnetic field.

The matter wave focusing corresponds to a rotation in phase space,
as visualized in 6.2d for a hotter (red) and a colder (blue) gas. The
position of the atoms after the focusing procedure reflects themomen-
tum they had in situ. If an atom had no momentum, it would have
been accelerated towards the center and arrive there after a time of
T/4. If the atom had a certain momentum, it could travel further out-
wards during T/4. Hence, the distance from the center of themagnetic
trap becomes a measure of the atoms momentum.

Since a hotter gas consists of a larger percentage of highmomentum
particles, the imaged momentum distribution will be broader. The
momentum distribution of a cold gas (blue) is shown in the lower
half and a distribution of a thermal gas (red) – with more weight at
higher momenta – is shown in the upper half of 6.2d. In analogy to
the dependence of the focus of the beam profile of a laser beam on its
wavefront just before the focusing lens, the shape of the matter focus
of a coherent Bose gas reflects the fluctuations in the wave functions
phase, or in other words, its momentum.

Imaging the cloud after T/4 is equivalent to a vertical integration
of 6.2d and thus results in the momentum distributions shown in 6.2f.
The colors of the plot correspond to the colors used in 6.2d. Now,
each location corresponds to an in situ momentum and the x-axis can
be converted to display the momentum via k = x/l2r , with lr being the
radial harmonic oscillator length of the magnetic focusing trap. For a
more in-depth look at the employed technique see Hueck et al.86 and 86 K. Hueck et al.: Phys. Rev. Lett.,

vol. 120, (2018)Murthy et al85.
85 P. A. Murthy et al.: Phys. Rev. A,
vol. 90, (2014)

From figure 6.2f, one can immediately see that there is a signifi-
cant qualitative difference between the momentum distributions of
a cold gas (blue) and a hot gas (red). The quantitative analysis of
the acquired images yields insights into global phase properties of the
trapped gas and – theoretically – the extraction of the phase correla-
tion function g1. However, since the functional form of n(k) is usually
required in large detail, high precision imaging of extended gases is
desirable, which presents unique challenges.

.       

Completely free expansion, the simplest way of achieving a T/4mea-
surement uses the experimental sequence depicted on the right of Fig. 6.3.
In the used phase-space representation, the vertical axis indicates the
z-position of a particle and the horizontal axis the z-momentum. Hence,
a free expansion is visualized as a shearing motion where the atoms
with negative momentum move straight downwards and the atoms
with positive momentum move straight upwards. The in situ phase-

http://dx.doi.org/10.1103/PhysRevLett.120.060402
http://dx.doi.org/10.1103/PhysRevA.90.043611
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space distribution is illustrated in gray (dashed) and the final phase-
space distribution after the T/4 time is plotted in red. A projection
onto position space is plotted to its left (also in red). Due to the signif-
icant amount of particles beyond the depth of field (DoF), the resultant
effective point spread function (PSFeff) (also in red, towards the center of
the figure) is quite broad.

free expansion brake pulse free expansion free expansion

r

psfeff
z z z z

pz pz pz pz

t0 t1 t1 t2 t2 t0t3 t3n(z) n(z)

dof dof

Figure 6.3: Comparison of two meth-
ods used for imaging the momentum
distribution. Completely free expansion
(right side) is contrasted with the appli-
cation of a brake pulse (left side). Here,
a phase-space representation, with the
z position on the ordinate and the mo-
mentum pz on the abscissa is used. The
initial distribution is sketched as a hor-
izontal ellipse (dashed), which repre-
sents all individual atoms phase-space
values. Whilst the gas is left to expand
freely until the radial spatial distribution
is mapped onto the momentum distri-
bution, the gas also freely expands ver-
tically in the z direction. This is rep-
resented by a vertical shearing in phase
space which results in the elongated el-
lipse shown in red (solid). This dis-
tribution is projected leftwards which
yields the vertical density profile (red).
The cloud hence extends well beyond
the DoF indicated by two dashed lines
which leads to a broad PSFeff (red) and
hence strongly reduced x,y resolution.
In contrast, the sequence including the
brake pulse is shown from left to right.
When the gas expands only briefly to
reduce scattering (vertical shearing mo-
tion depicted in leftmost image), subse-
quently vertically decelerated in an op-
tical harmonic potential (rotation until
vertical) and finally left to expand freely
(blue) until the radial momentum dis-
tribution is obtained, the resulting verti-
cal density profile (blue) is largely con-
tained within the DoF. Hence a much
narrower PSFeff and thus higher x,y
resolution is obtained. Axes are scaled
such that the total energy of each parti-
cle is equal to the distance to the origin.

To increase the resolution of the images, the PSFeff must be reduced
in width, which can be achieved by decreasing the amount of parti-
cles beyond the DoF, i. e. reducing the vertical expansion. To this end,
the dipole potentials used to trap the cloud can also be used to stop
the vertical expansion. This is achieved by the application of a strong
vertical confinement for a time on the order of a quarter of its verti-
cal trapping period. Hence, ideally stopping the vertical expansion
of the particles by removing the vertical momenta without effecting
the radial momenta. The pulse of light is henceforth referred to as the
brake pulse. It turnes out that the optimal reduction in vertical expan-
sion can be achieved in our system when the brake pulse is applied
for 125µs with a power of 100mW. Due to the large aspect ratio of
ωz/ωr ≈ 50, the radial momentum distribution can be considered
unchanged. Here, the radial trapping frequency is estimated as the
average of the Cartesian trapping frequencies, i. e.ωr = √ωyωx.

The free expansion ⟶ brake pulse ⟶ free expansion sequence is
depicted on the left side of Fig. 6.3. At first, the gas is left to expand
freely for a very short time of ≈ 20µswhich causes the aforementioned
shearing motion from t0 (gray dashed) to t1 (black, solid). Then, the
brake pulse is enabled, which results in a rotation in phase space until
the ellipse is oriented vertically, ideally stopping the vertical expan-
sion during t1 (gray, dashed) to t2 (black). Subsequently, the gas is
left to evolve the rest of the T/4 time, t2(gray, dashed) to t3 (blue)
which corresponds to another vertical shear. The projection of the
density of the expanded gas in the z-direction is plotted to the right
of the last step (blue). Since the atoms lie mostly within the DoF, the
PSFeff (also in blue) is greatly reduced as can be seen in the compar-
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ison. Thus, reducing the vertical expansion by the application of a
brake pulse significantly increases the achievable resolution of a mi-
croscope and hence enables the detailed analysis of e. g. complex mo-
mentum distributions. Note that the initial free expansion is greatly
magnified in the illustration, due to its otherwiseminuscule visible ef-
fect on the drawn ellipse. The resultant relative sizes are appropriate
nonetheless.

Combining the presented tools, allows us to perform a high preci-
sion measurement of the global phase of a cold atom system. Since
the phase in two-dimensional Bose systems is highly non-trivial and
expected to yield interesting insights we apply these methods to our
homogeneous 2D Bose gas in the following chapter.
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Homogeneous systems are particularly well suited for the measure-
ments of nonlocal observables such as the momentum distribution
since, time of flight (ToF) measurements do not mix parts of the cloud
with different phase-space density.

Our experimental system, as introduced in Chapter 5 and shown
in Fig. 7.1, mimics a homogeneous 2D quantum gas very well. With
a root mean square density variation of only 8.6% and a diameter
of ≈139µm, the system is in good approximation homogeneous and
large enough so that finite size effects do not play a major role.

(a)
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Figure 7.1: (a) Exemplary density dis-
tribution n(𝐱) of our homogeneous
sample (Averaged over ca. 20 realiza-
tions). (b) Sample of the 2D image of
n(𝐤) for a relatively cold gas. Note the
difference in size. Also, the color has
been rescaled to accomodate the approx-
imately 50 fold density.

Themomentum distribution is accessed via a matter wave focusing
technique85,87 which is very similar to the optical focusing of a plane 85 P. A. Murthy et al.: Phys. Rev. A,

vol. 90, (2014), 87 S. Tung et al.: Phys.
Rev. Lett., vol. 105, (2010)

wave. This expansion into a harmonic magnetic field maps the wave
function of the gas from position-space tomomentum-space in a finite
amount of time. This type of measurement will be referred to as T/4
since the evolution in the potential for a quarter of the traps period T is
exploited. The details of this measurement and how a brake pulse can
be used to improve the experimental accuracy for interacting gases is
presented in Section 6.1 and Section 6.2 respectively.

An example of a momentum distribution of a comparatively cold
gas is shown in Fig. 7.1b. As can bee seen from the scale, the resulting

http://dx.doi.org/10.1103/PhysRevA.90.043611
http://dx.doi.org/10.1103/PhysRevLett.105.230408
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object is very small and thus high resolution imaging would be desir-
able. To achieve high resolution, the object has to be located within
the depth of field (DoF) of the imaging objective and hence a gas with
very low thickness is beneficial. Since the scattering rate shortly after
release out of the trap is still significant, fast expansion perpendicu-
lar to the image plane is required, in order to reduce the density and
hence interactions. This results in a larger cloud size in the direction
of the imaging axis. Hence, for the times needed to perform the mea- Increasing the trapping potential would

decrease the time needed for aT/4mea-
surement and therefore reduce the ex-
pansion. However, it reduces the width
of the distribution simultaneously, thus
requiring even greater resolution with
even smaller DoF

surement, parts of the gas extend far beyond the DoF and therefore
introduce blur. Thus, a compromise between the introduction of sys-
tematic errors due to scattering and the reduction of resolution by a
large cloud extent has to be found. How experimental effects can be
accounted for and how this impacts the extraction of G1 is discussed
in Section 7.1. Azimuthal averages of the density in momentum space
n(𝐫) are plotted in Fig. 7.2a. Here, the holding time in the 2D trap has
been varied and a significant decline in amplitude can be observed
for hold times on the order of 50ms, which will be discussed in Sec-
tion 7.4.

(a)
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ℱ(n(k)) → g1(r)

Figure 7.2: (a) Azimuthal averages of
n(k) of a bosonic gas after varying hold
time. From 0ms (blue) over 30ms (red)
to 70ms (yellow). Note the quickly de-
creasing amplitude. (b) The Fourier
transformation with respect to k =
r
l2r

yields the normalized g1 without
any corrections due to scattering or the
imaging system. It is immediately ob-
vious that the decay increases quickly
for longer hold times (same colors as in
(a)).

For a homogeneous system, themomentumdistribution b(𝐤) is di-
rectly related to the first order correlation function G1(𝐱) by a Fourier
transform (cf. Eq. (3.15))

G1(𝐱) =
1

(2π)2
+∞

∫
−∞

b(𝐤) ei𝐤𝐱d𝐤. (7.1)

Hence, it should in principle be possible to directly visualize the alge-
braic decay of the phase correlations of a 2D system below the critical
point by imaging its momentum distribution.Three correlation func-
tions extracted in this way are shown in Fig. 7.2b. Directly after prepa-
ration with a hold time of < 20µs, after a hold time of 10ms, and
after a hold time of 70ms. It is clearly visible that the gas held for
prolonged time exhibits much faster decay than the gas that was orig-
inally prepared. The theoretical and experimental issues pertaining
the extraction of the first order correlation function will be discussed
in Section 7.5.
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In summary, both, the n(k) and the g1(r) show that themomentum
distribution and hence the phases of the constituent wave functions
are mutated during the holding process. Reasons for the decay can be
numerous, some possible scenarios will be discussed in more detail in
Section 7.4. These scenarios include heating of a thermal equilibrium
state by three-body loss processes, a quench into an unstable super-
critical phase, or loss of atoms out of the trapping volume. Especially
heating comes to mind when the reduction of coherence length is ob-
served, thus the change in experimentally accessible temperature is
measured during the holding period which will be discussed in Sec-
tion 7.3. Interestingly, it appears that heating might only be partially
responsible for the decay in coherence.

In the following, the methods employed to acquire momentum dis-
tributions n(k) via matter wave focusing and the associated experi-
mental challenges will be discussed. The evolution of the momentum
distribution in dependence of hold time is presented and analyzed.
Subsequently, the normalized first order correlation function g1 is cal-
culated using the momentum distribution. Finally, the method of ex-
tracting the temperature is explained in detail, before proceedingwith
the interpretation of the results.

.        / 

When performing a T/4 type measurement, there are two aspects of
the method that need to be addressed even if one assumes that most
sources of systematic errors, like stray fields, have been accounted for.
First, imaging an expanded gasmight introduce errors due to the finite
extent and limited optical resolution. Second, interatomic scattering
during ToF might redistribute the momentum. To address the former,
we employ a so called brake pulse. This technique is presented in
more detail in Section 6.2, in essence, it reduces the vertical size of the
cloud by decelerating the expanding particles. The effect of the brake
pulse on the imagedmomentumdistributionn(k) is shown in Fig. 7.3.
It is immediately obvious that even the application of the brake pulse
does not reproduce the expected momentum distribution accurately.
However, reducing the vertical expansion during ToF yields a result
closer resembling the theoretical prediction. Thus, the smallest ver-
tical expansion possible seems to be optimal when imaging the mo-
mentum distribution. However, due to the reduced size, the density
and therefore also the scattering rate are increased. Thus, in order to
judge if the improved imaging at the expense of increased scattering
is a worthwhile compromise it is relevant to estimate the influence of
collisions.

Increased density counteracts the advantages of higher imaging
resolution by the increased occurrence of scattering events. Here, an

A full discussion of the applicability of
2D or 3D scattering physics or the pre-
cise nature of the scattering states them-
selves is not within the scope of this
work and is an ongoing field of research,
see e. g.88.
88 J. P. Kestner and L. M. Duan: Phys.
Rev. A, vol. 74, (2006)

estimate of the expected scattering events during ToF is provided. If
the scattering process is to be assumed three-dimensional, an estimate

http://dx.doi.org/10.1103/PhysRevA.74.053606
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Figure 7.3: Comparison of the mea-
suredn(k)with and without the appli-
cation of a brake pulse. The image of
the completely free expansion is shown
framed in blue to the left. The image of
the T/4 sequence with a braking pulse
is shown framed in red to the right. The
corresponding cut through the center of
the image are shown in the center in blue
and red (dashed), respectively. A the-
oretical n(k) of a degenerate 2D Bose
gas obtained from a phase correlation
function with algebraic decay with η =
0.125 is shown for comparison in yel-
low (dash-dotted). The theoretical pre-
diction is obtained via numericalHankel
transform of g1 during which the finite
sample boundaries are considered, fur-
thermore all curves have been normal-
ized to unity area instead of unity vol-
ume, in order to yield amplitudes suit-
able for comparison.

of the scattering can be obtained from the scattering rate Γ , which can
be written with the 3D density n3D, the scattering cross section σsc,
and the mean velocity of the scatterers vmean as

Γ = n3Dσscvmean. (7.2)

Since the expansion occurs at a magnetic field offset of ≈690G, where
the lithium atoms form dimers, we expect a low-energy dimer-dimer
elastic cross section50 of 50 J. Dalibard: Collisional dynamics of

ultra-cold atomic gases, (1999)
lim
k→0

σsc = 8πa2dimer. (7.3)

Here, adimer is the scattering length between dimerswhichD. Petrov et
al.89 showed to be adimer = 0.6a3D, with a3D being the atom-atom 3D 89 D. S. Petrov et al.: Phys. Rev. Lett.,

vol. 93, (2004)scattering length. The chemical potential is the relevant energy scale
for estimating the mean velocity for a cold, strongly interacting gas.
Hence, in the present case, the sound velocity may be approximated90 90 L. Salasnich et al.: Phys. Rev. A,

vol. 88, (2013)using the mean field chemical potential μ = g2D ⋅ n2D = ℏ2/mdimer ⋅
g̃n2D as If the thermal velocity was taken as the

relevant energy scale, this would not
alter the result of this argument much
since for our gas kBT ≈ µ.

vmean =
√
g2Dn2D
mdimer

. (7.4)

Since we measure the 2D column density, it is necessary to estimate
the 3D density. If one assumes that the density distribution in z-direc-
tion is in good approximation Gaussian, the central 3D density can be
calculated from the 2D density by

Extra 7.1: 3D from 2D density

n2D =
∞
∫
−∞

n3D(x,y, z)dz

=
∞
∫
−∞

n3D(x,y)e−z
2/l2z dz

= n3D(x,y)
∞
∫
−∞

e−z2/l2z dz

= n3D(x,y)lz√π

ncenter =
n2D
lz√π

. (7.5)

With this, it is possible to compare the number of scattering events for
both – the completely free expansion and the brake pulse – methods.
The number of scattering events per unit time is given by the scattering
rate Γ times the relation of the initial 1/√e density radius σz to the
current (at time t) radius, which effectively relates the in situ density

http://dx.doi.org/10.3254/978-1-61499-225-7-321
http://dx.doi.org/10.1103/PhysRevLett.93.090404
http://dx.doi.org/10.1103/PhysRevA.88.053612
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to the density after ToF,

Ndiff(t) = Γ ⋅
initial cloud radius

cloud radius at time t (7.6)

= Γ ⋅ σin situ
σz(t)

. (7.7)

Since the gas in the considered experiment populates only the ground
state in the vertical harmonic trapping potential, the in situ 1/√e den-
sity radius is given by the harmonic oscillator length σz = lz/√2. In
first order, one can assume that the expanded density profile is ap-
proximated well by the scaled in situ density distribution given by
ballistic expansion to be91 91 W. Ketterle et al.: Making, probing

and understanding Bose-Einstein conden-
sates, (1999)σz(t) = σin situ ⋅ √1 + (ωzt)2, (7.8)

which corresponds well to the linear part of themeasured unimpeded
expansion radius shown in Fig. 7.4.
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Figure 7.4: Measurement of the verti-
cal expansion of the unimpeded cloud
(blue, circles) compared to the applica-
tion of a brake pulse (red, squares). The
lines denote fits to the linear part (blue,
dashed)with Eq. (7.8) and the complete
dataset considering the anticonfinement
(blue solid).

The total number of average scattering events per particle during
expansion Ntotal can be calculated by integrating the differential scat-
tering number Ndiff(t) from the time t0 = 0 the particles are released
to the time timage an image is taken. It is thus given by

Ntotal =
timage

∫
0

Ndiff(t)dt

=
timage

∫
0

1
√1 + (ωzt)2

dt + higher order corrections. (7.9)

An axial deconfinement of ω− ≈ i√2 ⋅ 20Hz, due to a magnetic field
needed for curvature compensation along the radial direction, is present
in the measurements shown and responsible for the deviation from
linear expansion for larger ToF. The influence of the magnetic field is
considered in the following discusssion by a slight modification of the
aforementioned formula shown in Extra 7.2. The calculated cloud ra-
dius is shown in dependence of the ToF in Fig. 7.5a for the theoretical
expectation of a free expansion (blue), the fitted radius σz(t) when
expanding into the actual saddle potential without brake pulse (red)
and an agnostic spline fit to the measured 1/√e waist radius when the
brake pulse is applied. It is immediately obvious that the brake pulse
slows down the expansion significantly, although at some point the
deconfinement results in a deviation from the expected linear expan-
sion.

Extra 7.2: Deconfining potential
σz(t) = σin situ

⋅ [ cosh
2(ω−t)

+ ωz
ω−

sinh2(ω−t)]
1/2

The integrated scattering events, as described by Eq. (7.9), are plot-
ted for all three cases using the same colors as in the prior plot in
Fig. 7.5b. For both, the free expansion and the expansion into a saddle
potential, it can be seen that the total number of scattering events is
small and approaches ≈0.1 for 12ms ToF. This amount of scattering is
tolerable. Meanwhile, the application of the brake pulse increases the
number of scattering events due to the increased density significantly
to ≈0.54 but at least stays well below 1.

http://dx.doi.org/10.3254/978-1-61499-225-7-67
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Figure 7.5: (a) The modeled vertical
expansion for the case of a completely
free expanding non-interacting Fermi
gas (blue), an unimpeded expansion
of a Bose gas with twice the fermionic
mass into a deconfining potential (red)
and the expansion of the same Bose gas
when the brake pulse is applied (yel-
low). (b) The modeled average scat-
tering events per particle integrated up
to ToF. For the same three cases as in
the left panel. The scattering events of
the non-interacting Fermi gas (blue, if it
scattered during ToF with adimer) and
the unimpeded Bose gas (red) are vir-
tually indistinguishable. Note that even
for the impeded expansion (yellow) the
scattering events stay below unity.

Weighting the advantages of applying the brake pulse against the
drawbacks, it is not clear which path to take. The increased resolution
enables more accurate reconstruction of the actual density whereas
the scattering introduces unknown systematic errors. Since the esti-
mate of the number of scattering events during the expansion is still
below 1, we use the data from the measurement with the brake pulse
applied and neglect the scattering in the following in the quantitative
analysis of the shape of n(k). We have verified the dependence of the
amplitude of n(k) (see Fig. 7.9b) on the hold time against the time de-
pendent amplitude without brake pulse and found the relative decay
to be compatible.

Additional care must be taken in the analysis, since slight misalign-
ments in the brake pulse and dipole trap lead to a vertical displace-
ment of the whole cloud during ToF. Eight distributions are shown
that represent prototypical shapes observed in absorption imaging in
Fig. 7.6. Many of the images show a single peak of significant am-
plitude similar to the one shown in ((e) to (g)). This kind of mo-
mentum distribution is expected for a cold 2D quantum gas having
a lateral extent that is much smaller than a thermal Gaussian. The
strong peak at k = 0 reflects the significant population of small mo-
menta. The images ((a),(d)) show oddly shaped distributions of no
apparent symmetry which we attribute to imaging out of focus and at
an angle. Note that some images exhibit multiple maxima. The shape
and size of these maxima are similar to those images showing only
a single maximum, which might indicate that the imaging is indeed
correct and the maxima represent two discrete populations of two op- An imaging apparatus out of focus

would result in the convolution of the
data with an extended point spread func-
tion (PSF) and therefore reduced ampli-
tude and increased width.

posite but equal k-modes. Possible explanations include the presence
of vortices or solitons. However, the investigation of this signal is be-
yond the scope of this work but might be the focus of future study.

To focus on the data without these anomalous behaviors we take
a large number of images and postselect the regular density distribu-
tions indicating a proper center of mass position. For comparison,
samples of the momentum distributions after unimpeded ToF, i. e.
without brake pulse, are given in Fig. 7.7. Here, the the gas has al-
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 7.6: A sample of the momentum
distributions, some of the images show
a distortion which might be attributed
to an acceleration of the particles out
of focus by the brake pulse. Note that
some of the distributions exhibit multi-
ple maxima. At this point it is unclear if
these represent any interesting physical
phase excitation or are purely technical.
The numbers shown in this plot do not
represent the frequency of occurrence in
the complete dataset but are comparable
to Fig. 7.7.

ways expanded symmetrically around the plane of focus and shows
less signs of asymmetry. However, since it has expanded significantly
beyond the DoF the real momentum distribution has been convolved
with a broad effective point spread function (PSFeff) by the imaging sys-
tem. This leads to much more consistent images but also eliminates
the possibility to resolve multiple peaks as in Fig. 7.6.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 7.7: A sample of the momentum
distributions for unimpeded expansion.
Note that the momentum distributions
are much broader compared to Fig. 7.6
but also much closer resemble the ex-
pected Gaussian-like shape. The optical
density, however, is much lower. Thus,
the color scale is reduced by a factor of 4
to ensure optimal visibility. The num-
bers shown in this plot do not repre-
sent the frequency of occurrence in the
complete dataset but are comparable to
Fig. 7.6.

It must also be mentioned that the fits to the vertical expansion yield
a trapping frequency ωz,expansion which is about twice as large as the
independently measured ωz = (12.4± 0.1) kHz. The latter measure-
ments rely on the establishedmethod of exciting collective modes and
the parametric heating by modulation of the trapping potential. De-
spite extensive search for systematic errors or physical causes, we are
unable to bring those values into agreement. The only source of er-
ror in the measurement of the vertical expansion is the magnification.
This has been repeatedly calibrated and all performed verifications are
in excellent agreement. Therefore, the presented data and scattering
integrals are assumed to be correct. If the scattering integral is calcu-
lated fromωz it would increase by a factor of two. Hold time (s)

(1
/µ

m
2 )

690G
830G

Figure 7.8: Measured mean density in
dependence of the hold time in the
dipole trap. At the studied magnetic
field of 690G (blue) and for comparison
the fitted lifetime at the 3D Feshbach
resonance at 830G (gray). The density
decay from the T/4 measurements has
been compensated for reduced detec-
tion due to detuning and particles leav-
ing the detection volume.

.     2D ⁶ 

The momentum distribution of a 2D gas can be used to probe the de-
pendency on a physical parameter. A straight forwardmethod to vary
a physical parameter of the quantum gas is to increase the holding
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time in the dipole traps. Two possible effects that impact the equation
of state (EOS) of the trapped system are particle loss dN and a change
in temperature dT . Therefore, both have been measured. The density
loss has been found to be on the order of 0.29 %

ms up to 70ms, con-
fer Fig. 7.8. The extraction of the experimentally accessible temper-
ature, which has been found to only change moderately during the
hold time, is described in more detail in Section 7.3.

In order to investigate the influence of hold time on a degenerate
Bose gas, we prepare a dimerized Fermi gas at 690G in the homoge-
neous trap geometry described in Chapter 2. The gas is kinematically
frozen in the vertical direction and forms a 2D layer with temperature
T ≈ 80 nK and an average density of n ≈ 2.5 1

µm2 . The chemical poten-
tial is thus μ/kB ≈ 85 nK, both energy scales are below the harmonic
oscillator spacing ℏω/kB ≈ 600 nK. With these parameters, the gas
is on the brink of degeneracy, if the weak-interaction estimate of the
critical phase-space densityDc ≈ ln(380/g̃) ≈ 6 ≲ nλ2dB is still valid68. 68 N. Prokof’ev et al.: Phys. Rev. Lett.,

vol. 87, (2001)
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Figure 7.9: (a) Azimuthal averages of
momentum distributions of a bosonic
gas after different hold time. in situ
(blue), 25ms (red), 50ms (yellow),
75ms (violet), and 95ms (green). Note
the fast decrease in amplitude.(b) Max-
imum amplitude of the momentum dis-
tributions at 690G after different hold
time t (blue). Note the sharp decay for
small times. The measured coherence
decay close to the 3D Feshbach reso-
nance at 830G for comparison (gray).
The shaded areas denote the statistical
error bounds.

After preparation, the gas is held in the 2D dipole traps for a vari-
able amount of time and subsequently a T/4 sequence is performed
to image the momentum distribution. Examples of the measured mo-
mentum distributions are shown in Fig. 7.9a. For short hold times,
a bimodal momentum distribution is observed, and the peak at low
momenta, k ≤ 0.2/µm, indicates coherence on a length scale of or-
der ≈ 30µm. Note that the peak amplitude decreases quickly with
increasing hold time. The peak amplitude versus hold time is plotted
in Fig. 7.9b and a sharp decrease of the low-k population with time is
immediately visible at 690G, whereas the corresponding data taken
close the 3D Feshbach resonance at 830G exhibits a much slower de-
cay. A common measure for degeneracy is the condensate fraction,
which is the quotient of the number of atoms condensed in the ground
state and the total number of atoms. Since no real condensate exists
in two dimensions, a similar quantity, the peak fraction, is helpful to
define in the interpretation. It indicates the number of atoms that oc-
cupy low-momentum modes with neither Gaussian nor exponential
decay of coherence and hence possibly algebraic decay. The fraction
of atoms containedwithin the peak is plotted in 7.10c. During the hold
time, it decreases from ≈ 40% to nearly zero, a much less drastic decay
compared to the peak amplitude in Fig. 7.9b. This discrepancy is due to

http://dx.doi.org/10.1103/PhysRevLett.87.270402
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the geometry of the sample, the visually large peak amplitude is only
present in a small k-area and thus does not actually lead to a large frac-
tion of atoms contained in the peak. Nevertheless, the coherence loss
occurs on relatively short time scales and remains themost prominent
feature. The most straightforward explanation for this loss of coher-
ence would lie in enhanced excitations due to an increased tempera-
ture, which destroy correlations. Hence, the accessible temperature of
the system in dependence of holding time has been investigated.

.       

A method to extract the temperature, which is applicable to the taken
dataset, is to use themomentumdistribution directly. For hotter gases,
the thermal wings of the momentum distribution can be fitted by a
Gaussian representing the Boltzmannpopulation of the available states
with energy ϵ, or alternatively, momentum k

f(k) = 1
eβ(ϵ(k)−µ) − 1 ≈ A ⋅ e

−βℏ2
2m k2 , (7.10)

with the inverse temperature β = 1/kBT , the particle massm and an
arbitrary amplitudeAwhich is, in this approximation, not relevant for
the extracted temperature.
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Figure 7.10: (a)Occupation f(k) in log-
arithmic scale vs momentum k. Exem-
plary for four hold times 0, 0.02, 0.04
and 0.06 (blue, red, yellow, violet). The
linear section of large diamonds is the
fit interval, it has been boxcar averaged
for the plot to improve visibility. (b)
Temperature (blue, circles) and chemi-
cal potential (red, squares) versus hold
time. Extracted by fitting the first term
in Eq. (7.10) with the Bogoliubov dis-
persion relation Eq. (7.11). (c) The peak
fraction (see text) versus hold time.

As is evident from Fig. 7.9a, the signal above k = 1/ξ ≈ 1.4/µm is
almost nonexistent. However, the Gaussian approximation of the mo-
mentum distribution given above is only valid in that region, where
the kinetic energy dominates and the dispersion relation takes the
simple form of ϵ = ℏ2k2

2m . Hence, we extend the ansatz to smaller k
by including the full Bogoliubov dispersion relation

ϵ(k) =
√
ℏ2k2
2m (

ℏ2k2
2m + 2g2Dn2D). (7.11)

With this extension, the exponential interval can be used to extract
the temperature as well. The absolute accuracy of the extracted tem-
perature suffers as a result, as mentioned by W. Ketterle et al.,“[…]
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the systematic errors introduced by fitting too close to the condensate
distribution are on the order of 2.”91 Fortunately, the absolute value of 91 W. Ketterle et al.: Making, probing

and understanding Bose-Einstein conden-
sates, (1999)

T is only of secondary importance. To ascertain heating as the source
of the decay of coherence, it is only necessary to investigate the rela-
tive change in temperature. Since the fitted momentum space density
n(k) is dependent on itself via the Fourier transformℱ{n(k)} = n2D(r)
in Eq. (7.11), the fitting process should in principle be repeated iter-
atively until the result has converged. However, the in situ density
distribution for a homogeneous gas is easily determined and is, apart
from fluctuations, not dependent on position. Thus, in this ansatz the
interaction parameter g2D and the position space density n(r) are cal-
culated beforehand and are assumed to be constant over the cloud.

To determine if the temperature of the gas changes, the momentum
distributions are fitted with the above ansatz using a mean density
of n2D = 2.5 1

µm2 and an interaction parameter of g2D ≈ ℏ2
m ⋅ 0.87.

The data and corresponding fits are plotted for four hold times in
Fig. 7.10a. Due to the logarithmic scale of the vertical axis, the ap-
proximately linear dependence of f(k) is clearly visible. The fits to the
linear regime yield temperatures T and chemical potentials μ which
are shown in the 7.10b. As expected, both fit parameters increase in
absolute value, the temperature by ≈ 40% and the chemical poten-
tial by ≈ 50% during ≈ 100ms hold time. The decrease in chemical
potential is compatible with the loss of atoms discussed earlier.

The fit of the chemical potential is cou-
pled to the fitted temperature. Al-
though the result is compatible with the
measured in situ densities, due to the
aforementioned systematical errors in-
troduced, the fitted chemical potential is
not used in the further analysis.

.    

In summary, we observe that the peak occupation of low-momentum
modes (peak fraction) decreases to 1/e (0.16) on a timescale of 37mil-
liseconds while the temperature increases by 3% and the density de-
creases by 10% during the same time.
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Figure 7.11: Extracted inverse phase-
space density T/Tn in dependence of
hold time

There are at least two possible interpretations for the observed be-
havior. The first assumes that the gas is in thermal equilibrium and
attributes the decrease of low-momentum modes and corresponding
loss of coherence to heating, which causes the gas to cross the tran-
sition from a Berezinskii-Kosterlitz-Thouless (BKT) superfluid to a nor-
mal fluid. Possible sources for heating are three-body losses, collisions
with particles in the background gas, parametric heating by intensity
noise on the laser beams and other technical noise induced by the con-
trol of the magnetic fields and dipole traps.

Taking into account the rather short timescales on which the coher-
ence is lost, non-equilibrium effects also have to be considered. These
are particularly relevant in 2D gases since local excitations in form
of vortices are topologically protected. When the time an excitation
needs to travel across the sample is estimated by the speed of sound
one finds that the time scales for thermalization are on the same order
as the duration of the used preparation such as magnetic field sweeps
or settling times. Hence, the gas might not be in complete thermal
equilibrium yet.

http://dx.doi.org/10.3254/978-1-61499-225-7-67
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In the following, we discuss these possible interpretations and cor-
responding measurements in more detail.The energy associated with

Extra 7.3: Origin of Tn
The phase-space density D for
bosonic dimers of density n2D
introduced in 3.2 is

D= n2Dλ2dB

= 2πℏ2
mkB

⋅ n2DT .

When compared to the valid relation
in Fermi systems of T/TF = 1/D
one arrives at

1
D = mkB

2πℏ2 ⋅
T
nD

= T
TF
,

with kF = √4πn2D, usually de-
fined for non-interacting fermions at
T = 0. This is in essence a scaled
comparison of the temperature T
and the density n2D. Since it re-
duces the ambiguity of what energy
the temperature is actually compared
to, we adopt the nomenclature

T/Tn = T/TF.

the absolute temperature of a cold gas by itself does not determine
the momentum distribution, as can be seen from Eq. (7.11). Only in
combination with the energy related to the density of the sample, a
measure of degeneracy is obtained. The phase-space density would
be a prime candidate. However, for better comparison, a common
measure related to the phase-space density is used here instead, T/TF.
Here, the temperature T is compared to the Fermi temperature TF,
which is derived from the Fermi energy. Since the Fermi energy is not
a well defined property of the present interacting Bose gas, this can be
understood as a mapping to the temperature Tn of a non-interacting
gas of fermions of the same density. With this, T/Tn in dependence of
hold time can be calculated from the extracted temperatures as well as
integrated densities divided by the in situ box area, shown in Fig. 7.11.
From this, it is apparent that the decrease in density and the increase
in temperature lead to an increase in T/Tn and thus to a decrease in
phase-space density.

When using a quantity such as temperature, it is necessary for
the system to be in thermodynamic equilibrium. This is usually the
case for cold quantum gases since scattering processes redistribute the
energy on much shorter time scales than those used for preparing the
gas. Hence, all procedures can be assumed to be adiabatic and the
gas is always in a thermalized state. This is not necessarily true for
very cold 2D systems of interacting bosons if vortices are present, as
V. Singh et al. have demonstrated92. 92 V. P. Singh et al.: Phys. Rev. A, vol. 95,

(2017)Hence, there are two possible avenues of interpretation, whether
one assumes thermal equilibrium or not. First, the assumption of ther-
mal equilibriumwill be discussed. Subsequently, a plausible non-qui-
librium scenario will be explored. The use of theword adiabatic in quantum

mechanics93 is slightly different than in
classical thermodynamics. Whereas it
usually denotes a process of a system
without heat or matter transfer with its sur-
roundings, here it signifies a quasi-static
and isoentropic process, which is virtu-
ally reversible. In this sense, it does not
randomly change the occupation num-
bers of the system and thus has been
done without heat transfer.
93 M. Born: Nature, vol. 119, (1927)

In thermal equilibrium, the extracted temperature is a valid mea-
sure of the distributed energy. Since T/Tn increases with hold time,
the energy contained in the gas increases and the critical energy for de-
generacy decreases. In combination, this could lead to the observed
behavior, where the number of particles in the low-momentum peak
vanishes with hold time. Assume that the critical fraction, that is the
amount of particles that exhibit non-thermal physics is approximately

nc
n = 1 − T

TKT
. (7.12)

This is certainly an oversimplification, since the integral over the den-
sity of states (DoS) does not converge and thus the usual argument
for this form is not applicable if the system were infinite. For finite
systems however, the Kosterlitz-Thouless (KT) transition is always ac-
companied by a significant Bose-Einstein condensate (BEC) fraction and
thus the approximation is better justified. The critical temperature

One can show33 that for finite systems
just below the critical temperature, there
exist a condensed fraction on the order
of N−1/8. Since in practice N ≈ 40 000
one expects a sizable condensed frac-
tion andEq. (7.12) can be considered ap-
proximately as a lower limit.
33 Z. Hadzibabic and J. Dalibard: Riv.
Nuovo Cimento, vol. 34, (2011)

http://dx.doi.org/10.1103/PhysRevA.95.043631
http://dx.doi.org/http://dx.doi.org/10.1038/119354a0
http://dx.doi.org/10.1393/ncr/i2011-10066-3
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TKT, necessary to evaluate the above expression, can be derived from

Dcrit ≈ ln(
380
g̃ ) ≈ 6 = nλ

2
dB,crit (7.13)

⇒ TKT(n = 2.5 1
µm2 ) ≈ 105 nK (after preparation)

⇒ TKT(n = 1.7 1
µm2 ) ≈ 72 nK. (after 60ms hold time)

Given these approximations, a significant decrease of critical fraction
can be expected even for small changes in T/Tn, as is shown in Fig. 7.12.
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Figure 7.12: Model of the critical frac-
tion in dependence of Temperature for
two in situ densities. For the originally
prepared system n0 = 2.5/µm2 (blue)
and after 60ms ToF nToF ≈ 1.7/µm2

(red, dashed).

If the temperature of the system increases, what are the sources of
the additional thermal energy? Since the atoms are held in an optical
dipole trap, a transfer of photon energy to the gas is possible. Laser
intensity noise modulates the trapping potential which – at the right
frequency – leads to a parametric heating process94 where two quanta 94 T. A. Savard et al.: Phys. Rev. A,

vol. 56, (1997)from the light field are transferred to kinetic energy in the gas. How-
ever, significant amplitude noise at twice the trap frequency, neces-
sary for parametric heating, has not been observed in measurements
of the laser power with high-speed photo diodes. Additionally, refer-
ence measurements on non-interacting Fermi gases have shown only
negligible heating when subjected to a similar experimental proce-
dure.

Another source of heating are inelastic collisions between the par-
ticles in the system. During this process, energy from the internal
structure of the scatterers can be transferred to kinetic energy, effec-
tively heating the gas. In the case of the presented gas of an equal
mixture of fermions forming bosonic dimers, the leading order pro-
cess is a two dimer collision in either s-wave or low orbital momen-
tum channels95. During the approach of two dimers of approximate 95 D. S. Petrov et al.: Phys. Rev. A, vol. 71,

(2005)size a3D, three of the constituent fermions engage in a three-body col-
lision. One of the dimers relaxes into a deeply bound molecule with
binding energy EB ≫ ℏ2/(ma23D) while the other dimer dissociates
into free fermions. The energy released by forming the deeply bound
molecule is distributed to the scattering products which can subse-
quently scatter with the remaining particles of the gas and deposit
this excess energy as heat. Due to the high velocity, and thus reduced
scattering cross section, of the particles in the output channel of the
scattering process, only a fraction of the total released energy is im-
parted as heat into the sample. Additionally, due to the geometry of
the sample, most of the scattered particles leave the gas with only a
low number of secondary scattering events. Since the particles are
located in a thin layer, the output particles have a high probability to
propagate into the large empty solid angle above and below the cloud.
Therefore, the secondary scattering process is most likely to occur in
close vicinity to the location of the original decay event and is thus a
local excitation. In summary, a slight increase in temperature accom-
panying the observed atom loss is very plausible although the precise

http://dx.doi.org/10.1103/PhysRevA.56.R1095
http://dx.doi.org/10.1103/PhysRevA.71.012708
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amount is difficult to estimate. It is important to note that this process
necessarily combines heating with atom loss since both, the deeply
bound molecule and the free fermions, escape the trap.

One body collisions with the background gas can also lead to heat-
ing by removing single particles from the sample and the thus ensu-
ing reorganization cascade. If only scattering of particles within the
sample is considered, the collisions must necessarily be inelastic or
the scattering event must consist of multiple particles in order to lead
to heating. Thus, three or more atoms must participate since the in-
ternal structure of the 6Li atom can be neglected at this energy scale.
Nonetheless, the loss rate can be modeled as a two-body decay since
two dimers collide. Hence, the squared dimer density appears in the
rate equations. The rate equations and solution for one- and two-body This four-body decay can be thought of

as a three-plus-one decay, due to the
fact that when two large dimers scatter,
the fourth atom does not participate in
the relaxation process. Also, the Decay
involving more than two-dimers is ig-
nored here due to its diminished relative
effect.

decay can be written as96

96 M. Weidemüller: Cold Atoms and
Molecules, (2009)

dn
dt = −αn − βddn

2 , thus n(t) = n0
eαt + βddn0

α (eαt − 1)
. (7.14)

Here, α denotes the inverse one-body 1/e lifetime, βdd the two-body
loss coefficient for dimer-dimer relaxation and n0 the mean density
at n(t = 0) = n0. The one-body lifetime has been measured to be in
excess of 6 s whereas the two-body loss coefficient is dependent on the
scattering length a3D by

βdd = C
ℏrvdW
m (

rvdW
a3D )

2.55
, (7.15)

with the length of the characteristic van der Waals potential rvdW and This dependency holds only if a3D ≫
rvdW. Since for lithium, rvdW ≈ 60a0
this is valid for the regime of interest.

a system dependent parameter C. Fortunately, compatible values for
these parameters have been independently determined experimen-
tally97,98. The available coefficient for our scattering length of a3D ≈ 97 T. Lompe: Effimov Physics in a three-

component Fermi gas, (2011), 98 S. Naka-
jima et al.: Phys. Rev. Lett., vol. 105,
(2010)

75 nm is βdd(75 nm) ≈ 5× 10−18/(m3 s). According to T. Lompe, this
value is assumed to be accurate up to a factor of 2∗. Notwithstanding,

∗ Private communication, T. Lompe
the two-body scattering channel is still the dominant lossmechanism51

51 E. Burt et al.: Phys. Rev. Lett., vol. 79,
(1997)

with a 1/e loss time on the order of 100ms, as can be seen clearly in
Fig. 7.13. Atom loss due to evaporation can be disregarded since the
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de
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ity
(1
/µ

m
2 ) Figure 7.13: Expected combined one-

and two-body decay (blue) of initial
densitywith hold time. The shaded area
denotes the errormargin and themarker
the 1/e time. Compare with only one-
body loss (red).

interaction strength is ramped down from a much higher value dur-
ing preparation. Thus the potential energy of the gas should be well
below the trap depth.

http://books.google.com/books?vid=ISBN9783527407507
http://ultracold.physi.uni-heidelberg.de/files/Thesis%7B%5C_%7DThomas.pdf
http://dx.doi.org/10.1103/PhysRevLett.105.023201
http://dx.doi.org/10.1103/PhysRevLett.79.337
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As argued above, a decrease of the population of low-momentum
modes is expected, yet the timescales are surprisingly short. The short-
est time scale onwhich thermalization can be expected is proportional
to the highest relevant energy, in this case the interaction energy μ =
g2Dn2D ≈ 1.8 kHz ⋅ h leading to a time scale of tµ ≈ 550µs. However,

Of course, the energy defined analo-
gously to the Fermi energy, En/kB ≈
600 nK as well as the zero point energy
ℏωz
2kB ≈ 300 nK are much higher. How-
ever, these are not the relevant energy
scales for thermalization in a gas of in-
teracting bosons.

In the condensed matter context, lat-
tice vibrations are known as phonons.
Despite the absence of these vibrations,
the excitations, reminiscent of acoustic
phonons, with a linear dispersion rela-
tion are called phonons.

this is only the fastest timescale. A lower bound for the time it takes
the gas to thermalize via the dissipation of locally deposited energy
to the rest of the gas is given by the time an excitation needs to travel
across the entire sample. For this, two phononic excitations need to
be considered, an excitation in density and an excitation in entropy.
These excitations hybridize below kBThyb ≈ g2Dn2D99 and the higher

99 L. Verney et al.: EPL, vol. 111, (2015)velocity is denoted first sound, whereas the lower velocity is denoted
second sound. For temperatureswell below the critical temperature, the
entropy wave is faster than the density wave and for higher tempera-
tures vice versa. However, for stronger interactions this hybridization
is less pronounced since the thermal and entropic compressibility ap-
proach each other100–102. 100 M. Ota and S. Stringari: Phys. Rev. A,

vol. 97, (2018), 101 X. J. Liu and H. Hu:
Ann. Phys., vol. 351, (2014), 102 T. Ozawa
and S. Stringari: Phys. Rev. Lett., , (2014)
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Figure 7.14: First and second sound
as a function of temperature in the hy-
bridization region of a homogeneous
2D interacting Bose gas from (a) inter-
mediate, g̃ = 0.6, to (b) stronger in-
teractions g̃ = 1.0. The interaction
strength of our experiment is g̃ ≈ 0.87
whereas the temperature is on the order
of Tc = TKT ≈ 100 nK. The upper blue
and lower red solid lines correspond to
first and second sound respectively. The
upper blue and lower red dashed lines
are approximated forms for indepen-
dent density and entropy modes. The
strong deviation from which for smaller
interactions strength indicates a signifi-
cant coupling between both modes. Fig-
ure adapted from M. Ota100.
100 M. Ota and S. Stringari: Phys. Rev. A,
vol. 97, (2018)

It is evident from the respective velocities plotted in Fig. 7.14, that
for an interaction parameter of g̃ = 0.87, and a temperatures close to
the critical KT temperature, the zero-temperature Bogoliubov sound
velocity c0 is a reasonable approximation. This velocity is defined as
the derivative of the chemical potential μ at constant volume V and
temperature T and hence in the low temperature approximation given
by90 90 L. Salasnich et al.: Phys. Rev. A,

vol. 88, (2013)
c0 ≃

√
n2D
mdimer

⋅ (
∂μ
∂n2D)V,T

≈
√
n2D g2D
mdimer

. (7.16)

For the samples considered here, with a density of n2D ≈ 2.5/µm2,
this yields a maximum velocity for energy dissipation of c0 ≈ 7.8 µm

ms . ∗The plot of n(k) in Fig. 7.10 shows the
measured width of themomentum distri-
bution. During imaging a PSFeff is con-
volved with the actual signal, see Sec-
tion 9.2.2. The PSFeff has a full width
at half maximum (FWHM) of ≈6µm to
8µm. Thus, the width imaged is mostly
due to the PSFeff. The expected size of
n(k) for a degenerate 2D Bose gas is
≈1µm and therefore much smaller, as
can be seen in Fig. 7.17a

Hence, a sound wave would need approximately 20ms to traverse the
entire sample of size L ≈ 139µm, slower than both, the 10msmagnetic
field ramp time used to go to the BEC regime as well as the 10ms
settling time following the ramp. Furthermore, the low-momentum
modes that are considered here have momenta∗ < 0.1/µm and there-
fore length scales of ≳ 63µm. Thus, it is likely that the system as a

http://dx.doi.org/10.1209/0295-5075/111/40005
http://dx.doi.org/10.1103/PhysRevA.97.033604
http://dx.doi.org/10.1016/j.aop.2014.08.023
http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.112.025302
http://dx.doi.org/10.1103/PhysRevA.97.033604
http://dx.doi.org/10.1103/PhysRevA.88.053612
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whole is not fully equilibrated.
A possible interpretation is hence that the magnetic field ramp is

non-adiabatic and that temperature and momentum distribution im-
mediately after the ramp and settling time are still very similar to the
momentum distribution the gas had initially, i. e. at 834G, where the
3D scattering length diverges. Here, the critical phase-space density
is decreased68 and thus the critical temperature is much higher47,91. 68 N. Prokof’ev et al.: Phys. Rev. Lett.,

vol. 87, (2001)

47 S. Giorgini et al.: Phys. Rev. A, vol. 54,
(1996), 91 W. Ketterle et al.: Making,
probing and understanding Bose-Einstein
condensates, (1999)

Thus, the magnetic ramp corresponds effectively to a quench of a BKT
superfluidwith quasi-long-range order to a supercritical regimewhich
now decays into a thermal gas. This would, in principle, explain our
observation, since when the gas is held at 834G no drastic reduction
of low-momentummodes could be observed. Furthermore, if ramped
slowly, a much reduced occupation of the low-momentum modes is
observed.

Nevertheless, it is somewhat puzzling that the low-momentummodes
exhibit faster decay than those at largermomenta. Typically, onewould
expectmodeswith largermomentum to thermalize faster since smaller
length scales and higher energy scales are involved. A similar situ-
ation is discussed in two very relevant publications by the Mathey
group92,103. In the first, the authors investigate a similar quench of 92 V. P. Singh et al.: Phys. Rev. A, vol. 95,

(2017), 103 L.Mathey et al.: Phys. Rev. A,
vol. 95, (2017)

interactions numerically. They find that during the thermalization
process intermediate states appear that exhibit algebraic decay albeit
with a power law exponent larger than what is allowed and expected
in equilibrium. In the second, they observe very slow thermalization
across the interface between the superfluid and the thermal part in
a spatially inhomogeneous gas. This lies in the fact that due to the
reduced dimensionality, topologically protected vortex pairs have a
much suppressed decay rate. The vortices must either annihilate with
antivortices or drift towards lowdensity regionswhere they can decay
individually. There exists no definitive theoretical prediction of the
timescale for the vortex drift for our exact parameters but the above
mentioned simulations yield a decay time on the order of seconds
and a reasonable agreement with the prediction of P. Fedichev and
G. Shlyapnikov104 which states for the decay rate τ−1 104 P. O. Fedichev andG. V. Shlyapnikov:

Phys. Rev. A, vol. 60, (1999)
τ−1 ∼ ℏ

mdR2
(nsa33D)

T
μ. (7.17)

Here, md is the mass of the bosonic dimer, μ the chemical poten-
tial and R the radius of disk that the vortex occupies. For an up-

Estimating the relevant energy scale
is not trivial since the vortex energy
of a 2D system diverges as Ev ≈
π∗ns∗ℏ2
md

ln(1.464b/ξh), with b being
the boundary of the area under consid-
eration and ξh the healing length. In
essence, single vortex decay is strongly
suppressed by the trap geometry since
there are no low-density areas and
hence, the vortex has to travel the full
distance to the edge of the homogeneous
sample.

per limit the superfluid density ns is assumed to be the total density
ns ≈ ntotal = 5.5/µm3 and T ≈ μ, see Fig. 7.10. The resultant timescale
is on the order of hundreds of seconds for the limiting case of exactly
one vortex and still on the order of a hundredmilliseconds for a vortex
of the smallest possible size of ξh and a more reasonable estimate of
ns = 0.4ntotal.

The timescale for the annihilation of a vortex-antivortex pair is also
dependent on the healing length of the Bose gas. Since this particular
parameter is comparable to the experiment by J. Dalibard, we assume
that the computed decay times of the above mentioned simulation of
approximately 130ms are also valid for our system.

The annihilation of vortex-antivortex
pairs is strongly suppressed in 2D sys-
tems105,106, as well as stable against ro-
tating away from the line of sight107.
Hence, due to the unique topology, vor-
tices in 2D are exceptionally stable.
105 S. Prabhakar et al.: J. Phys. B, vol. 46,
(2013), 106 S. J. Rooney et al.: Phys. Rev.
A, vol. 84, (2011), 107 P. C. Haljan et al.:
Phys. Rev. Lett., vol. 86, (2001)

http://dx.doi.org/10.1103/PhysRevLett.87.270402
http://dx.doi.org/10.1103/PhysRevA.54.R4633
http://dx.doi.org/10.3254/978-1-61499-225-7-67
http://dx.doi.org/10.1103/PhysRevA.95.043631
http://dx.doi.org/10.1103/PhysRevA.95.053630
http://dx.doi.org/10.1103/PhysRevA.60.R1779
http://dx.doi.org/10.1088/0953-4075/46/12/125302
http://dx.doi.org/10.1103/PhysRevA.84.023637
http://dx.doi.org/10.1103/PhysRevLett.86.2922
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Thus, if vortices are present due to the preparation or are created
during, e. g. the dimer-dimer decay, it is probable that they have not
fully dissociated in the course of our measurements. Therefore, the
decay of the low-momentum modes might not solely be due to the
heating in thermal equilibrium but also be driven by out of equilib-
rium dynamics.

The non-equilibrium dynamics could be numerous. Only twopossi-
ble scenarioswill be exploredhere since a detailed treatment of strongly
interacting many-body non-equilibrium dynamics presents ongoing
challenges, many of which are very difficult to solve. At the time of
writing, the author is unaware of theoretical predictions for the dy-
namical structure factor of a strongly interacting Bose gas with our
parameters. Hence, one possible explanation could be a global quench
of the systems parameters – such as the scattering length – so that the
system undergoes a time evolution in a new Hamiltonian H′(t > t0).
Although, for a closed quantum system such as a trapped gas, this
process is entirely unitary it is expected that for long times large sys-
tems exhibit a state that seems to have equilibrated108. 108 J. Eisert et al.: Nature Physics, vol. 11,

(2015)In the presentedmeasurement, the globalmagnetic field is changed
quickly from the 3D Feshbach resonance of ≈834G to the field of inter-
est of ≈690G. At the new field the critical entropy is lower than before The total entropy of the system is ex-

pected to be conserved during the mag-
netic field ramp.

and thus the system is suddenly quenched from the superfluid to the
normal phase. The measurements taken by increasing the hold time
might then sample the phase coherence of the dynamics at different
times. At first, a large population of low-momentummodes can still be
observed while for longer times, when the system has evolved to the
ground state of the new governing Hamiltonian, a larger population
of excited modes is exhibited.

Alternatively, the system could be driven locally out of equilibrium
by e. g. a dimer-dimer decay. Depending on the type of excitation –
for example phononic, particle or vortex like – these local quenches are The dimer-dimer decay of four atoms

has a decay channel with global orbital
momentum of zero but since usually
only three particles participate directly
in the relaxation it is possible to im-
part the remaining rotational momen-
tum onto the gas. Additionally, the scat-
tering event creates a hole, facilitating
vortex creation.

limited by Lieb-Robinson bounds in their speed of information propa-
gation. Thus, the system might exhibit excitations such as vortices for
long times compared to the hold time without equilibrating. These
excitations would destroy the low-momentum population which de-
pends on correlations over large extents without being reflected in the
experimentally accessible temperature.

Perturbations to the phase of the wave function of the many body
state is the dominant excitation in low temperatures. Hence, in the In the approximation of Bogoliubov

quasiparticles, phase perturbations are
the dominant excitations. This is due
to the fact that the linear phase fluctu-
ations are much cheaper in terms of en-
ergy than the highly suppressed density
fluctuations of particle like excitations.

following, the normalized first order phase correlation function g1(r)
will be computed from the presented momentum distributions in or-
der to examine if additional insight into the unexpectedly fast coher-
ence decay can be gained.

http://dx.doi.org/10.1038/nphys3215
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Extra 7.4: g1(r) as the Fourier transform of n(k)
In many experimental contexts, it will be diffi-
cult to determine the dependence of the correla-
tion functions on all coordinates or – like in the
present case – the problem does not depend on
all degrees of freedom. It may then be more ade-
quate to measure the volume integrated correla-
tion function

G1(𝐫) =
+∞

∫
−∞

d2s ⟨ψ̂†(𝐬), ψ̂(𝐬 + 𝐫)⟩,

where the coordinate systemhas been shifted and
𝐱 and 𝐱′ have been replaced by the center of mass
𝐬 and the relative coordinate 𝐫 = |𝐱 − 𝐱′|, respec-
tively. To see how the momentum distribution
n(𝐤) = ⟨ψ̂†(𝐤)ψ̂(𝐤)⟩ for a homogeneous system is
related toG1, it is useful to insert the definition of
the position space operators in terms of a Fourier
transform of the momentum space operators

ψ̂(𝐱) = 1
(2π)2

+∞

∫
−∞

d2k ei𝐤𝐱ψ̂(𝐤)

directly into the above equation:

G1(𝐫) = ∫d𝐬 ⟨
1

(2π)2 ∫d
2𝐤 e−i𝐤𝐬ψ̂(𝐤),…

1
(2π)2 ∫d

2𝐤′ ei𝐤′(𝐬+𝐫)ψ̂(𝐤′) ⟩

= 1
(2π)4 ∫d𝐤∫d𝐤

′…

∫d𝐬 e
−i(𝐤−𝐤′)𝐬

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
(2π)2δ(𝐤,𝐤′)

ei𝐤′𝐫⟨ψ̂(𝐤)ψ̂(𝐤′)⟩

= 1
(2π)2 ∫d𝐤∫d𝐤

′ δ(𝐤, 𝐤′) ei𝐤′𝐫 ⟨ψ̂(𝐤)ψ̂(𝐤′)⟩

= 1
(2π)2 ∫d𝐤 ei𝐤𝐫 ⟨ψ̂(𝐤)ψ̂(𝐤)⟩.

The limits of integration have been omitted for
readability. The last line is precisely 2π times
the Fourier transform of n(𝐤) = ⟨ψ̂(𝐤)ψ̂(𝐤)⟩.
This factor will be consumed by the normaliza-
tion. For all translational invariant systems, the
above equation can be simplified since the center
ofmass coordinate does not contribute and the in-
tegration yields a constant volume factor. Hence,
G1(𝐫) ∝ G1(0, 𝐫), the true correlation function,
over the the full lateral extend of our system.

.         

A different perspective on the coherence properties displayed by the
momentum distribution can be achieved by investigating its Fourier
transform, the first order correlation functiong1(r). Following the def-
inition in Eq. (4.26), the first order correlation function can generally
be written in operator notation as

G1(𝐱, 𝐱′) = ⟨ψ̂†(𝐱)ψ̂(𝐱)⟩. (7.18)

Since most systems exhibit correlation only in an approximate way,
the locally normalized first order correlation function

g1(𝐱, 𝐱′) =
G1(𝐱, 𝐱′)

√G1(𝐱, 𝐱)√G1(𝐱′, 𝐱′)
(7.19)

is used to define correlation of the complex field amplitude42. This 42 M. Naraschewski and R. J. Glauber:
Phys. Rev. A, vol. 59, (1999)

http://dx.doi.org/10.1103/PhysRevA.59.4595
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normalization carries over to the translational invariant form g1(𝐫) ∝
g1(0, 𝐫) and will be used from here on.

Two experimental effects must be considered when applying the
Fourier transform to yield the proper first order correlation function.
First, the finite extent of the sample imparts a bias towards small dis-
tances and second, even an ideal imaging system with no aberrations
is limited in its resolution by the finite aperture. Hence, both effects
on g1 are presented and methods for compensation are discussed.

Consider an ideal bosonic 2D system that stretches laterally to in-
finity. In such a system it is only possible to have a true BEC when
the temperature vanishes. Since it is useful to compare the discussed
effects on different correlation functions, three different temperatures
are considered: At T0 = 0K, a true BEC is present with perfect coher-
ence, above zero temperature but below the critical KT temperature
T0 < T < TKT, the gas exhibits algebraic decay of coherence and for
even larger temperatures Tthermal ≫ TKT, the decaywill be exponential.
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Figure 7.15: (a) Theoretical momentum
distribution for a true BEC (blue) and
a quasi-condensate with algebraic (red)
and exponential (yellow) phase decay.
The arrow represents a Dirac delta dis-
tribution. Since these distributions can
be measured via matter wave focusing,
the corresponding spatial dependency
under typical experimental conditions
is displayed on the upper axis. Note
that both, the BEC and the algebraically
decaying quasi-condensate require high
imaging resolution due to their small
scale. (b) Theoretical correlation func-
tions corresponding to the momentum
distributions shown in (a) with identi-
cal colors. Note the rather slow algebraic
decay which exhibits a finite value even
for large – but finite – values of r. The
first order correlation function g1(r) is
related to the momentum distribution
n(k) by a Fourier transformation.

The momentum distributions for these cases are plotted in Fig. 7.15a.
All particles in the BEC (blue) populate only the lowest k-mode and
n(k) is thus a Dirac delta distribution. The widths of the algebraic and
the exponential decay depend on the temperature, nevertheless, the
thermal momentum distributions is often much broader in compar-
ison. The corresponding normalized first order correlation function
g1(r) is plotted in Fig. 7.15b. Here, a constant value of g1,BEC = 1
indicates that the correlations do not decay. In comparison, the alge-
braic (red) and the exponential (yellow) correlation functions decay
much faster. Note that even though g1,BKT vanishes at infinity, the
gas exhibits significant coherence for length scales relevant in the lab-
oratory.

The individual effects will be demonstrated on the simplest case of
the true BEC and finally compared to both other cases.

Any real system has finite extent. If the size of the system is re-
stricted to a circular homogeneous layer of diameter L = 139µm (ap-
proximately the size of our prepared sample) the constituent wave
functions end abruptly at the boundary. This can be modeled by mul-
tiplication with a Heaviside θ-function, i. e. ψ(r)⟶ ψ(r) ⋅ θ(L/r−1).
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Inserting this into the definition of g1 would lead to the correlation
– ⟨∗, ∗⟩ – of the original state multiplied with the correlation of the
θ-functions

⟨ψ̂†(r), ψ̂(r)⟩⟶ ⟨ψ̂†(r), ψ̂(r)⟩ ⋅ ⟨θ(r), θ(r)⟩. (7.20)

The autocorrelation of the Heaviside function can be calculated ana-
lytically even for two dimensional systems and resembles a pyramid
with a smooth continuation to zero. Thus, even the correlation func- The effect of the finite size of the signal

is exactly analogous to the way an aper-
ture stop in optics leads to a decaying
transfer function that limits the resolution
by suppressing high frequencies.

tion of a perfect BEC shows significant decay if the system is finite,
which is plotted in Fig. 7.16b. As a consequence, the original momen-
tumdistribution, in the shape of a delta distribution, is convolvedwith
a squared Bessel function which broadens it significantly, as can be
seen in Fig. 7.16a. The effect of a finite aperture is also easier under-
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Figure 7.16: (a) Theoretical momentum
distribution of a finite BEC. (b) The-
oretical first order correlation function
of a finite BEC. (c) Theoretical momen-
tum distribution of a finite BEC consid-
ering the influence of imaging. (d) The-
oretical correlation function of a finite
BEC considering the influence of imag-
ing. For details see the text.

stood in terms of g1. As is shown in Section 9.2.2, the amplitude transfer
function (ATF) of non-aberrated coherent imaging cuts off the signal
abruptly at some maximum value in reciprocal space. Since the real Remarkably, due to its origins in the

absorption imaging, the sharp cutoff
also leads to small negative values
in the measured momentum distribu-
tion. These of course are an artifact of
the measurement and hold no physical
meaning.

space coordinate after T/4-time represents the momentum space k,
the r-coordinate after performing the Fourier transform is in the same
reciprocal space as the ATF. Thus, the ATF sets an upper limit for the
measurable correlation function. This is demonstrated for a numeri-
cal aperture of NA = 0.12 in Fig. 7.16d. This additional high frequency
cut-off broadens the correspondingn(k) evenmore, which can be seen
in Fig. 7.16c. Note that although both, finite size and imaging, lead to
a cutoff in g1, they are unrelated effects.

Not both effects can be fully corrected during the analysis. The
gradual suppression of longer distances due to the finite size can be
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compensated by dividing g1with the known shape of the autocorrela-
tor. None the less, where the suppression function vanishes, a recon-
struction is impossible. Thus, no signal beyond the size of the system
L or the resolution of the imaging system can be extracted. Thatmeans
– for ideal imaging conditions – one cannot simply deconvolve an im-

The point spread function (PSF) is the
two-dimensional Fourier transform of
the amplitude transfer function (ATF) and
hence a deconvolution with the former
is identical to a division with the latter.

age with the PSF and improve the signal. In practice however, it is
useful to compensate for the imaging system also, since a real-world
ATF is usually not Heaviside-like but exhibits some structure due to
aberrations or defocus.
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Figure 7.17: (a) Comparison of the-
oretical momentum distributions of fi-
nite systems with imperfect imaging.
(b) Comparison of theoretical correla-
tion functions of finite systems with im-
perfect imaging. (c) Comparison of cor-
rected theoretical correlation functions
of finite systems with imperfect imag-
ing. For details see the text.

How the momentum distributions in Fig. 7.15a are impacted by the
finite size and the imaging effects, is shown in Fig. 7.17. It is interesting
to see that the signal of a BEC (blue) is almost indistinguishable froma
BKT gas (red), only the exponential decay (yellow) is clearly distinct.
The corresponding correlation functions show again that, apart from
the exponential decay, the curves are very similar, which can be seen
in Fig. 7.17b. When corrected for finite size, the curves of constant co-
herence and algebraic decay separate more and show distinguishable
slopes, as can be seen in Fig. 7.17c. Interestingly, almost no benefit of
the compensation can be observed for thermal gases due to the very
short range of their correlations and thus comparatively large size in
momentum space after T/4 time.

Now, the corrected correlation function can be computed from
themomentumdistributions presented in the prior section in Fig. 7.9a.
For this, the azimuthally averaged momentum distributions are Han-
kel transformed∗ and subsequently divided by the finite size suppres-
sion function found in most Fourier optics books109 109 J.W.Goodman: Introduction to Fourier

Optics, (2005)

∗Note that, for any two-dimensional
space with rotational symmetry, the
Fourier transform can be written in po-
lar form and the rotational angle can
be integrated out. This form is called
Hankel transform of zeroth order and
reduces the computational complexity.
Therefore, it is used in some contexts in
this work.

ℋ(r) =
⎧⎪
⎨⎪
⎩

2
π [

arccos ( rL) − r
L√1− (

r
L)

2

]
, if r ≤ L

0 , otherwise.
(7.21)

This results in the plots shown in Fig. 7.18a where a subset of the hold
times is shown. To accommodate for the finite cloud size in imaging
direction, the correlation function has also been divided by the effec-
tive ATF. Which is acquired by a weighted average of the measured

https://books.google.de/books?id=ow5xs%7B%5C_%7DRtt9AC
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ATF over the cloud diameter. Already with the linear axis scaling, the
corrected g1 shows a visible difference between short and long hold
times. The correlation decays slower for systems imaged immedi-
ately after preparation and faster if the system is held for an extended
amount of time in the dipole traps. The areas of decay can be better
differentiated if a logarithmic scale is chosen for the y-axis and one can
identify areas of approximately linear slope for small r up to ≈ 14µm.
A linear slope in a semilog plot signifies exponential decay. To identify
possible algebraic decay, the same correlation functions are plotted
with both axes scaled with the decadic logarithm. Here, a linear de-
pendency identifies a power law decay. The interval above ≈14µm
could be considered linear and thus indicate slower than exponential
decay. However, comparison to Fig. 7.17c shows globally much faster
decay. For a BKT gas at the critical point, the decay is fastest but even
there the slope does not exceed−0.25. In a true analogue to a homoge-
neous 2D BKT gas, the first order correlation function should have de-
creased only marginally on the scale of the system size. In the present
case, g1 vanishes on the order of 20µm, only about a 7th of the sys-
tem size. Hence, complete compatibility to the expected results of an
infinite homogeneous system has not been found. Nonetheless, the
results show an intriguing dependency of the first order correlation
function on the hold time
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Figure 7.18: (a) A sample of the nor-
malized first order correlation functions
g1(r) in dependence of hold time.
Note, for the equal time steps shown
the longer hold times ”bunch up”.(b)
The same correlation functions as in (a)
plotted with a decadic logarithmic or-
dinate. Here, straight lines denote ex-
ponential decay.(c) The same correla-
tion functions as in (a) plotted with
decadic logarithmic abscissa and ordi-
nate. Here, straight lines denote power
law decay.

Since g1 is a measure of the phase correlation, a more direct investi-
gation of the phase and its dependence on the hold time might reveal
further information pertaining to the unexpected behavior of the first
order correlation function described in this chapter. This will be the
topic of the following chapter.
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8.1 Key idea, interference as a phase probe 87
8.2 Analysis of density-density correlations after time of

flight 95
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The physical Fourier transformation of the matter wave focusing tech-
nique is an excellent tool to access the momentum distribution. With
the relation G1 ∼ ∫n(𝐤) ei𝐤𝐱 d𝐤 (see Eq. (3.15)), the mean first order
– or phase – correlation function can in principle be extracted. As has
been shown in the previous chapter, this is not without challenges.
Hence, an alternative method that does not rely on long expansion
times, and therefore does not suffer from reduced resolution, is desir-
able.

First, the well known method to probe phase via interference is re-
visited and examples of how it has been used to great effect in the
context of ultracold gases are presented. It ensues a back-of-the-envelope
style calculation to motivate how the density correlations we measure
after different time of flight (ToF) can be related to the in situ phase
correlations in order to determine the samples coherence.

Next, an example of the raw data obtained for two ToFs and an out-
line of the methodology used to obtain the density correlation func-
tion g2 from it is presented in Section 8.2.

Subsequently, the presented method is used to investigate the co-
herence of a homogeneous sample held in a dipole trap, in Section 8.3.
Here, an agnostic evaluation of the density correlations – with mini-
mal theory – ismade first, in order to develop an intuitive understand-
ing for how the coherence develops with time. Finally, the underly-
ing theory is explained conceptually, the full quantitative analysis of
the density correlations in dependence of holding time, including all
known corrections, is presented and the results interpreted.

.  ,     

To introduce the method used in this experiment, it is helpful to re-
assert the concept of phase and how it impacts measurable quantities.
In quantum mechanics, every state can be written in terms of wave
functions – or their associated operators – in e. g. Slater determinants
or permanents. Each single particle wave function ψ is commonly
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written in amplitude-phase form

ψ(r) = √n(r) ⋅ eiθ(r), (8.1)

with a density amplitude √n and phase θ. Whereas the density is
easily accessed in e. g. absorption imaging, the phase in the imaginary Density imaging effectively evaluates

the expectation value by taking the
square, n = ψ†ψ, hence the complex
exponent is lost.

exponent is usually lost during this process. Unfortunately, there is
no straightforward method to access the phase information since the
definition of a suitable, i. e. Hermitian, phase operator to be used as
an observable presents fundamental challenges110. 110 P. Carruthers and M. M. Nieto: Rev.

Mod. Phys., vol. 40, (1968)

Figure 8.1: During time of flight the
non-constant phase of the cold interact-
ing Bose gas develops into an interfer-
ence pattern in form of density ripples.
The time of flight increases from left to
right: in situ, 1ms, 2ms to 3ms.

Fortunately, the wave character of the above representation gives
rise to a phenomenon by which the phase directly impacts the mea-
surable density distribution: interference. To observe the effects of
interference, a phase difference is required. Either a local oscillator
with constant phase, in style of a heterodyne superposition, or a copy
of the sample as in homodyne detection schemes can be used. In the
present case of a cold Bose gas with, possibly, algebraically decay-
ing coherence, phase differences within the gas are exploited, elim-
inating the need for two copies of the sample. This self-interference is
achieved during short time of flight, during which parts of the cloud
with different phases θ(r)mix and thus an interference pattern devel-
ops. The resulting density ripples are demonstrated in Fig. 8.1. This
quasi-condensate can, roughly, be thought of as an ensemble of patches
of approximately constant phase, where the phases of the different
patches are only weakly correlated. The type of phase correlation and
the resultant interference visibility is captured in the two-point cor-
relation function G1(𝐫1, 𝐫2, t), whose pivotal role in this analysis will
become apparent later on. From the images above, it is obvious that
the length scale of the density modulation increases with expansion
time. It proves to be the case that the dominant size of the fluctua-
tions after ToF contains information of in situ phase fluctuations at a
certain length scale in analogy to the Talbot effect111, this can already 111 H. Talbot:  Philos. Mag., vol. 9, (1836)
be understood in terms of a toy model that will be introduced at a
later stage. On the one hand, if the sample were perfectly coherent,
i. e. were a true Bose-Einstein condensate (BEC), no density modulation
would develop. The density ripples form only due to the existence of

http://dx.doi.org/10.1103/RevModPhys.40.411
http://dx.doi.org/10.1080/14786443608649032
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excitations, which preclude constant phase. On the other hand, ran- Similar to how the intensity interference
contrast visibility V = 2E1E2

E21+E22
of two

superposed light beams, E1 and E2 de-
pends on the cross term of the superpo-
sition

〈I〉 = 〈(E1 +E2)2〉

= 〈E21〉 + 〈E22〉 + 2 〈E1E2〉⏟⏟⏟⏟⏟⏟⏟
∼g1=〈ψψ〉

the normalized first order correlation
function g1 determines the visibility of
the interference of the wave functionψ.

dom excitations destroy the phase coherence and thus extinguish the
interference pattern, similar to how a thermal light source does not
exhibit extended interference fringes. Thus, reviewing the interfer-
ence pattern of Fig. 8.1 it is already apparent that the samples initial
phase distribution must exhibit coherence over some finite distance.
Numerous experiments have leveraged interference to learn about co-
herence properties of degenerate quantum systems. This work builds
upon these studies of ultracold bosons in lower dimensions, since all
low-dimensional Bose gases share the significant departure from 3D
physics.

.. Prior work this thesis builds upon

Naturally, quasi 1D Bose gases have been studied, for example in
the group of K. Sengstock112 in 2001, with techniques similar to the one 112 S. Dettmer et al.: Phys. Rev. Lett.,

vol. 87, (2001)employed in this work. In their experiment, a highly elongated cloud
ofweakly interacting 87Rb atoms below the critical temperature Tcwas
left to expand for a time t = 25ms. Upon imaging, parallel stripes
have been observed in the density distribution. The occurrence of this
interference pattern increased with stronger confinement and higher
temperature. Hence, indicating pronounced phase fluctuations due
to 1D low-energy axial excitations. Interference of two 1D samples in
2008113 and,more recently, the use of self-interference of a single cloud 113 S. Hofferberth et al.: Nature Physics,

vol. 4, (2008)have been demonstrated in the Group of J. Schmiedmayer in 2010114

114 S. Manz et al.: Phys. Rev. A, vol. 81,
(2010)

and 2016115. In the latter experiment, a one-dimensional gas of 10 000

115 B. Rauer et al.: Phys. Rev. Lett.,
vol. 116, (2016)

87Rb atoms was evaporatively cooled until the system could be de-
scribed by amacroscopicwave functionwith a fluctuating phase. Sub-
sequently, the gas was coherently driven by a radio frequency pulse
and parts of the system were coupled out to untrapped states. After
10.5ms ToF, a density speckle pattern formed, fromwhich the normal-
ized autocorrelation function was computed. A comparison to sim-
ulated data was taken as evidence that, in contrast to predictions for
such integrable systems, a reduction of temperature could be achieved
by the outcoupling process.

The study of two-dimensional systems is an essential puzzle
piece since they represent and intermediate step between the theo-
retically accessible 1D and physically ubiquitous 3D systems. Of even
greater importance might be the unique physics exhibited by 2D sys-
tems, since they are the only experimentally accessible systemwith an
even number of dimensions.

A stack of multiple 2D layers was left to expand, overlap and in-
terfere in a matter wave heterodyning experiment in the group of J.
Dalibard in 200474. Also, a stack of two layers was used in an exper- 74 Z. Hadzibabic et al.: Phys. Rev. Lett.,

vol. 93, (2004)iment demonstrating the Kosterlitz-Thouless (KT) transition20 already
20 Z. Hadzibabic et al.: Nature, vol. 441,
(2006)

described in more detail in Chapter 5. Of particular relevance for this
work is that they saw evidence for the transition to a regime with al-

http://dx.doi.org/10.1103/PhysRevLett.87.160406
http://dx.doi.org/10.1038/nphys941
http://dx.doi.org/10.1103/PhysRevA.81.031610
http://dx.doi.org/10.1103/PhysRevLett.116.030402
http://dx.doi.org/10.1103/PhysRevLett.93.180403
http://dx.doi.org/10.1038/nature04851
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gebraically decaying coherence. This experimental setup produced a
series of pioneering experiments for the study of the global coherence
properties of highly oblate systems.

Vortices were also studied in a Josephson coupled 2D lattice of 87Rb
atoms in the Berezinskii-Kosterlitz-Thouless (BKT) regime in the group
of E. Cornell in 200724. They provided strong evidence for the pro- 24 V. Schweikhard et al.: Phys. Rev. Lett.,

vol. 99, (2007)liferation of thermally excited vortices by letting independent BECs
interfere in an experiment inspired by the work of D. Scherer et al116. 116 D. R. Scherer et al.: Phys. Rev. Lett.,

vol. 98, (2007)The recent production of single 2D layers of ultracold atoms yields
unparalleled optical access that enables the study of local properties.
A high resolution microscope directly pointing at a single layer of a
2D system after ToF provides the possibility to determine local phase
changes without averaging. For example, the extraction of the scal-
ing exponents of the first order correlation function is much less error
prone in single layers since short expansion times can be used which
reduce the loss in resolution due to the gas extending beyond the depth
of field (DoF).

Previous work on single 2D layers employing interference in-
clude early investigations of density fluctuations performed by the
group of Y. Shin. In the most recent work80 they measured the power 80 S.-W. Seo et al.: Phys. Rev. A, vol. 89,

(2014)spectral density of an expanding 2D Bose gas after ToF and found
that the “spectral peak positions are consistent with the numerical re-
sult [produced by I. Mazets117]”79. It is instructive to recognize that 117 I. Mazets: Phys. Rev. A, vol. 86,

(2012)

79 J.-Y. Choi et al.: Phys. Rev. Lett.,
vol. 111, (2013)

their previous work and especially a subsequent comment by Tim
Langen118 showed that for this type of measurement it is crucial to

118 T. Langen: Phys. Rev. Lett., vol. 111,
(2013)

very carefully focus the imaging apparatus onto the sample. Other-
wise, the free propagation of the light field through the gas, governed
by the Helmholtz equation, can lead to qualitatively very similar ef-
fects compared to the free propagation of a matter wave field during
ToF. The group of Y. Shin investigated the influence of this system-
atic error79,119 and also found that the defocusing present in the first 79 J.-Y. Choi et al.: Phys. Rev. Lett.,

vol. 111, (2013), 119 S.-W. Seo et al.: J. Ko-
rean Phys. Soc., vol. 64, (2014)

published work58 could indeed invalidate the experimental conclu-

58 J.-Y. Choi et al.: Phys. Rev. Lett.,
vol. 109, (2012)

sions. Due to the importance of this effect, we have taken great care to
focus the imaging system correctly120 and describe the procedure in

120 A. Putra et al.: Rev. Sci. Instrum.,
vol. 85, (2014)

Section 9.1.1.
There have also been studies of single layers of kinematically 2D

systems published outside of peer reviewed journals, in 2013, for ex-
ample, in the group of J. Dalibard as part of the doctoral thesis by
R. Desbuquois27. The measurement of the power spectral density of 27 R. Desbuquois: Thermal and superfluid

properties of the two-dimensional Bose gas,
(2013)

a 87Rb Bose gas at g̃ ≈ 0.077 in situ and after ToF indicated “that
the dynamics of the degenerate two-dimensional Bose gas is domi-
nated by phase fluctuations”. The recorded peak positions in the spec-
trum show quantitative agreement with the work of A. Imambekov82 82 A. Imambekov et al.: Phys. Rev. A,

vol. 80, (2009)supporting the conclusion that phonons are the primary fluctuation
mechanism as well as indicating that density fluctuations increase in
the thermal and critical regimes. Also, corrections to the power spec-
tral density due to the in situ density fluctuations were presented,
which we adopted to improve the comparison to the theoretical pre-

http://dx.doi.org/10.1103/PhysRevLett.99.030401
http://dx.doi.org/10.1103/PhysRevLett.98.110402
http://dx.doi.org/10.1103/PhysRevA.89.043606
http://dx.doi.org/10.1103/PhysRevA.86.055603
http://dx.doi.org/10.1103/PhysRevLett.111.159602
http://dx.doi.org/10.1103/PhysRevLett.111.159601
http://dx.doi.org/10.1103/PhysRevLett.111.159602
http://dx.doi.org/10.3938/jkps.64.53
http://dx.doi.org/10.1103/PhysRevLett.109.125301
http://dx.doi.org/10.1063/1.4862046
https://tel.archives-ouvertes.fr/tel-00973469/document
http://dx.doi.org/10.1103/PhysRevA.80.033604
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diction.
Similar measurements have been performed on molecular 6Li at

g̃ ≈ 0.6 in the group of S. Jochim and published in the masters the-
sis of S. Pres28. Here, they focused on the density-density correlation 28 S. Pres: BKT - phase transition in a

strongly interacting 2D Bose gas, (2014)function in an effort to compare to the theoretical results of g2(𝐫, t)
of the group of L. Mathey84. A reduction of the anti-correlation for 84 V. P. Singh and L. Mathey: Phys. Rev.

A, vol. 89, (2014)heated samples could be observed. Quantitative agreement has been
impaired by the “very low signal” and the observed “strong correla-
tion between the measured oscillation in the [density-density corre-
lation] and the detuning of [the] imaging laser”. Additionally, the
authors questioned if the strong interaction permits the comparison
to a theory developed for weak interactions and purely ballistic ex-
pansion. The effects of strong interactions during ToF are relevant for
the presented work as well, hence we have aimed to reduce the influ-
ence of scattering during expansion by a faster reduction in density,
see Section 7.1.

Most of the prior studies have been performed on harmonically
trapped Bose gases. There, the density gradient limits the viable area
to extract a measurement for any given density and thus severely re-
duces the statistical sample size per realization. Hence, the homoge-
neous 2D gas presents a unique opportunity to increase the signal-to-
noise ratio (SNR) significantly as well as to eliminate density depen-
dent effects. Combined with the high degree of calibration of density,
focus and detuning (see Chapter 9) the presentedmeasurements offer
the possibility of direct quantitative comparison. With this, the extrac-
tion of coherence parameters such as the scaling exponent ηmight be
viable.

.. Relation of density ripples to in situ coherence

In order to extract any in situ phase properties from a density image
after ToF, a relation of an observable quantity to the in situ wave func-
tion has to be found first.

A simplified toy model yields already rudimentary insight into the
source of the density ripples that develop during time of flight and
will be presented first. Subsequently, the theoretical ansatz will be
introduced schematically. Since the complete derivation is relatively
unwieldy, it will be presented in Appendix A.

Consider the following wave function of a Bose gas which omits
density variations, i. e. n(r) ≡ 1,

ψ(r) = eiθ(r). (8.2)

Close to T = 0, the kinetic energy available for perturbations is only
minimal. Hence, the phase gradient ∇θ is small. In the small patch of
interest, the exponent can then be written θ(r) ≈ θmean + δθ(r), where
δθ ≪ 1 is a small fluctuation. This corresponds to a weak phase fluc-
tuation. When the slowly varying phase is assumed to be constant,
i. e. θmean, the exponential function can be approximated for small ar-

http://dx.doi.org/10.1103/PhysRevA.89.053612
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gument. Subsequently, if we neglect scattering, the propagation can
be treated as non-interacting with the free time evolution operator as Note that only the phase θ undergoes

time evolution since this approximation
can be interpreted as a superposition of
the momenta 0 and±k. Here the k = 0
mode is associated with the local oscil-
lator, the ”1”, therefore the Hamiltonian
vanishes.

ψ(r, t) ≈ 1 + iδθ(r) ⋅ e−iℏk22m (t−t0). (8.3)

Here, a free particle Hamiltonian H = ℏ2k2
2m with momentum ℏk and

mass m has been assumed. This is valid when the expansion is pre-
sumed to occur on much faster timescales as the time between scatter-
ing events. In the following, we set t0 ≡ 0. With this, fluctuations of
density n(r) = nmean + δn(r) ∝ |ψ(r)|2 take the form

δn(r) = 2δθ(r) sin(
ℏk2
2m t) +

small
⏞⏞⏞⏞⏞⏞⏞𝒪(|δθ|2) . (8.4)

From this equation, it is immediately obvious that the in situ phase
fluctuations δθ are present in the density image after ToF as density
ripples. It is also evident that the visibility of the ripples is modulated
with time t depending on the wavelength λ = 2π/k of the phase fluc-
tuation. This is analogous to the optical Talbot effect and already leads
to a first conclusion about the phase of the 2D gas. If the phase fluc-
tuation were of a single wavelength, e. g. δθ(r) = cos(k ⋅ r), the signal
visibility would oscillate with ToF and show the highest SNR at odd
multiples of t = πm

ℏk2 . Since the contrast does not oscillate with ToF,
there must be fluctuations at arbitrary momentum k, a first indication
of slow and possibly algebraic decay of correlations.

Note that this toy models purpose is
mostly instructional. The ansatz in
Eq. (8.4) erroneously exhibits density
fluctuations also at t = 0, which will be
disregarded due to their 𝒪(|δθ|2) de-
pendency. Additionally, a small phase
gradient does not guarantee a small
phase amplitude δθ globally. This ap-
proximation is thus only valid on finite
patches. Coincidentally, that is also an
intuitive way of understanding a BKT
quasi-condensate.

As it turns out, not the complete knowledge of the local density fluc-
tuations is necessary but only their correlation. The density-density
correlation function ⟨nn⟩ is closely related to the four-point correlator
G2

G2(𝐫1, 𝐫2, 𝐫3, 𝐫4) = ⟨ψ†(𝐫1)ψ†(𝐫2)ψ(𝐫3)ψ(𝐫4) ⟩. (8.5)

Which, for homogeneous systems, can be simplified to only depend

This expression holds true also for time
dependent systems, the argument t has
only been omitted for readability.

on a single distance 𝐫

G2(𝐫) = ⟨ψ†(𝐫)ψ(𝐫)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
n(𝐫)

ψ†(0)ψ(0)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
n(0)

⟩ − nmeanδ(𝐫), (8.6)

with the averagedensitynmean. The above equation contains two terms

The delta function contribution re-
sults from the normal ordering of
G2 = 〈ψ†ψ†ψψ〉, listing the her-
mitian conjugates first. Using the
usual bosonic commutation relation
[ψ(x),ψ(y)†] = δ(x − y), the order
can be permuted to 〈ψ†ψψ†ψ〉 at the
cost of introducing the delta function δ.on the right-hand side. The first denotes the experimentally accessi-

ble density-density correlations, whereas the second one represents a
shot-noise contribution that results from the normal ordering of the
bosonic field operators and will be ignored hereafter. Since the mea-
surable density correlations, ⟨ n(r, tToF) n(0, tToF) ⟩, only form after ToF
and the in situ phase correlations g1(r, t0) = ⟨ψ†(r, t0)ψ(0, t0) ⟩ are
of interest, a model that relates the two is necessary. Fortunately, the
discussion sparked by A. Polkovnikov76 led A. Imambekov et al.82,121 76 A. Polkovnikov et al.: Proc. Natl. Acad.

Sci. U.S.A., vol. 103, (2005)

82 A. Imambekov et al.: Phys. Rev. A,
vol. 80, (2009), 121 A. Imambekov et al.:
Phys. Rev. A, vol. 77, (2008)

to produce exactly that. These calculations have been extended and
simulated for our 2D system by our collaborators in the group of L.
Mathey84. They derived an approximate analytical expression for the

84 V. P. Singh and L. Mathey: Phys. Rev.
A, vol. 89, (2014)

power spectral density (PSD) of an algebraically decaying quasi-conden-
sate, which is simply the Fourier transform of the sought after density

http://dx.doi.org/10.1073/pnas.0510276103
http://dx.doi.org/10.1103/PhysRevA.80.033604
http://dx.doi.org/10.1103/PhysRevA.77.063606
http://dx.doi.org/10.1103/PhysRevA.89.053612
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correlation function g2

ℱ{g2(r, t) − 1} = psd(k, t) ≈4πaηK1(ak)k

g21,alg(kℏt/m)

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
(

a2
a2 + (kℏt/m)2)

η

⋅ 2 sin2(
ℏk2
2m t) . (8.7)

Here, K1 is the first order modified Bessel function of the second kind,
k = |𝐤| denotes the momentum of the excitations, a represents a short The short distance cut-off close to T =

0 is a ∝ ξh, with the healing length
ξh and transitions continuously into
a = λ2dB/(2πξh), with the thermal de
Broglie wavelength λdB, for finite tem-
peratures.

distance cut-off capturing short range physics like vortices. The above
expression consists of three terms on the right-hand side. The first
is purely the result of the introduced short range cut-off. The second
term connects the density-density correlation function g2 to the in situ
phase properties via g1. The third term is the so called mean-field
term, due to the fact that mean-field Bogoliubov theory can be used
to derive it. In fact, it is precisely the square of the interference term
of the density fluctuations derived earlier using simpler toy model.
The correlation functions calculated from Eq. (8.7) already present
the opportunity to gain approximate quantitative insight into the de-
cay of a BKT gas. To better describe the true experimental conditions
at T ≠ 0 and especially T ≳ TBKT we solve the full integral expression
numerically for the quantitative analysis since also in situ density fluc-
tuations as well as exponential decay can be considered. Examples of
the shape of g2 for three different ToF of the algebraically Fig. 8.2(a)
and exponentially Fig. 8.2(b) decaying phase correlations are given
in Fig. 8.2. Here, the parameters (a, c) of the respective g1 have been
set to typical values for our experiment and the scaling exponent is
η = 0.125, i. e. well in the algebraic regime. The parameter r0 is on the
order of the de Broglie wavelength of our sample. A more detailed
explanation of these parameters and their requirements can be found
in Section 8.3.2. The density correlation functions are – for these pa-
rameters – starkly different. The algebraic decay exhibits a distinct
minimum that moves towards larger distances with increasing ToF,
whereas the exponential decay exhibits no such minimum, a much
larger amplitude at r = 0 and only minor change for the ToFs shown.

For much smaller temperatures, the ex-
ponential decay also exhibits a pro-
nounced minimum which vanishes for
prolonged ToF. This can be seen from
Eq. (8.14) since the time evolution is
solely in the exponent and thus identi-
cal for all g1. For long ToF, this can
be used as a differentiation between al-
gebraic (slow) and exponential (faster)
decay.

Qualitative – and even quantitative – comparison of experimental g2
to the theoretical curves allows to infer properties of the supplied in
situ phase correlation functions g1.
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Figure 8.2: Plots of the normalized
density-density correlation function g2
after time of flight. (a) Examples of
g2 for algebraically decaying g1 in de-
pendence of the distance r are given
for three different times of flight. For
1ms (blue), 2ms (red) and 3ms (yel-
low). Note that the minimum shifts to-
wards larger distances for longer time of
flight. Typical values for the parameters
were chosen and inserted in the formula
given below the figure. (b) Examples
of g2 for exponentially decaying g1 in
dependence of the distance r are given
for three different times of flight. For
1ms (blue), 2ms (red) and 3ms (yel-
low). Note that no pronounced mini-
mum is observable for the used param-
eters which are chosen to be typical for
the presented experiment and inserted
in the formula given below the figure.
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A qualitative comparison of the measured g2 with the theoretical pre-
diction gives already first insights into the nature of the phase cor-
relations present in the sample. To this end, examples of measured
density correlation functions after ToF are shown and the method of
extraction is explained. Subsequently, the measured g2 is used to in-
vestigate the changes in phase correlation when the sample is held in
an optical dipole trap for a variable amount of time. In Section 8.3.1,
an agnostic analysis is performed in order to derive insights with the
least amount of assumptions. At a later stage, the complete theoretical
model and all known corrections for expected technical and physical
effects are leveraged in an attempt to extract quantitative results in
Section 8.3.3.

.. Density correlation functions of the experimental system

After the preparation of an ultracold bosonic cloud in a single 2D layer,
the confining dipole traps are switched off abruptly. The gas is left to
expand a variable amount of time and subsequently imaged. Typical
absorption images for two ToFs are shown in Fig. 8.3. Even without
detailed analysis, it is already apparent that the length scale of the
density ripples increases with ToF as expected.

(a)

[git] • Branch: jonas@422514d • Time of Commit: 2018-09-12 19:43:02 +0200

1ms

(b)

[git] • Branch: jonas@422514d • Time of Commit: 2018-09-12 19:43:02 +0200

2ms

(c)

(µm)

1ms
2ms

Figure 8.3: During time of flight the
non-constant phase of the ultracold in-
teracting Bose gas develops into an in-
terference pattern in form of density rip-
ples.(a) After 1ms ToF the density rip-
ples exhibit a characteristic length scale.
(b) After 2ms ToF the characteristic
length scale has increased. (c) Extracted
single-shotg2 for the ToFs shown on the
left. Different numerical apertures had
to be chosen since otherwise the cloud
would extend significantly beyond the
DoF for longer ToF.Howwe compensate
for this is detailed in Section 9.2.2.

The extracted correlation function g2 of the images is shown in
Fig. 8.3c. Here, the shift in the dominant length scale can be seen even
more clearly. Note that the density correlation functions are extracted
from a single density image and still exhibit only negligible noise. The
large amount of statistical samples is one of the advantages of the ho-
mogeneous gas since a very high SNR can be achieved from a single
realization.

To utilize g2 as a measurement tool, it is helpful to understand how
it is obtained experimentally. The discussion of the physical impli-
cations of the measured density correlation functions for the studied
system in dependence of the hold time is continued in Section 8.3.

.. Numerical Correlation Analysis

Obtaining a qualitative measure of the density correlations can be as
simple as applying the 2D autocorrelation function of an image pro-
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cessing library to the image after ToF. To extract a quantitative mea-
sure, to be compared to theory, additional steps need to be performed
in order to avoid effects introduced by the measurement or the com-
putational analysis that are not immediately obvious.

The general process applied here is shown in form of a flow dia-
gram in Fig. 8.4. Here, the performed steps are illustrated diagram-
matically with the corresponding data visualized for selected steps, a
more thorough description can be found as part of Appendix B.

A measurement begins with the acquisition of a large number of ab-
sorption images of the quantum gas in situ and after 1ms ToF. Usually Longer and shorter times of flight are

also viable. The length scale observed
depends on the ToF and hence has to be
tuned to achieve optimal SNR to balance
the decrease in resolution from the ex-
pansion in the imaging axis.

50 to 100 images are taken in order to allow for failed experimental
cycles, or shots, and retain a sufficiently sized statistical sample. Of

A shot is how the experimental proce-
dure resulting in an absorption image
and the destruction of the samplewill be
henceforth referred to.

course, if the systems dependency on a physical parameter is investi-
gated, this process is repeated for each value. For a typical experiment,
this results in a dataset on the order of 10 000 files since each density
image consists of three individual absorption images, for details see
Section 9.2.1.

After a region of interest (RoI) has been selected to mask the areas
where no atoms are present, the data is divided by the average den-
sity is which computed from the mean of all suitable images. Subse-
quently, the average of each individual realization is rescaled to unity
to compensate for small drifts in average density. An example of a
masked and normalized density image is shown labeled as 1

 

 

.
When the preparation is completed, the offset is removed by sub-

tracting the mean and subsequently each image is correlated with it-
self in a discrete 2D cross-correlation process labeled as xcorr. Since Since the image is correlated with it-

self, i. e. the two inputs of the cross-
correlation are identical, the process is
known as autocorrelation.

the image has been normalized, this step now yields the desired nor-
malized correlation function g2 −1, which will be henceforth be used
interchangeably with g2 in this work due to the numerical benefit and
notational convenience. However, the ideal second order correlation
function requires an infinite domain or a sufficiently fast decaying sig-
nal in order to be compared to theoretical results. Neither is present
in the experimental data. The autocorrelation process does not distin-
guish between correlations present in the gas or e. g. those present in
the mask or the light field used for imaging. Since the mask is imple-
mented as amultiplicationwith aHeaviside function, the extracted g2
is also of multiplicative form g2,exp = g2,ideal ⋅ g2,mask.

The autocorrelation of the mask itself is shown in 2
 

 

. Its large in-
fluence on g2,exp is obvious when compared to the raw autocorrelation
of the masked image in 3

 

 

, note the large difference in scale. The di-
vision of the correlation functions of the gas and the mask 4

 

 

reveals
one obvious limitation even after correction: The correlation function
is only defined within distances of twice the masks radius. Every-
thing beyond that radius is purely numerical noise and even within
the valid domain the noise is amplified towards the edge via the divi-
sion by a small number. Note that the images shown in 2

 

 

to 4
 

 

have
twice the resolution of the raw image and are approximately radially
symmetric.
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Figure 8.4: Outline of the image prepa-
ration used in the numerical analysis of
g2 The flow chart presents the simpli-
fied procedure while examples for rele-
vant intermediate steps are given to the
left. Image preparation is the first step
in the numerical analysis of the density
correlation function g2. First, a RoI is
defined by the user and subsequently
applied as a binary mask to the array
of density images. By division with the
average density and rescaling to unit
density per realization, the normalized
and rescaled density distribution after
ToF labeled

[git] • Branch: jonas@bd3cd16 • Time of Commit: 2018-09-26 23:07:38 +0200

 

 

is obtained. In a sec-
ond step, the binary mask as well as the
density image array is autocorrelated
which yield the density-density corre-
lation functions g2 labeled

[git] • Branch: jonas@bd3cd16 • Time of Commit: 2018-09-26 23:07:38 +0200

 

 

and
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.
The latter correlation function is divided
by the former, hence the mask corrected
g2 is obtained, labeled

[git] • Branch: jonas@bd3cd16 • Time of Commit: 2018-09-26 23:07:38 +0200

 

 

. After sub-
sequent azimuthal averaging, the cor-
rections for the in situ fluctuations are
applied to the data whilst the influence
of the imaging system is considered by
convolving the fit functions. Note that
a constant offset of unity has been re-
moved here in the density-density cor-
relation function g2.
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The image in 4
 

 

is averaged azimuthally by binning the radii of the
pixels approximately every 100 nm, yielding a radial g2 on an equidis-
tant grid. Outliers are removed and the data is interpolated to facili-
tate high performance adaptive numerical fitting and easy comparison
between different datasets.

Now, corrections to systematic errors introduced by the time of flight
are applied. The measured in situ density-density fluctuations are
propagated, g2,in situ(t = 0) ⟶ g2,in situ(t = ToF) to the time the
absorption image is taken and subtracted from the correlation func-
tion of the gas after ToF, i. e. g2 = g2,tof − g2,in situ(t = ToF). For a
more detailed explanation of the time propagation of in situ fluctua-
tions see Section 9.2.3. The expansion into the magnetic field causes
a minuscule compression radially and a significant expansion in the
line of sight. The compression is compensated for by rescaling the
correlation function radially whereas the reduction in resolution by
the expansion cannot be reversed. Hence, the influence of the imag-
ing system is in turn applied to the fit function by convolving with a
suitable point spread function (PSF).

The result of this process is displayed in 5
 

 

for single realizations
of two different ToFs and in situ. The result of the large homogeneous
RoI is that a very large SNR can be achieved even for individual shots.

This tool in hand, we extract the density correlations from images
taken after 1ms ToF of a cold Bose gas held in a dipole trap for a vari-
able amount of time, to investigate possible insights into the phase
evolution.

.        

To begin, a number of straightforward analyses of sample images are
made to provide a rough assessment of the state of the gas. These
analyses will evaluate the readily available values of density in situ
and after ToF as well as, in a second step, the density correlation func-
tion g2 that has been extracted via the method mentioned above.

.. What can we learn directly from G2?

The first observation made is that the average density decreases by
20.2% during 70ms hold time, as can be seen in Fig. 7.8. Here, the
density is shown for each hold time in situ∗ and after ToF. Oddly, the ∗ In situ means in our case actually ap-

proximately 20µs after the release of the
trap. This short time delay ensures that
the 3D density has been sufficiently re-
duced to suppress multi scattering ef-
fects of the imaging photons.

measured average density after ToF shows approximately 5% reduc-
tion compared to the in situ density. We attribute this increased re-
duction to the expansion of the cloud beyond the DoF of our micro-
scope. Details regarding the effect of the imaging system can be found
in Section 9.2.2. For visual comparison, we have rescaled the density
after ToF to the in situ density. This has no effect on the further statisti-
cal evaluation and correlation analysis since the density is normalized
first. The in situ density is expected to be known well since we have
calibrated the apparatus for this type of measurement, as is described
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in Section 9.1.3.
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Figure 8.5: (a) In situ normalized den-
sity fluctuations histogram. The gas im-
mediately after preparation is shown in
blue and after 90ms hold time in red.
(b)Normalizeddensity fluctuations his-
togram after 1ms ToF. The gas immedi-
ately after preparation is shown in blue
and after 90ms hold time in red. (c) The
density fluctuations standard deviation
around the mean, in situ (blue circles)
and after 1ms ToF (red squares).

In situ density fluctuations can be used to estimate the relative in-
crease in internal energy of the gas. The measured values are normal-
ized to unity density and plotted in a histogram, see Fig. 8.5. Since
the optical resolution of our imaging system has been artificially re-
duced to increase the DoF, the absolute values do not represent true
point like fluctuations per pixel but are averaged over the extent of our
PSF, see Section 9.2.2. The images contain not only the atomic shot
noise we are interested in, but also the Poisson noise contribution of
the imaging light. The influence of the PSF limits the usefulness of this
analysis to relativemeasurements without compensation. The photon
shot noise contribution is strongly suppressed by averaging over a few
pixel wide kernel. The extracted standard deviation around the mean
density shows a slight increase of density fluctuations of 16.6% in situ
but only little change for the images taken after ToF, as can be seen in
Fig. 8.5c.

The most prominent feature of the density correlation function is
arguably the minimum since it indicates anticorrelation which – for
long times – are expected to vanish in a thermal gas84. A change in 84 V. P. Singh and L. Mathey: Phys. Rev.

A, vol. 89, (2014)the position of the minimum would indicate a change in the domi-
nant length scale of the correlations. As can be seen in Fig. 8.6, the
location of the minimum does not change, whereas the absolute am-
plitude decreases, i. e. the minimum becomes much less pronounced.

Brief conclusion of the mostly theory-agnostic analysis
In the previous chapter, the result of the momentum-space analysis
was that the gas might be driven out of degeneracy while being held
in the dipole trap. With the introduction of non-equilibrium effects ei-
ther globally or locally. The reduction of average density with an ap-
parent increase in temperature does support the possibility of a phase
transition during holding, analogous to the discussion in the prior
chapter concerning the T/4-measurement. Additionally, the slight in-

http://dx.doi.org/10.1103/PhysRevA.89.053612
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crease of in situ density fluctuations indicates an increase in internal
energy and hence equilibrium temperature, assuming all other excita-
tions remain approximately equal. However, the approximately con-
stant density fluctuations after ToF are rather puzzling. The heating
process of ultracold 2D gases is often modeled as an increase of phase
fluctuations in the quasi-condensate since those require the least amount
of energy. This would, however, lead to an increase in density fluctu-
ations after ToF, even considering that the in situ density fluctuations
turn into phase fluctuations and hence escape our detection. The den-
sity correlations after ToF also hint at a more complex situation. The
ansatz made in Section 8.1.2 indicates that the amplitude of the mini-
mum in g2 should increase. However, this holds true only if the heat-
ing process is indeed mostly phonon driven. If the heating is, alterna-
tively, particle like, thus transferring atoms from the quasi-condensate
to the thermal part, a vanishing minimum could indicate a growing
non-degenerate fraction. To identify the degenerate and thermal state
of the gas from the qualitative shape of the density correlations after
ToF is not trivial. Their qualitative behavior is very similar and show
the strongest differentiation in the time scales of the decay of anticor-
relations. Due to the complexity of the problem, in order to extract
in situ properties from the density correlation function, a methodical
comparison with a sophisticated theory is more appropriate.

.. Model theory

It turns out that in situ excitations in density as well as phase have
to be considered since phase excitations transform into density excita-
tions and vice versa. How in situ density fluctuations are treated in the
analysis is presented in more detail in Section 9.2.3. In the following
it will be concentrated on phase fluctuations since on the one hand,
density fluctuations are strongly suppressed for cold Bose gases and
on the other hand, the BKT-physics of interest manifest in the correla-
tion function g1 and hence the phase interference. For the final quan-
titative analysis, the effects of in situ density fluctuations have been
corrected for in first order.

The theoretical approach presented here, gaining insight into the



  :      101

in situ phase fluctuations from the knowledge of density fluctuations,
is based on the work of A. Imambekov82 and follows the additions 82 A. Imambekov et al.: Phys. Rev. A,

vol. 80, (2009)of V. Singh77. Also, the derivation will focus on the conceptual steps
77 V. P. Singh: Probing Superfluidity of Ul-
tracold Bose Gases via Laser Stirring and
Noise Correlations, (2017)

performed to arrive at the in situ phase to ToF density relationship,
the interested reader can find the full, step by step, derivation in Ap-
pendix A. The formulas will be presented simplified, in order to focus
on the used concept. Hence, all integrals are understood to span the
interval (−∞,∞), and all constants are set to unity, i. e. ℏ ≡ h ≡ m ≡
1. Additionally, this derivation is using the complex field approxima-
tion of the phase operator.

The onset of the derivation is the de facto default ansatz of the in
situ wave functionψ0 with constant density√n0 and position depen-
dent phase θ(𝐱, t) at time t = t0 = 0,

Ψ0(𝐱, t0 = 0) = √n0e−iθ(𝐱,t0). (8.8)

Since the absorption image is taken after ToF, the knowledge of the
wave functions at some later time t > t0 is required. The straightfor-
ward application of the time evolution operator is simplified by the
use of a Green’s function propagator, since this approach yields much
more accessible expressions. The wave function is propagated in time
by

Ψ(𝐱, t) = ∫G(𝐱 − 𝐱
′, t) Ψ0(𝐱′, t0 = 0)d𝐱′ . (8.9)

Here, the Green’s functionG is taken to be the free particle propagator The Green’s function takes the role of
a transfer function in this expression.
Analogous to the amplitude transfer func-
tion (ATF) in the treatment of the imag-
ing as a linear invariant system in Sec-
tion 9.2.2.

defined as
G(𝐱, t) = 1

ite
i𝐱22t . (8.10)

Despite the fact that the sample is initially well in the many-body
regime, this assumption is still reasonable since the fast expansion af-
ter release from the trap reduces interactions significantly.

With thewave function knownat time t, the density after ToFn(t) =
Ψ†(t)Ψ(t) could in principle be calculated. Since the density-density
correlation function, ⟨n(𝐫1, t)n(r2, t)⟩, is constructed from two densi-
ties, it contains a quadruple integral over four wave functions Ψ and
four exponentials – or phase rotations – from the Green’s functions

⟨n(𝐫1, t)n(r2, t)⟩ =⨌d𝐬d𝐒d𝐮d𝐔 e− i
t (𝐒−𝐫1)𝐬 e− i

t (𝐔−𝐫2)𝐮

⋅ 〈Ψ
†
0 (𝐒 +

𝐬
2)Ψ

†
0 (𝐔+

𝐮
2 )Ψ0 (𝐒 −

𝐬
2)Ψ0 (𝐔−

𝐮
2 )〉

+ n0δ(𝐫1 − 𝐫2). (8.11)

The expression above has already been written in a center of mass ref-
erence frame with the centers 𝐒,𝐔 and the relative coordinates 𝐬, 𝐮. It
is interesting to note that the independent variables 𝐫1, 𝐫2 only appear
in the exponential and the in situ wave functions contain solely vari-
ables to be integrated over. TheDirac delta function in the last term re-
sults from the normal ordering of the wave functions. It represents an
atomic shot noise contribution which will be ignored hereafter since

http://dx.doi.org/10.1103/PhysRevA.80.033604
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it impacts only the origin r1 ≡ r2 and thus can be removed easily in
the numerical analysis.

The above expression already yields the connection between the
in situ state and the measurement after ToF but is still unpractical
since we have no knowledge of the in situ wave functions. To con-
tinue, the term in angle brackets can be identified as the densitymatrix
ρ(∗) = ⟨Ψ†

0Ψ†
0Ψ0Ψ0⟩. It can be simplified when realizing that it mostly

contains exponentials of phase terms and we know from Section 4.1
in Chapter 4 that ⟨eiô⟩ = e 1

2 〈ô2〉. With this, the expectation value of
the density matrix ρ can be turned into the expectation value of the
square of the phases

ρ(𝐫a, 𝐫b, 𝐫c, 𝐫d) = n20⟨ei[θ(𝐫a)+θ(𝐫b)−θ(𝐫c)−θ(𝐫d)]⟩

= n20e〈[θ(𝐫a)+θ(𝐫b)−θ(𝐫c)−θ(𝐫d)]
2〉/2. (8.12)

Again, the coordinates 𝐫a−d in the arguments have been substituted
to enhance readability. Since the first order correlation function is de-
fined by the wave function’s phase, the expectation value of the phase
terms can be rewritten as an expression solely of g1,

ρ(𝐫a, 𝐫b, 𝐫c, 𝐫d) = n20
g1(𝐫a − 𝐫c)g1(𝐫a − 𝐫d)g1(𝐫b − 𝐫c)g1(𝐫b − 𝐫d)

g1(𝐫a − 𝐫b)g1(𝐫c − 𝐫d)
.

(8.13)
Substitution of the densitymatrix, a last center ofmass transformation
with 𝐫1 − 𝐫2 = 𝐫12 and 1

2 (𝐫1 + 𝐫2) = 𝐑12, and exploiting the trans-
lational invariance to remove two of the four integrations, yields the
final expression After the center of mass transformation,

the translational invariance leads to a
free variable to be integrated over. This
yields a delta function, which, in a sec-
ond integration, eliminates a second co-
ordinate.

g2(𝐫12, t) =
A4
4 ∬d𝐫d𝐫′ e− im

8ℏt (𝐫2−𝐫′2−2𝐫12(𝐫−𝐫′))

⋅ g1 (
1
2 (𝐫′ − 𝐫))

2 g1 (12 (𝐫′ + 𝐫))
2

g1(𝐫′)g1(𝐫)
. (8.14)

Here A = √ m
2πℏt , and all the constants have been re-substituted to

form the full equation. One can see that the expression above con-
nects the in situ phase correlation functions g1(r, t0 = 0) to the density
correlation function g2(r, t) at arbitrary time t = ToF.

Now, a first order correlation function – namely for a quasi-conden-
sate or a thermal gas – can be inserted and compared to the measured
density correlation function. To illustrate the effect of different decay,
the following g1,∗ with algebraic and exponential decay are inserted
in 1D in order to achieve a two-dimensional graphical representation
and transfer some intuitive understanding of the expression above,

g1,alg(𝐫) = (
a2

a2 + |𝐫|2)

η
2

g1,exp(𝐫) =
(

c2
c2 + 4 sinh2(|𝐫|/r0))

1/2

.

These functions are obtained from the ideal algebraic, r−η, and ex-
ponential, e−r/r0 , first order correlation functions. The parameters a
and c are introduced to capture short-range physics, which are not in-
cluded in the theoretical ansatz. In the case of the g1,exp, it works in
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conjunction with the smoothing of the exponential function towards
r = 0 via the hyperbolic sine but also serves as a second fit parameter
to ensure a fair comparison of the goodness of fit (GoF). The parameter
c alters the shape of the correlation function drastically, for very small
values of c and large r0 it can even approach the shape of algebraic
decay. Thus, the only physically viable value is approximately unity,
as will be revisited in the comparison later on.
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Figure 8.7: Plot of algebraic
g1(r, r′,a,η) term in g2(r, t) ex-
pression with a = 3µm η = 0.25.
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Figure 8.8: Plot of exponential
g1(rr′, r0, c) term in g2(r, t) ex-
pression with r0 = 1.6µm c = 1.

From Eq. (8.14), it is evident that the time evolution is independent
of the in situ phase correlations and consists of two fast oscillating
terms r2, r′2 and a distance term r − r′. For large r, r′, this effectively
averages out the contributions of all values except r = r′. If the quo-
tient term consisting of the algebraic or exponential g1 is plotted over a
Cartesian grid with the x-axis =̂ r and y-axis =̂ r′, the images shown in
Figs. 8.7 and 8.8 are produced. They demonstrate that only for r = r′
significant amplitude remains and differ mostly by how fast it decays
beyond the diagonals. Since the quotient is positive, the minimum
in g2 can only originate from the multiplication with the oscillating
exponential term. This explains the similar behavior of g2 for short
times, when only the value of g1 on the diagonals is significant, which
is almost identical for both g1. An appreciable qualitative difference
is only observed for intermediate times when g1,exp has vanished but
g1,alg is still finite. For very long times this difference persists since the
algebraic decay is slow and also the oscillating exponential term starts
to cease its averaging effect.

Hence, to better differentiate between algebraic and exponential de-
cay, knowledge of the quantitative difference in the shape of the den-
sity correlation function is crucial. Fortunately, with Eq. (8.14) such a
tool exists and a rigorous comparison of the density correlation func-
tion after hold time with theory is possible.

.. Quantitative analysis

The comparison of the measured density correlations with theoreti-
cal predictions which have been been corrected for the systematic er-
rors of themeasurement procedurewill be presented in the following.
The analysis involves a computationally expensive integral equation.
In order to ensure a feasible analysis, the theoretical g2 data to com-
pare to has been generated beforehand in large configuration space
volumes on the local high performance computing cluster by V. Singh
in the group of L. Mathey. Nevertheless, in a good approximation,
one can think of the following plots as the result of the average of the
fits to the autocorrelation of every single image with Eq. (8.14).

Figure 8.9: Representation of the region
of interest. The highlighted part is se-
lected for further study, the remainder
is cut.

Since the images of the sample contain imperfections due to aber-
rations in the beams used to generate the trap potentials as well as
vibrations of the used imaging optics, a suitable RoI is chosen to in-
clude as few imperfections as possible while maximizing the area to
analyze. The chosen RoI can be seen in Fig. 8.9. Everything except
the highlighted area is masked in every image prior to analysis. For
all contained length scales, the effect of this mask is completely re-
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versible. This demonstrates the possibility to investigate samples lo-
cally which, however, comes at the cost of a reduced SNR.

Examples of the fits derived from different first order correlation
functions g1,alg/exp, ToF and hold times are shown in Fig. 8.10. Clock-
wise, it shows fits to the average in situ density correlation function
(a), algebraic and exponential fits to g2 after short time of flight for
two different realizations for no additional hold time (b) and (d), as
well as fits to a sample taken after 70ms of hold time (c). The individ-
ual fits are discussed in this order in the following.

(a)

(µm)

In situ

average over dataset
(89.4 35.2) nK

(b)

µm

No hold time

TOF shot: 8
Algebriac fit
Exponential fit

(c)

(µm)

70ms hold time

Shot: 14
Algebraic fit
Exponential fit

(d)

(µm)

No hold time

TOF shot: 28
Algebriac fit
Exponential fit

Figure 8.10: (a) Fit to the averaged
in situ density-density correlation func-
tion g2 with Eq. (8.15). The resulting
temperature exhibits a significant error
but is in reasonable agreement with the
temperature obtained from the thermal
wings. Nevertheless, only the shape of
the curve is used in the short ToF analy-
sis which shows acceptable agreement.
(b) and (d) Fits to a single realization
(shot no. 8 and 28) immediately after
preparationwith algebraically (red line)
and exponentially (yellow line) decay-
ing g1. Here, the parameter c is fixed at
unity. Obviously, the algebraically de-
caying fit function yields much superior
agreement. (c) Fits (same colors as pre-
viously) to a single realization (shot no.
14) after 70mshold time. Note themuch
reduced amplitude of g2.

Fitting g2 to in situ density-density correlations
It is obvious that the second order correlation function taken from in
situ (Fig. 8.10a) and ToF (Fig. 8.10b) images are very different for the
two cases. In situ, only density fluctuations due to thermal fluctu-
ations and quantum depletion are present and the most prominent
feature is the broadened short range correlation up to approximately
r = 6µm.

At first sight, the sizable amplitude of the in situ density fluctua-
tions of approximately 20% of the ToF data is surprising, since density
fluctuations are expected to be strongly suppressed in ultracold two-
dimensional gases. However, as the calculations below will show, the
observed density fluctuations are in good agreement with the theoret-
ical expectation. It is expected that for temperatures on the order of
the critical temperature, thermally excited density fluctuations show
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correlations on the order of the de Broglie wavelength, for our param-
eters λdB ≈ 1.6 − 1.9µm42. Even well below the critical temperature, 42 M. Naraschewski and R. J. Glauber:

Phys. Rev. A, vol. 59, (1999)the in situ density fluctuations are expected to be non-negligible due
to the very low densities.

Within the Bogoliubov approximation for a radially symmetric sys-
tem, the thermal and quantum in situ density fluctuations can be nu-
merically computed by77 77 V. P. Singh: Probing Superfluidity of Ul-

tracold Bose Gases via Laser Stirring and
Noise Correlations, (2017)⟨δn(r)δn(0)⟩

n20
= ξh
2π

∞

∫
0

dk k2

√k
2ξ2h + 2

J0(kr)

⋅ ⎛⎜⎜
⎝

2

exp(
βℏ2k
2mξh√k

2ξ2h + 2 − 1)

+ e−kξ
⎞⎟⎟
⎠

.

(8.15)

Here, β = (kBT)−1 is the inverse temperature and the healing length
is defined as ξ = 1/√2mμ with the appropriate chemical potential
μ. The first term in the parentheses is the temperature contribution
whereas the second term represents the quantum contribution. In or-
der to make the integral tractable a smooth momentum cut-off, e−kξ,
has been introduced in the quantum term to limit the momenta to
k ≤ 1/ξh. The result from Eq. (8.15) is convolved with our imag-
ing PSF and fitted to the averaged in situ density correlation data, see
Fig. 8.10a. Two datasets have been taken, the first with hold times up
to 30ms and the second dataset with hold times up to 100ms. These
measurements will be referred to as the 30ms dataset and the 100ms
dataset, respectively. The agreement is excellent for the data obtained
from the 30ms dataset and the fitted temperature of T ≈ (89.4± 35.2) nK
is compatible with the independent measurements made in momen-
tum space in Chapter 7. Here the density is left as an independent
fit parameter, which results in a good agreement to the measured av-
erage in situ density with (2.75± 0.90)/µm2. However, due to the
strong influence of the imaging system, these fit parameters bear a
relatively large error. Unfortunately, the agreement for the data ob-
tained from the 100ms dataset is significantly less good in comparison.
The fitted parameters are still reasonable but the plot shows that the
resultant curve deviates in shape and amplitude for very small radii,
see Fig. 8.11. This might be an indication for a departure from equilib-
rium physics, which the Bogoliubov ansatz used above implies. De-
spite the partially excellent agreement, we do not use the fits to in
situ density correlations in the current analysis since the momentum
spacemeasurement made in the prior chapter is a standard procedure
for ultracold gases.

(µm)

Insitu average
(74.7 65.2) nK

Figure 8.11: Fit to the in situ density
fluctuations of the dataset with longer
hold times. Density and temperature
are reasonable with n0 ≈ 2.9/m2 and
T ≈ (75.0± 65.2) nK but the quality is
considerable worse compared to the fits
to the dataset with shorter hold times.

Fitting g2 to density-density correlations after short ToF
The density-density correlation function g2 after short ToF shows a re-
markably high SNR which allows a fit to each single shot. The main
features, the sharp rise towards small radii and the pronounced mini-

http://dx.doi.org/10.1103/PhysRevA.59.4595
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mum around 7µm are capturedwell by the fit functions for g2 assum-
ing algebraic g1, as can be seen fromFig. 8.10b and Fig. 8.10d. Even the
predicted secondmaximum, which can be observed at 12µm, is fitted
reasonably well. On the other hand, using a fit function for g2 that as-
sumes an exponentially decaying first oder correlation function does
not produce acceptable results. We point out that the exponentially
decaying g1 function used as an input to calculate g2 also has two free
parameters, namely the coherence length and a heuristic short-range
cut-off c needed to prevent a divergence of g1 at short distances. It
reads

g1,exp(𝐫) =
(

c2
c2 + 4 sinh2(|𝐫|/r0))

1/2

⟶
for large|𝐫| and c ≈ 1

e−|𝐫|/r0 .

(8.16)
Here, the ideal value c ≡ 1 has been chosen, which obviously does not
capture the main features at all. If c is chosen to be a free fit parameter
the fit quality naturally improves. However, the optimizer converges
fast to very small values c < 0.2 and large correlation length r0 which
are unphysical and do not represent true exponential decay. In order
to illustrate this, several g1 functions with varying c parameters are
plotted in Fig. 8.12.
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(µm)

Figure 8.12: Comparison of different
parameters for the exponentially decay-
ing g1 function as input to the fit-
ting routine. True exponential decay
(dashed) is compared with three values
for c. For c = 1 (solid) the true ex-
ponential shape is well approximated,
while for c = 10 (dash dotted) and
c = 0.1 (dotted) large discrepancies
become evident. Due to this behavior,
only values close to unity produce phys-
ically reasonable results.

Hence, the algebraic model for the first order correlation function
produces superior results. However, even if c is not fixed to unity
for the exponential model, the algebraic model outperforms at small
hold times and becomes comparable in quality for hold times beyond
≈ 60ms. The quality of the model is estimated by error coefficients
collectively denoted by the GoF. In the following, the goodness of the
exponential and algebraic fits are compared to each other using two
measures that are depicted in Fig. 8.13.

(a)

RM
SE

30ms dataset

Hold time (ms)

(b)

RM
SE

100ms dataset

Hold time (ms)

Algebraically decaying g1, both fit parameters free
Exponentially decaying g1, both fit parameters free
Exponentially decaying g1, c set to unity

Figure 8.13: Comparison of the fit errors
of the full numeric analysis of the den-
sity correlations measured after short
ToF. Three options are compared, the
algebraic (blue circles) and exponen-
tial (red squares) first order correla-
tion functions with two free fit param-
eters and a physically reasonable expo-
nential fit (yellow triangles) where the
c parameter set to unity. The upper
panel displays the root-mean-square error
(RMSE) as described in the textwhereas
the lower panel shows the R2 value.
Note that the RMSE of the exponen-
tially decaying fit always exceeds the al-
gebraic fit. The RMSE for c = 1 is now
shown since it is several times larger.
Analogously, the R2 coefficient of the
algebraic decay is always closer to the
ideal value of unity, although the qual-
ity of all fits diminishes towards longer
hold times.

The first measure is the RMSE, given by

RMSE =
√√√
√
1
N

N
∑
i
(ŷi − yi)2. (8.17)



  :      107

Here, yi are allN values of g2(Δri)measured at each hold time for the
N distances Δri and ŷi denotes the fitted value or prediction. From
Fig. 8.13, it is clear that the algebraic model has a substantially smaller
RMSE than the exponential model.

The second measure for the GoF is the coefficient of determination
R2, which can be more easily compared across different fitting meth-
ods. R2 ranges from R2 = 0 for a bad fit to a R2 = 1 for a perfect fit. A
common definition is122 122 T. O. Kvalseth: Am. Stat., vol. 39,

(1985)

R2 = 1 − RSOSTSOS, (8.18)

where TSOS stands for the total sumof squares andRSOS for the resid-
ual sum of squares, given by

TSOS =
N
∑
i
(yi − ȳ)2 , RSOS =

N
∑
i
(yi − ŷi)2⏟⏟⏟⏟⏟⏟⏟⏟⏟

residuals r=yi−ŷi

=
N
∑
i
r2i , (8.19)

with the mean of the data, ȳ = 1
N∑

N
i yi. Thus, R2 compares the fit of

the model with that of a horizontal hyperplane, the null hypothesis.
That means it compares the error RSOS assuming all predictors ŷi are
simply given by the mean ȳ to the RSOS of a more sophisticated fit
model. As can be seen in Fig. 8.13, the c = 1 model exhibits negative Conceptually R2 can be thought of as:

R2 = RSOSnull
TSOS − RSOS

TSOS.

With ŷi ≡ ȳi for the null hypothesis,
i. e.

RSOSnull =
N
∑
i
(yi − ȳ)2

= TSOS.

R2 values which occur if the chosen model fits the data worse than
a horizontal line. Note, that R2 is a relative measure that relates the
accuracy of the fit to the magnitude of the data. Thus if the data de-
creases in spread and the absolute error stays the same, the R2 value
decreases accordingly.

In summary, both measures show the algebraic model to be supe-
rior to the exponential model, especially if the physically motivated
assumption of c = 1 is made for the latter.

The main result of this chapter is contained in the plots of Fig. 8.14.
If a first order correlation function g1 ∝ r−η with algebraic decay is
assumed, which is a reasonable assumption as will be shown later,
the scaling exponent η can be extracted from the fit with Eq. (8.14).
Hence, the change of the scaling exponent can be shown in depen-
dency of the hold time in Fig. 8.14a.

It can be seen that both datasets yield similar scaling exponents for
the hold times where both are available. Since the datasets have been
acquired more than two weeks apart, this increases our confidence in
themeasureddata anddemonstrates the reproducibility of the results.
The specified error is the statistical error, i. e. given by one standard
deviation of the mean of the fit parameter η. From the experimen-
tal setup, including mostly the effects of detuning and the treatment
of in situ density fluctuations, we estimate the systematic error to be
also approximately Δη ≈ ±0.025. Both effects are presented in more
detailed in Section 9.1. The remaining difference can be attributed
to marginally different phase-space density caused by the drift of the
dipole trap beams.
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(a)

Hold time (ms)

(b)

Hold time (ms)
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t-o
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m
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Fitted parameters from the 30ms dataset
Fitted parameters from the 100ms dataset
Raw data, outliers not removed

Figure 8.14: The main result of the full
numerical analysis of the density corre-
lations measured after short ToF (a) The
scaling exponentη in dependency of the
hold time for both, the 30ms dataset (red)
and the 100ms dataset (blue). The error
bars denote one standard deviation in
the statistical average. Outliers greater
than 3σ have been removed and the
original dataset is plotted in gray in the
background. Reasonable values for η
can be observed for small hold times and
a significant decrease beyond ≈ 40ms.
(b) The cut-off parameter acut-off in de-
pendence of the hold time. The same
colors and style applies as in the prior
plot. Apart from a slight increase in the
statistical noise no remarkable feature
can be observed. The average value is
reasonable with ≈ 3µm.

Notwithstanding, a clear downward trend can be observed. The
measured average scaling exponent decreases from initially η ≈ 0.2 to
approximately η < 0.1 during the holding period. Interestingly, the
behavior of the data is incompatible with the assumption of heating a
quasi-condensate of constant density, the regime to which our avail-
able theoretical predictions apply.

The second fit parameter, the short-range cut-off introduced inChap-
ter 4, does not show a significant change with increased hold time
apart form a slight increase in noise. In fact, within the statistical er-
ror bounds, it remains approximately constant at acut-off ≈ 3µm. This
is expected, since the cut-off is strongly coupled to the location of the
minimum, which does not change as well. In principle, the cut-off
could be connected to the healing length ξh in highly degenerate sys-
tems or the ratio of temperature to healing length for systems closer
to the critical temperature via

acut-off ∝ ξh acut-off ∝ λ2dB
ξh ∝ √n

T .?

cold gas hotter gas

(8.20)

(µm)

1µm
3µm
6µm

Figure 8.15: Comparison of g2 for dif-
ferent short-range cut-offs. The density
correlation function is computed from
Eq. (8.14) for three different acut-off,
1 µm (blue), 3µm (red) and 6µm (yel-
low). The gray lines indicate the po-
sition of the minimum. Note how a
change in the cut-off changes both am-
plitude and location on the r-axis.

(µm)

0.05
0.15
0.25

Figure 8.16: Comparison of g2 for dif-
ferent scaling exponents. The density
correlation function is computed from
Eq. (8.14) for three different η, 0.05
(blue), 0.15 (red) and 0.25 (yellow).
The gray lines indicate the position of
theminimum. Note how a change in the
scaling exponent changes only the am-
plitude.

Unfortunately, a meaningful result can not be extracted from the fit of
this parameter to our data. However, considering the influence of the
imaging system, the absolute value is reasonable for a systemwith our
parameters.

For a single hold time, we find positive correlations for the fit pa-
rameters η and acut-off. Oddly, this does not correlate with the expecta-
tion for increasing temperature for the small range cut-off taken from
Eq. (8.20), in clear disagreement with the expectation of Eq. (8.20)
that with increasing temperature and hence increasing η the cut-off
length acut-off should – at least for hotter gases – decrease.

One explanation for this counterintuitive behavior stems from the
fact the two fit parameters, η and acut-off, can result in similar changes
to g2. This is illustrated by the density correlation functions plotted for
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increasing cut-off, Fig. 8.15, and increasing scaling exponent, Fig. 8.16.
Although the location of the minimum is solely due to the cut-off, the
amplitude degree of freedom depends on acut-off and η. With perfect
data quality, the fit routine should still be able to discern the effect of
the two different parameters very well. However, imperfect data qual-
ity and especially the fact that the imaging system blurs small scale
structures can lead to undesired cross correlation between the two fit
parameters. Due to this difficulty and the fact that we are mostly in-
terested in the phase decay and hence η, the dependence of the short-
range cut off on the temperature was ignored in the scope of this anal-
ysis.

Discussion of the results

The interpretation of these results is not straight forward since the de-
creasing scaling exponent presents a departure from the theoretical
expectation that assumes thermal equilibrium and algebraically de-
caying quasi-long-range order (QLRO).

In the following, we discuss the interpretation under various as-
sumptions. First, we assume that the system is in thermal equilibrium
and subject to heating during the hold time, causing it to cross the
transition from a BKT superfluid to a thermal gas. This interpretation
is corroborated by the decrease of the occupation of low-momentum
modes with hold time observed in the measurements described in
Chapter 7. However, this interpretation is in direct disagreement with
the decreasing scaling exponent that we extract from the data.

Next, we will discuss effects and limitations of the experimental re-
alization that are not captured by the idealized theory with which we
compare and fit the density fluctuations after ToF. These are finite-size
effects, the occupation of higher vibrational levels due to temperature
or collisions, and the effect of in situ density fluctuations. We find that
neither finite size nor temperature induced occupation of higher lev-
els can explain the observed behavior, whereas it is unclear how the
occupation of higher levels would change the result.

The most likely explanation seems to be that the system is not in
equilibrium, since the heating rates observed and the loss of low-mo-
mentum modes occur in only tens of milliseconds, which is on the
same order as the time a soundwave needs to travel through the cloud,
and hence a timescale for thermalization.

A plausible hypothesis is that the ultracold 2D gas crosses the phase
transition from a quasi-condensate with algebraic quasi-long-range
order to a thermal gas with exponentially decaying phase correlations
due to heating processes. This hypothesis is also compatible with
the observations made in situ and in momentum space although the
observed increase in temperature is only small. Initially, the phase-
space density D = n2Dλ2dB ≈ 9, determined via independent density
and temperaturemeasurements, is larger than the critical phase-space
density Dcritical ≈ ln(380/g̃) ≈ 6. This places the gas in the super-
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fluid regime, in agreement with a fitted scaling exponent of ≈ 0.2 <
0.25 = ηcritical. As the temperature increases and the density decreases,
the critical phase-space density is crossed and free vortices prolifer-
ate around density defects123 caused by increased in situ density fluc- 123 A. L. Fetter: Phys. Rev., vol. 138,

(1964)tuations, confer Fig. 8.5a. This process depopulates low-momentum
modes rapidly which can also be observed in Fig. 7.9. However, in
this case the scaling exponent extracted from the density correlations
after short ToF should not decrease as observed but rather increase, at
least if the theoretical approximations made are valid. Nonetheless,
the obvious alternative – a fitwith exponentially decaying correlations
– exhibits significantly worse agreement with the measured data.

The hypothesis is not only at odds with the fitted scaling exponent
but also with more agnostic and qualitative measures for the den-
sity correlations. Qualitative estimates suggest that the minimum in
the second order correlation function becomes more pronounced as
higher excitations in the Bogoliubov dispersion relation become pop-
ulated in the quasi-condensate. In an intuitive picture, this can be
understood in the following way. The increasing population of Bo-
goliubov modes leads to stronger phase fluctuations, which manifest
themselves in regions of constructive and destructive interference, the
latter give rise to the minimum in the correlation function. Yet, di-
rect observation of the contrast as well as quantitative analysis of the
scaling exponent indicate that this is not the case.

The considerations made above suggest that neither of the tested
correlation functions fully describes the gas during the assumed heat-
ing process. However, the heating hypothesis fails to be rejected since
the existence of heating is not only very plausible from a thermody-
namic point of view but a series of independent measurements on our
system, during which the equation of state (EOS) of the gas was deter-
mined by the application of a local potential, strongly corroborate a re-
duction in phase-space density during prolonged capture in a dipole
trap. For details regarding this method see the work by K. Hueck et
al86. 86 K. Hueck et al.: Phys. Rev. Lett.,

vol. 120, (2018)

.      

A possible solution lies in the possibility that we study a system that
does not fulfill the conditions for the applicability of themodel theory.
The theoretical framework we use to compute the density correlation
functions after time of flight is based on a Bogoliubov-type mean field
approach. It assumes that the homogeneous gas is of infinite size, has
very small density fluctuations and that the system is 2D, i. e. that no
higher vibrational levels are excited. Finally, it is only valid forweak to
moderate interactions. In the following, we explore the applicability
of these assumptions in turn.

http://dx.doi.org/10.1103/PhysRevLett.120.060402
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.. Applicability of the used theoretical ansatz

This section will explore the most evident objections that could be
raised against the suitability of the used theoretical ansatz.

The finite size of the sample has several consequences that are not
captured by the theory. First of all, it introduces a definite upper
limit to the correlation length: if the correlation length gets larger than
the size of the system, true Bose-Einstein condensation can occur55,124. 55 R. J. Fletcher et al.: Phys. Rev. Lett.,

vol. 114, (2015), 124 D. S. Petrov et al.:
Phys. Rev. Lett., vol. 84, (2000)

However, this is clearly not an issue at our elevated temperatures and
large interaction strength.

Secondly, phase fluctuations with wavelengths longer than the size
of the system cease to exist, makingBKT superfluidsmore robust against
thermal fluctuations. Calculations by L. Mathey∗ suggest that alge- ∗Private communication, L. Mathey
braic order can persist up to scaling exponents that are twice as high
as the critical scaling exponent for an infinite system of ηc = 0.25, i. e.
superfluidity can exist even at higher temperatures. Again, this in-
teresting fact does not seem relevant for the interpretation of our ob-
servation, since the extracted scaling exponent decreases rather than
increases beyond the critical value.

The ansatz assumes a purely two-dimensional system, finite size
effects in the strongly confined direction are thus not considered and
are assumed to be negligible as is elaborated later. However, we point
out that in our analysis certain finite-size effects are accounted for:
We compensate for the finite size of the mask on which we evaluate
g2 by dividing the g2 obtained from the masked regions by the cor-
relation function of the mask itself. This approach coincides with the
use of periodic boundary conditions and correlation functions of infi-
nite systems in the computation of the fit functions, see Appendix B
for details.

Density fluctuations already existent in the gas before the short
time of flight, i. e. in situ, present a further issue for the theoretical de-
scription. Zeroth order theory would only consider in situ phase fluc-
tuations, since density fluctuations are expected to be strongly sup-
pressed for repulsively interacting 2D systems. Within this approx-
imation, any density correlations appearing in g2 after short time of
flight arise from phase fluctuations. However, initial density fluctua-
tions can also give rise to density correlations after time of flight.

The fits in Section 8.3.3 show that our gas exhibits sizable in situ
density fluctuations compared to the total density fluctuations after
time of flight, which result from both the phase and the density. Un-
fortunately, it is very difficult to treat their combined effects after time
of flight accurately. The reason is that density and phase fluctuations
are usually treated additively as a small perturbation. When calcu-
lating the free time evolution, the complex amplitudes are squared
to arrive at the density correlation. This gives rise to an interference
term27. 27 R. Desbuquois: Thermal and superfluid

properties of the two-dimensional Bose gas,
(2013)

The theory of V. Singh and L. Mathey used here assumes that in
situ phase and density fluctuations are small. In this case they show

http://dx.doi.org/10.1103/PhysRevLett.114.255302
http://dx.doi.org/10.1103/PhysRevLett.84.2551
https://tel.archives-ouvertes.fr/tel-00973469/document
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that, to first order, the interference term can be omitted and the den-
sity fluctuations can be approximately compensated for by subtract-
ing the in situ density power spectrum from the power spectrum ob-
served after short TOF. The suggested subtraction of the power spectra
is somewhat more involved when working in real space rather than in
momentum space, as discussed in Section 9.2.3.

The alternative, ab initio simulation of the influence of the in situ
density fluctuations is computationally prohibitively expensive and
the analysis must still omit the interference term since the phase term
is not initially known. In order to include the interference term, the
implicit equations for δθ would have to be solved iteratively which is
even less feasible.

Density fluctuations as well as vortices and other short scale effects
also have an impact on the theoretically expected first order correla-
tion function g1, leading to a more complicated decay33. The effects 33 Z. Hadzibabic and J. Dalibard: Riv.

Nuovo Cimento, vol. 34, (2011)are typically captured by the cut-off parameter acut-off at short dis-
tances and by renormalizing the long-range algebraic decay by replac-
ing ntotal ⟶ nsuperfluid. Thus, for large distances, g1 scales directly
with the superfluid density ns as

g1 =
ns
nt (

ξ
r)

η
. (8.21)

At present, the algebraically decaying model employed does not ac-
count for the latter renormalization and the data is fitted with an al-
gebraic model that effectively sets ns/ntotal = 1. We expect that at the
critical point the ratio is lowest with ns/ntotal ≈ 0.66. Thus, for a signifi-
cant decrease in superfluid density, the dependence of g1 on ns could
lead to a reduction of the observed interference visibility after ToF.

Although we compensate for in situ density fluctuations in first or-
der phenomenologically, it is not clear what impact they may pose on
the theoretical description. While repulsive interactions are expected
to suppress density fluctuations for r > ξ, with ξ being the healing
length, when g2Dn2D/kBT ≫ 1 or equivalently D ≫ 2π/g̃ ≈ 7, we do
not fulfill these criteria very strongly. For our parameters, these val-
ues are g2Dn2D/kBT ≈ 1.5 − 2.5, whilst the phase-space density D is
approximately 4.5 − 9. These estimates reaffirm that – at least for our
hotter samples – also the theoretical considerations made might be
improved by dropping the assumption of small density fluctuations,
even when calculations by N. Prokov’ef et al.68 show that they can be 68 N. Prokof’ev et al.: Phys. Rev. Lett.,

vol. 87, (2001)suppressed already for D ≫ 1.

Strong interactions between composite bosons limit the integrity
of a mean field approach when the system is dominated by a many-
body state. An estimate of this regime yields an interaction parameter
close to or above g̃ ≈ 2π33. The gas is held in the dipole trap at a 33 Z. Hadzibabic and J. Dalibard: Riv.

Nuovo Cimento, vol. 34, (2011)magnetic field of ≈ 690G, this results in a dimer-dimer interaction pa-
rameter of g̃ ≈ 0.87. Hence, a mean field approximation is expected to
yield acceptable results. Additionally, other groups have had much
success with a mean field description at similar interaction parame-

http://dx.doi.org/10.1393/ncr/i2011-10066-3
http://dx.doi.org/10.1103/PhysRevLett.87.270402
http://dx.doi.org/10.1393/ncr/i2011-10066-3
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ters, e. g. J. Selim’s group has found reasonable agreement even up to
g̃ ≈ 2.76.

Excited transverse modes in the strongly confined axial direction
challenge the validity of the description of the gas as a low-dimensional
system. As J. Kestner and L. Duan have shown88, even for very di- 88 J. P. Kestner and L. M. Duan: Phys.

Rev. A, vol. 74, (2006)lute gases and/or very strong vertical confinement, a significant frac-
tion of excited modes perpendicular to the 2D plane must be consid-
ered in strongly interacting systems when dealing with a wide Fesh-
bach resonance as in the case of 6Li. Although this does not explic-
itly exclude the usage of an effective low-dimensional description, it
is still an issue under discussion whether gases fulfilling ℏωz ≫ kBT
and ℏωz ≫ g2Dn2D can be considered 2D close to a Feshbach reso-
nance125–128. 125 J. P. Kestner and L. M. Duan: Phys.

Rev. A, vol. 76, (2007), 126 K. Merloti et
al.: Phys. Rev. A, vol. 88, (2013), 127 P.
Dyke et al.: Phys. Rev. A, vol. 93, (2016),
128 H. Hu et al.: ArXiv, , (2018)

If we disregard this issue and only consider the mean-field energy
of the composite bosons and their temperature, we find that the typi-
cal criterion used to determine whether an effective description via a
2D Hamiltonian is suitable is fulfilled. It states that the gas can be
considered to be 2D if the energy spacing in the strongly confined
direction exceeds the thermal energy and the mean-field interaction
energy, i. e. as mentioned above

ℏωz ≫ g2Dn2D. (8.22)

We find this requirement to be satisfied for our parameters,

ℏωz
g2Dn2D

≈ 6.8 ≫ 1. (8.23)

Additionally, thermal excitations should not be able to populate the
higher transversemodes for the system to still be considered 2D. Thus,
the trap spacing must exceed the thermal energy as well

ℏωz ≫ kBT. (8.24)

Again, this is reasonably well satisfied, since a worst case estimate for
our system yields

ℏωz
kBT

≈ 5. (8.25)

Here, we have used a trap frequency of ωz = 2π ⋅ 12 400Hz and our
highest measured temperature of T ≈ 120 nK.

Hence, a definitive conclusion can not be drawn. We have not ob-
served high excited fractions in transverse modes but an argument for
an effective Hamiltonian instead of the ansatz used in this analysis can
certainly be made.

.. Probable necessity for non-equilibrium description

Collisions with particles of the background gas limit the measured
1/e lifetime of a non interacting gas to approximately (8.19± 0.62) s.
During each collision, a particle is removed from the sample and either

http://dx.doi.org/10.1103/PhysRevA.74.053606
http://dx.doi.org/10.1103/PhysRevA.76.063610
http://dx.doi.org/10.1103/PhysRevA.88.061603
http://dx.doi.org/10.1103/PhysRevA.93.011603
https://arxiv.org/abs/1806.04383
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imparts energy into the gas via collisions or – especially when a low-
momentum particle is removed – by the reorganization cascade of the
remaining particles seeking equilibrium.

Additionally, if the gas is sufficiently dense – or strongly interact-
ing – three-body collisions present an even faster loss channel with a
timescale on the order of ≈ 100ms for our parameters.

Since the equilibration at the final magnetic field is comparatively
slow, two scenarios might ensue. Either the system is quenched dur-
ing the magnetic field ramp from the evaporation state at strong inter-
actions close to 834G to relatively low interactions, which results in a
super-heated 2D quasi-condensate similar to the observations made
by A. Gaunt et al.129 in 3D. This state would be topologically pro- 129 A. L. Gaunt et al.: Nature Physics,

vol. 9, (2013)tected against thermalization, i. e. forming vortices, and hence rule out
a quasi static description which assumes constant equilibrium.

Alternatively, the system might initially be in – global – thermal
equilibrium but fast three-body decays impart energy into the system
locally. If e. g. single vortices are allowed to nucleate at the density
defects, thermal equilibrium is destroyed since vortex lifetimes are ex-
pected to be much longer than the timescales probed in the experi-
ment. A super heated sample could be compatible with the observed
superfluid fraction of ≈ 40%, if we assume that the extracted peak frac-
tion approximates the true superfluid fraction, since for the measured
phase-space densities, a much larger superfluid fraction of ≈ 80% is
expected.

Also, if thermal equilibrium is indeed absent, the hypothesis of
heating during hold time can not be maintained. From this perspec-
tive, if constant equilibrium temperature is assumed, the decrease in
the scaling exponent might be compatible with the observation of the
depopulation of low-momentummodes. Low-momentummodes pop-
ulate the linear region of the Bogoliubov dispersion and are domi-
nantly phase excitations. Hence, a decrease in low-momentummodes
corresponds to a decrease in phase excitations which in turn leads to
a decrease of the scaling exponent η. Nonetheless, further studies are
required to corroborate this qualitative description quantitatively.

.. Technical causes

Improper density calibration or an uncompensated imaging system
could also be responsible for the observed discrepancy between ex-
periment and theory. However, the analysis has been compensated
for all systematic errors known to us and validated on synthetic data.
The details of the employed procedure are expanded on in the follow-
ing chapter.

http://dx.doi.org/10.1038/nphys2587
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Since the presentedmeasurement is highly sensitive to the proper cal-
ibration of the apparatus, we present here the measures taken to min-
imize undesirable influences. Foremost, the sample must be centered
in the depth of field (DoF) as experiments in the group of Y. Shin have
demonstrated79,119. Additionally, the detuning of the imaging laser 79 J.-Y. Choi et al.: Phys. Rev. Lett.,

vol. 111, (2013), 119 S.-W. Seo et al.: J. Ko-
rean Phys. Soc., vol. 64, (2014)

light from the D2 line has strong impact on the measured density-
density correlation function g228 and hence needs to be set correctly.

28 S. Pres: BKT - phase transition in a
strongly interacting 2D Bose gas, (2014)

Since the focus lies on the normalized g2, the calibration of the den-
sity is of secondary importance but is vital to the interpretation of the
results.

Following the presentation of the calibration of these critical pa-
rameters, the compensation of systematic errors which cannot not be
averted is discussed. Here, the effect of the imaging system is pre-
sented in terms of the point spread function (PSF) and its Fourier trans-
form the amplitude transfer function (ATF) alongside the introduction
of the necessary theoretical background.

Finally, it is also explained why we have refrained from using the
power spectral density (PSD) directly in the quantitative analysis.

.    

.. Focus

It is imperative to ensure proper focus of the imaging apparatus onto
the sample, which has been demonstrated by the group of Y. Shin58. 58 J.-Y. Choi et al.: Phys. Rev. Lett.,

vol. 109, (2012)This is due to the fact that the free propagation of the imaging light
through a gas out of focus can lead to very similar density modula-
tion patterns compared to the free propagation of a matter wave field
during time of flight (ToF). Hence, we employ a focusing technique de-
veloped in the group of I. Spielman120, known to yield accurate results 120 A. Putra et al.: Rev. Sci. Instrum.,

vol. 85, (2014)even if the extent of the cloud exceeds the DoF. This degree of robust-
ness is advantageous since the gas of 6Li expands quickly after release
from the dipole traps and is additionally accelerated out of the plane
of focus by absorption and reemission of the imaging light.

In order to obtain the optimal focus via the technique by I. Spiel-

http://dx.doi.org/10.1103/PhysRevLett.111.159602
http://dx.doi.org/10.3938/jkps.64.53
http://dx.doi.org/10.1103/PhysRevLett.109.125301
http://dx.doi.org/10.1063/1.4862046
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man et al., absorption images of the cloud are taken for varying dis-
tance from the imaging objective. In a gas with sufficiently random
density fluctuations, the atomic shot noise serves as an imaging test
target featuring a very small length scale. Imaging this atomic shot
noise reveals the spatial frequencies which cannot be captured since
they exceed the solid angle given by the numerical aperture (NA). From
these absorption images, the PSD is computed of each image via 2D
Fourier transformwhich displays pronouncedminima andmaxima in
frequency space. A theoretical description and numerical simulations
yield the result that optimal focus is achieved when the distance of
said minima from the center of the frequency space is maximal.

(µm)

Intensity PSD (a.u.)

(1
/µ

m
)

Figure 9.1: Example of the (simulated)
result obtained via the Spielman focus-
ing method. Here, the PSD (color) is
plotted in dependence of the spatial fre-
quencyk (vertically) and the distance to
the optimal focus position. The white
lines indicate minima which move to-
wards larger k when approaching the
optimal focus position. The value of the
color index is given above the data. Fig-
ure adapted from A. Putra120.
120 A. Putra et al.: Rev. Sci. Instrum.,
vol. 85, (2014)

The numerical simulation of the focusing procedure is presented in
Fig. 9.1. It can be seen that the distance of theminima (white) from the
origin divergeswhen in focus. For physical imaging systems, themax-
imal distance approaches the maximum observable frequency given
by the NA, i. e. kmax = 2πNA/λD2, with λD2 being the optical wave-
length of the imaging laser on theD2 line. Due to the limited range of
the piezo actuators moving our imaging objective, even at maximum
defocus only the first minimum could be resolved in our experiment.
Fortunately, the distance of the first minimum from the origin is di-
rectly proportional to the width of the central peak in the PSD which
is seen to also reach a maximum in focus. Hence, we achieve optimal
focus of our imaging system when the actuators are set to protract by
(45± 5)µm. Note that this method compensates for the movement
of the sample during the imaging and hence yields an effective focus
position where the average influence of defocus is minimal.

This type of measurement yields excellent results, yet is very time
consuming. A large number of images is required at each focusing
step because the information is extracted only from the atomic shot
noise. A traditional method to obtain optimal focus is based on reduc-
ing the apparent extent of an imaged feature which has a size below
the resolution limit. Such an object is prepared in our elongated dipole
trap. After evaporation, the trapping potential is abruptly increased
for 420µs during which the atoms perform exactly 1/4 of the oscilla-
tion in the transverse direction. Hence, the atoms are compressed and
the atomic sample has a final diameter on the order of the imaging
resolution. This type of focusing procedure can be performed much
faster since usually only a single image is required per focusing step
due to the high density. However, this method can only be applied to
particle clouds of axial extent well below the DoF and the error due
to the movement of the sample during imaging is unclear. However,
the extent of the compressed atom cloud in the direction of the imag-
ing axis is also on the order of the imaging resolution and hence well
below the DoF. The displacement due to our 5µs imaging pulse is ex-
pected to be approximately 7µm which is small compared to the DoF
and hence can be neglected.

Bothmethods aremeasured to be in very good agreement as can be
seen from Fig. 9.2. Due to the simplicity and time efficiency of the lat-
ter method, it is employed during day to day operation and calibrated

http://dx.doi.org/10.1063/1.4862046
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) Figure 9.2: (a) The PSD main peak

width in arbitrary units in dependence
of themicroscope z-position. Where the
PSD shows the maximum, the optimal
focus is obtained. The error bars in-
dicate the statistical standard deviation.
(b) Focusing imaging system via mat-
ter wave focus. Here, the width of the
imaged cloud is plotted in dependence
of the microscope z-position. When
minimizing the width, the highest res-
olution and hence optimal focus is ob-
tained. The error bars denote the width
fitting error. Figure (b) adapted from K.
Hueck130.
130 K. Hueck et al.: Opt. Express, vol. 25,
(2017)

by the PSD based focusing method on longer time periods.
Additionally, the focus position is verified bymeasuring theATF for

the short ToF measurement in order to compensate for the influence
of the imaging system. As in the method by I. Spielman et al. the
images of the gas containing atomic shot noise are characterized in
spatial frequency space via the ATF, which is the Fourier transform of
the PSF. The PSF represents an accessible measure for the influence of
the imaging apparatus in position space and describes the apparent
image of a point source. Since every image can be thought of as a
superposition of points, this PSF can be used to compensate for the
non-ideal imaging, as discussed in detail in Section 9.2.2.
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Figure 9.3: Verification of optimal fo-
cus position. The horizontal (blue) and
vertical (red) cut through the measured
ATF is plotted for three different focus
positions. Ideal focus is represented by
a Heaviside function, hence the clos-
est resemblance is desired. (a) Micro-
scope position below the optimal focus.
(b) Microscope position close to the op-
timal focus position obtained with the
aforementioned methods (see text). (c)
Microscope position above the optimal
focus. Note that the ATF exhibits the
steepest transition when the microscope
is close to the optimal focus position in
figure (b).

If a point source is unavailable, a gas with a maximally random
density distribution can also be used to obtain the independent re-
sponse of the imaging system. Hence, the short ToF measurement
was reproduced under identical imaging conditions but with an only
weakly degenerate free Fermi gas at ≈ 530G which exhibits no struc-
ture in frequency space, i. e. a flat measured spectrum for ideal imag-
ing. Transforming the PSF into frequency space yields the ATF, which
is expected to be uniform when in focus. Due to the limiting factor of
the NA, the optimally achievable ATF takes the form of a unit-step
function, vanishing at ±kmax = 2πNA/λD2. Three examples of the

http://dx.doi.org/10.1364/OE.25.008670
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ATF for different positions of the objective are shown in Fig. 9.3. It can
be seen that the ATF resembles a unit-step function best in the center
image, Fig. 9.3b and becomes notably smoothed below and above the
optimal focus position, see Fig. 9.3a and Fig. 9.3c respectively. Here,
two cuts through the ATF are shown, one horizontal the other vertical,
which indicate a symmetric ATF and hence proper alignment of the
imaging apparatus, only Fig. 9.3c shows slight differences in vertical
and horizontal dependence. In principle, images as these can be used
to also align the microscope objective in addition to setting the opti-
mal focus. However, the physical imaging characteristics are already
very close to ideal and hence we have chosen to correct for remaining
deviations numerically, as will be discussed in Section 9.2.2.

.. Detuning calibration and optimal intensity
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Figure 9.4: Example of the displacement
of the atomcloud after illuminationwith
(near) resonant laser light for the illu-
mination times 1µs and 5µs in depen-
dence of the detuning in arbitrary units.
Themaximal displacement indicates the
greatest momentum transfer and thus
optimal detuning. Note the reduction in
relative displacement for longer illumi-
nation times due to the Doppler effect.

The frequency of the imaging beam is optimal when the absorption
of light by the atoms is maximized. To this end, we apply imaging
pulses of different detunings and measure the imparted momentum.
A 1µs long pulse of imaging light is applied in the z-direction and the
displacement of the atoms is imaged after 80µs ToF via the auxiliary
imaging perpendicular to the direction of motion. After determining
the cloud’s center of mass, it is obvious from Fig. 9.4 that a partic-
ular detuning yields the greatest displacement and hence indicates
resonance with the D2 line of 6Li. Fits to the displacement in depen-
dence of intensity yield a typical detuning within 4% of the natural
linewidth of 6Li. Details of this process as well as most of the other
calibration procedures can be found in our paper Calibrating high in-
tensity absorption imaging of ultracold atoms130. The advantage of mea- 130 K. Hueck et al.: Opt. Express, vol. 25,

(2017)suring the displacement rather than the optical density via absorption
is that it is independent of e. g. atom number fluctuations.

Since typical illumination times of our experiment are on the order
of 5µs, the displacement of the cloud for this imaging pulse is also
measured and plotted in red in Fig. 9.4. Despite the five-fold illumina-
tion time, it is clear that the cloud has not been displaced five times fur-
ther. The diminished absorption is due to the Doppler effect experi-
enced by the accelerated atoms, which is more pronounced the longer
the imaging pulse. In order to maximize the amount of scattered pho-
tons and hence the signal-to-noise ratio (SNR), shown in Fig. 9.5a, we
compensate the Doppler shift by adjusting the frequency dynamically
during the imaging time. To optimize this frequency chirp, the maxi-
mum displacement measurement is repeated, now in dependency of
the chirp rate and yields approximately 1.5MHz/µs at saturation in-
tensity.

The effect of the frequency chirp is illustrated in Fig. 9.5b. Here,
the cloud velocity is determined after illuminating pulse lengths up to
15µs at 3.75 saturation intensity. The difference between the chirped
an unchirped case is clearly visible. When the imaging is not fre-
quency compensated (red squares), the atoms are shifted out of reso-
nance and hence the velocity exhibits a sub-linear dependency instead

http://dx.doi.org/10.1364/OE.25.008670
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Figure 9.5: (a) signal-to-noise ratio eval-
uated as the standard deviation per
pixel for all realizations and subse-
quently averaged over all pixels. Note
the broad maximum between 1 to 2
I/Ieffsat. The error bar indicates the stan-
dard deviation obtained from averag-
ing over the pixels.(b) Velocity of the
atom cloud in dependence of the illumi-
nation time at an intensity of 3.75Ieffsat.
The effect of chirping the imaging light
is clearly visible. In the unchirped
case (red squares), the scattering rate
decreases with illumination time and
hence the velocity becomes sub-linear.
When chirped (blue circles), the accel-
eration is constant. The theoretical ex-
pectations for the chirped (unchirped)
case are given as red solid (blue dashed)
lines. The error bars indicate the sys-
tematic error estimated for the auxil-
iary imaging. Figure adapted from K.
Hueck130.
130 K. Hueck et al.: Opt. Express, vol. 25,
(2017)

of the expected linear increase in velocity displayed when the imag-
ing detuning is chirped (blue circles). The experimentally determined
chirp rate yields excellent agreement with theoretical predictions as
the plotted curves show. In summary, this method allows us to set the
imaging light detuning and intensity quickly to optimal values before
each measurement.

.. Density calibration

In order to discuss the density calibration procedure, the relations nec-
essary to obtain an atomic density from two high intensity absorption
images are introduced briefly in the following.

The usual Beer-Lambert law for absorption has to be extended for
high intensity imaging where the effects of saturation have to be con-
sidered. According to G. Reinaudi et al.131, the optical density od(x, y) 131 G. Reinaudi et al.: Opt. Lett., vol. 32,

(2007)and thus the 2D column density n2D is then given by

od(x, y) = σeffn2D(x, y)

= − ln(
Cout(x, y)
Cin(x, y) )

+ Cin(x, y) − Cout(x, y)
Ceff

sat
. (9.1)

Here, the incident and final intensities Iin and Iout, which usually occur
in this expression, are replaced by the count rates C∗ = γI∗ measured
on the CCD camera, where γ is a – usually unknown – conversion A charge-coupled device, or CCD, con-

verts the incident photons scattered by
the atomic cloud into an electric signal
suitable for digital analysis.

parameter dependent on the precise parameters of the imaging ap-
paratus but common to all measured intensities which hence cancels
out. However, the effective scattering cross section σeff = ασ0 and the
effective saturation counts Ceff

sat = αCsat = αγIsat had to be introduced,
which capture the effects of non-perfect polarization or magnetic field
orientation, hence reducing the ideal cross section σ0 = 3λ

2π and the
saturation intensity. At first, the formulation in terms of measured
counts does not seem to be an improvement since the unknown factor
has only been transferred from the measured intensity to the – previ-
ously known – saturation intensity. However, the effective saturation
counts are readilymeasuredwhich yield a calibration procedure unaf-
fected by common error sources like fluctuating imaging beam power

http://dx.doi.org/10.1364/OE.25.008670
http://www.ncbi.nlm.nih.gov/pubmed/17975624
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or atomic density.
The measurement of the effective saturation counts Ceff

sat is based
on the saturation of the photon scattering rate and hence displace-
ment for higher beam intensities130. Thus, a displacement measure- 130 K. Hueck et al.: Opt. Express, vol. 25,

(2017)ment similar to the detuning determination detailed before exhibits a
z-displacement which is described by

z(νL, s) = z0 + κ
Γ
2 ⋅

s0
1 + s0 + (2Δ/Γ)2

. (9.2)

The displacement depends on the imaging laser detuningΔ = νl−νa,
with the laser frequency νl, atomic resonance frequency νa, and the
natural linewidth of the imaging transition Γ . Here, κ is a factor con-
verting the position difference to a scattering rate and s0 = I/Ieffsat =
Cin/Ceff

sat is the saturation parameter comparing the actual incident in-
tensity I to the saturation intensity, both of which are left as free pa-
rameters.
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Figure 9.6: (a) The difference∆z in dis-
placement for two ToF (∆t = 10µm)
as a function of the incident intensity
and hence Cin. The line denotes a fit
with Eq. (9.2) from which the satura-
tion count rate Ceff

sat can be determined
(b) Measured atom number in depen-
dence of the incident intensity deter-
mined with the modified Beer-Lambert
law for high intensities used in this
thesis (blue circles) and the unmodi-
fied relation (red squares). The mea-
sured atom number does not depend
on the imaging intensity, hence validat-
ing the application of themodified Beer-
Lambert law. Here, the erros bars are
smaller than the symbol size. Figure
adapted from K. Hueck130.
130 K. Hueck et al.: Opt. Express, vol. 25,
(2017)

Fitting the measured displacement in dependence of the incident
intensity measured in terms of counts on the CCD camera with the
above formula yields the parameters κ and Ceff

sat to high precision. An
example of the fit produced by this method is presented in Fig. 9.6a.

In summary, the measurement of the displacement after illumina-
tion in dependence of the measured count rate allows us to determine
the atomic density without prior knowledge of the parameters of the
imaging apparatus or camera efficiency. That the employed method
yields indeed a proper density is demonstrated in Fig. 9.6b, where the
unmodified Beer-Lambert law is compared to the saturation corrected
formula which shows an approximately constant density over a wide
range of incident imaging intensities.

.. Magnification calibration

The knowledge of themagnification of the imaging apparatus directly
impacts all measurements of absolute length scales. Hence, a cal-
ibration in relation to a well known reference is required. No pre-
calibrated target exists in our ultra high vacuum cell. Fortunately, the

http://dx.doi.org/10.1364/OE.25.008670
http://dx.doi.org/10.1364/OE.25.008670
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already present ultracold atom cloud can be used to create such a tar-
get, exploiting the Kapitza-Dirac effect, which is discussed in more
detail in the masters thesis of K. Riechers132 132 K. Riechers: Friedel oscillations and the

Fermi wavevector in low-dimensional ultra-
cold Fermi gases, (2016)

In order to create a known length scale from the atomic cloud, one
of the far off resonance traps (FORTs) perpendicular to the imaging to
be calibrated is temporarily retroreflected, hence producing a stand-
ing wave of light of known spacing at the position of the atoms. If
the movement of the atoms during the interaction can be neglected,
the interaction can be thought of as a diffraction of the atoms by the
optical lattice, similar to how a laser beam is diffracted by an optical
grating. During diffraction, a momentum of ±2ℏkl is imparted onto
the incident atom wave and hence a fraction of the atoms travel per-
pendicular to the optical axis of the imaging objective. Here, kl is the
wavenumber of the laser, in our case kl = 2π/λ ≈ 2π/1064 nm. If the
displacement measured in terms of pixels on the camera is compared
to the theoretical prediction, the conversion factor and hence the mag-
nification can be obtained.

Two average absorption images of the diffracted atom clouds for
two different ToF are shown in the upper half and the corresponding
projection onto the x-axis in the lower half of Fig. 9.7. The 1D den-
sity projection is fitted with an arbitrary spline in order to retrieve the
maxima and thus the traveled distance. For longer flight times, the
diffracted atoms are displaced a greater distance which allows the us-
age of the relative distance, therefore canceling out possible timing
uncertainties.
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Figure 9.7: A momentum of ±2ℏkl
has been imparted onto a fraction of the
atoms which is visible in the displace-
ment after time of flight. The density
is given in arbitrary units since only the
position of the peaks is of interest. The
traveled distance is denoted in pixels
(px) of the camera which is calibrated
via this measurement. The magnifica-
tion can be determined from comparing
the measured relative distance and the
expected relative distance traveled. (a)
Average density and spline fit to sum
in vertical direction after 0.4ms ToF, the
atoms have traveled only a short dis-
tance. (b) Average density and spline
fit to sum in vertical direction after 1ms
ToF, the atoms have traveled a longer
distance. Note that all density images
are averages of approximately 50 indi-
vidual images.

Since the atoms are subject to a harmonic potential during ToF, the

http://photon.physnet.uni-hamburg.de/fileadmin/user_upload/ILP/Moritz/Publications/Diploma_Master_s_Theses/Keno_Riechers_Thesis_Master.pdf
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expected traveled distance is

x(t) = 2ℏkl
ωharmonicmdimer

⋅ sin(ωharmonict). (9.3)

Here, ωharmonic denotes the trapping frequency of the harmonic po-
tential andmdimer is the mass of a molecular 6Li dimer.

Thus, the desired magnificationM is obtained by comparison with
themeasured relative distanceΔ in camera pixels, for the relative time
difference Δt = toflong − tofshort i. e. in this case for a pixel side length
of 32µm due to binning The actual pixel size of our camera is

16µm, however a common technique to
increase the signal is to combine pixels
into larger bins. We have chosen here a
binning of 2 in each direction, i. e. four
pixels are combined into one.

M = 32µm ⋅ Δ
x(Δt) = 30.8± 0.3. (9.4)

To summarize, we have shown the methods applied to obtain reli-
able calibration of the focus position, imaging detuning, intensity, and
magnification. These present the basis of a qualitative measurement
However, not all sources of uncertainty can be removed by calibration.
A selection of relevant sources of systematic errors are the topic of the
following chapter.
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.    

The central topic of this section is the treatment of systematic errors
which even after careful calibration are not negligible.

The two most important systematic error sources are highlighted.
The first is the limited resolution of the imaging system effectively
smoothing out the density ripples appearing after ToF. The second is
the presence of density fluctuations in the clouds before ToF despite
the string repulsive interaction which also results in density fluctua-
tions after ToF and which must be accounted for.

.. Absorption image acquisition procedure

In order to discuss the compensation of systematic errors, it is helpful
to first illustrate the measurement procedure in our experiment.

At the end of each experimental cycle we illuminate a cloud of ul-
tracold 6Li dimers with resonant laser light and record the imaging
light as well as the created shadow on a highly efficient CCD camera
with fast vertical shift, which enables the acquisition of two images in
fast succession∗. In fact, a total of three images are taken in sequence ∗ The model of the used camera is: An-

dor iXon DU-897 used here in fast kinet-
ics mode to acquire two images in fast
succession.

1. An image of the shadow cast by the illuminated atom
cloud

2. After 460.8µs, an image with identical parameters but
without atoms in the observation volume

3. After a longer delay of 500ms, two corresponding images
with no incident imaging light or atoms in the observa-
tion volume.

The third image contains the systematic noise of the camera imaging
circuit such as dark currents and offset voltages and is thus subtracted
from each of the first two images. Here, it is assumed that the char-
acteristics of the camera are constant, which is a reasonable approx-
imation for such short delays. Since the first and second image now
contain only the measured counts which are proportional to the final
and incident intensity, respectively, we insert the data from these im-
ages into the formula introduced in Section 9.1.3 to obtain the atomic
density.

Despite the fact that this process has been calibrated carefully in
order to minimize as many systematic errors as possible, one major
systematic error cannot be eliminated, the limited resolution of the
imaging apparatus.

.. Influence of the imaging system

A considerable theoretical framework has been developed over the
years in the effort to compensate for non-ideal imaging systems. A
complete treatment is beyond the scope of this thesis, thuswe limit the
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discussion to the core concepts relevant for the presented experiments.
This discourse is based on the theory of Fourier optics and hence fol-
lows the excellent textbook of J. Goodman109 in notation and reason- 109 J.W.Goodman: Introduction to Fourier

Optics, (2005)ing. The treatment revolves around the model of a physical imaging
apparatus as a linear invariant system (LIS), a flexible concept also used
for example in control theory or signal processing. Due to the linear-
ity, the obtained image can be described as a result of a collection of
point sources, where each point source is weighted by the PSF that de-
scribes the aberrations and limitations introduced by the imaging sys-
tem. Especially in coherent fluorescent and absorption microscopy, a
common technique involves the measurement of the PSF and the sub-
sequent deconvolution of the raw image to compensate for said PSF.
Even if the imaging system is taken to be free of aberrations, the fi-
nite aperture andwavelength still limit the resolution. In our case, the
wavelength is not the limiting factor but the NA. In general, the PSF
is dependent on all three spacial dimensions and only for a very thin
sample of a thickness much smaller than the DoF, the z-dependency
can be omitted. The z-extent of the gas during the T/4measurement is
on the order of millimeters while the DoF is on the order of microme-
ters. Hence, the gas is subject to different PSFs at different z-locations.
To compensate for this, we average all contributions along the imaging
axis, as will be explained in more detail in Section 9.2.2.

Imaging light

Dark field
λ/4

λ/2

Iris diaphragm

Auxiliary
imaging

Main
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Iin

Figure 9.8: Sketch of the imaging setup.
The atoms contained in the experiment
cell in the center of the image are il-
luminated by a resonant laser beam of
circular polarized light (red solid) and
focused onto a highly efficient camera.
The dark field emitted by the atoms
(blue dashed) is apodized in Fourier
space by an iris diaphragm and sub-
sequently brought to interference with
the imaging light on the camera where
an intensity image is formed. The ex-
act intensities Iin and Iout do not have
to be known since the counts Cin/out
produced by the camera have been cal-
ibrated beforehand. The horizontal aux-
iliary imaging can be used to image
the vertical displacement of the atomic
cloud and is left uncorrected due to
the diminished requirement on image fi-
delity.

Generalized treatment of imaging systems

A convenient way to represent the action of a system is via a mathe-
matical mapping 𝒮{∗} that acts on input functions and produces out-
put functions. Hence, if f1(x1, x2) specifies an arbitrary input and

https://books.google.de/books?id=ow5xs%7B%5C_%7DRtt9AC
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f2(x2, x2) the corresponding output, they are related by

f2(x2, x2) = 𝒮{f1(x1, x1)}. (9.5)

We aim to model an imaging apparatus as a linear invariant system
which entails two simplifying assumptions. Linearity implies that the
action of a system on all input functions f1 and g1 can be described by
amap S{∗}which satisfies the following superposition property for all
complex constants a and b as

𝒮{af1(x1, y1) + bg1(x1, y1)} = a𝒮{f1(x1, y1)} + b𝒮{g1(x1, y1)}. (9.6)

To study the action of the system it is helpful to think of the input
functions as a composition of weighted basis functions, for example
the Dirac δ functions

f1(x1, y1) =
+∞

∫
−∞

+∞

∫
−∞

f1(ξ, η)δ(x1 − ξ, y1 − η)dξdη . (9.7)

Here, the Dirac δ functions are weighted by f1(ξ, η). Hereafter, all This integral representation is reminis-
cent of the sifting property of the δ func-
tions.

integral expressions are understood to span the entire space and thus
explicit limits will be dropped for notational convenience. Since we
are interested in the effect of the system on the input function, the
map S{∗} is applied and we use the linearity to pull it into the integral
which yields

f2(x2, y2) = ∬ f1(ξ, η)𝒮{δ(x1 − ξ, y1 − η)}dξdη (9.8)

Finally, we denote the response of the system at the output coordinates
(x2, y2) to a Dirac δ function input at the object coordinates (ξ, η) by
h(x2, y2; ξ, η), i. e.

h(x2, y2; ξ, η) = S{δ(x1 − ξ, y1 − η)}. (9.9)

The function h is in general called the impulse response or in optics
the point-spread function of the system. It encodes the complete in-
formation about the action of the system and with it, the system can
now be described by the following expression known as the superpo-
sition integral which demonstrates that the linear system is completely
characterized by its responses to unit impulses

f2(x2, y2) = ∬ f1(ξ, η)h(x2, y2; ξ, η)dξdη . (9.10)

Frequency response in coherent imaging and the amplitude transfer func-
tion

The introduced concepts have been rather general in nature, here they
will be applied to the case of coherent monochromatic imaging. An
important distinctionmust bemade, the formalism applies only to lin-
ear maps and hence we must determine what physical value to use as
an input function. For incoherent imaging, the fast relative fluctua-
tions of the light field E lead to the loss of coherence and and thus an
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averaging effect even over small distances. Hence, interference can be
neglected and incoherent imaging is linear in the intensities I = |E|2.
However, coherent imaging systems exhibit interference and are thus
linear in complex amplitude. Therefore, the input functions must de-
scribe the amplitude and phase information of the incident light field.
To find the resulting intensity, the absolute square of the complex out-
put light fieldmust be taken. Thus, the intensitymapping is nonlinear
and if frequency analysis is to be applied, it must be applied to the am-
plitude mapping of the complex light field.

Previously, we have used the linearity of the model to simplify its
description. The fact that the system is space invariant yields a sec-
ond simplification. The concept of linear systems is generally applied
to systems which are invariant in space as well as time. Here how-
ever, we consider a stationary system where time invariance is triv-
ially satisfied. A system is said to be space-invariant, or isoplanatic,
if its impulse response h(x2, y2; ξ, η) depends only on the distances,
e. g. (x2 − ξ), thus

h(x2, y2; ξ, η) = h(x2 − ξ, y2 − η). (9.11)

In practice, an imaging system is only approximately invariant on small
patches. However, if the particular portion of the object of interest is
sufficiently small it often suffices to consider only the isoplanatic patch
close to the optical axis of the imaging system, then the superposition
integral takes the simple form

f2(x2, y2) = ∫∫ f1(ξ, η)h(x2 − ξ, y2 − η)dξdη . (9.12)

This is immediately recognized as a convolution f2 = f1⊗h. Thus, the
output image f2 can be thought of as a superposition of point spread
functions h weighted by the original object space distribution f1. A
convolution relation takes on a particularly simplemultiplicative form
after a Fourier transformation. Here, the Fourier transforms, or spec-
tra, ℱt{f2} = F2(kx, ky) and ℱt{f2} = F1(kx, ky) of the output and
input, respectively, are related by

F2(kx, ky) = H(kx, ky) ⋅ F1(kx, ky) (9.13)

where H is the Fourier transform of the impulse response

H(kx, ky) = ∫∫h(ξ, η) exp [−i2π(kxξ + kyη)]dξdη , (9.14)

which is called the amplitude transfer function in the context of coher-
ent imaging and kx and ky denote the frequency space coordinates.

This expression in itself yields only moderate insights since it still
depends on the impulse response h. However, h can in turn be writ-
ten as the Frauenhofer diffraction, i. e. Fourier transform, of the input
pupil function P(x, y)which describes the physically limiting aperture
of the imaging system. The pupil function is usually of simple form,
unity where light passes and zero otherwise sincemost apertures con-
sist of a rectangular or circular hole.
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Due to the fact that the Fourier transform of a Fourier transform is
proportional to the original function, the ATF can be written in terms
of a rescaled pupil function

H(kx, ky) = ℱt{
A
λzi ∫∫

P(x, y) exp
[
−i 2πλzi

(ux + vy)
]
dxdy}

∼ P(λzikx, λzixy). (9.15)

A is the constant amplitude and λ thewavelength of the imaging light,
zi denotes the distance from exit pupil to image plane. For notational
convenience we have set A/λzi = 1 and omitted negative signs in the
argument since almost all applications of interest are symmetrical in
(x, y).

As J. Goodman says, “This relation is of the utmost importance”109, 109 J.W.Goodman: Introduction to Fourier
Optics, (2005)as it reveals very interesting information about diffraction-limited co-

herent imaging systems in the frequency domain. For a pupil which
is indeed unity in some region and zero otherwise, a finite passband
exists in which all frequency components are transmittedwithout am-
plitude or phase distortion. Only at the boundary of this passband,
the pupil function and hence the frequency drops abruptly to zero,
which implies that the frequency components outside the passband
are completely eliminated. Note that this conclusion has been drawn
for ideal imaging systems. For realistic imaging systems, the effects of
aberrations are modeled as phase distortions within the passband.

Extra 9.1: Transfer function examples
Example for the frequency response
of a diffraction-limited coherent
imaging system. The amplitude
transfer functions of a circular pupil
is given by

P(x,y) = circ
(
√x2 +y2

w )
.

Thus with formula (9.15), the cor-
responding amplitude transfer func-
tion is

H(kx, ky) = circ⎛
⎝
√k

2x +k2y
w/λzi

⎞
⎠
.

A cut-off frequency can be defined
as f0 = w/λzi, beyond which all
signal is suppressed. When plot-
ting the ATF, which is simply the
rescaled pupil function given above,
an abrupt suppression at the cut-off
frequency is visible:

The optical transfer function (OTF) for
incoherent imaging, however, shows
a gradual decrease that extends to
twice the cut-off frequency of the co-
herent system:

Frequency response of incoherent imaging and the optical transfer func-
tion

Ananalogous derivation can bemade for incoherent illumination. How-
ever, since all interference terms vanish for incoherent illumination,
instead of being linear in the amplitude of the light field, the system
is linear in the intensity. For perfectly incoherent illumination, the
imaged intensity I2 is found as a convolution of the intensity impulse
response |h|2 with the ideal image density I1

I2(x2, y2) ∝ ∫∫ |h(x2 − ξ, y2 − η)|
2I1(ξ, η)dξdη . (9.16)

Therefore, this kind of system is analyzed as a linear mapping of in-
tensity distributions. Additionally, one can see that the intensity im-
pulse response is simply the squared absolute value of the amplitude
impulse response h. And analogous to the coherent case, the transfer
function of the incoherent system can be defined by

ℋ(kx, ky) = ∫∫ |h(x2, y2)|
2e−i2π(kxx2+kyy2) dx2 dy2 . (9.17)

Commonly, the incoherent transfer functionℋ is called theOTF,whereas
its modulus or absolute value is called the modulation transfer func-
tion (MTF). Application of the convolution theorem then yields the
frequency-domain relation quite similar to the coherent case.

ℱ2(kx, ky) = ℋ(kx, ky) ⋅ ℱ1(kx, ky) (9.18)

https://books.google.de/books?id=ow5xs%7B%5C_%7DRtt9AC
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Thus, the application of the linear systems framework yields analo-
gous relations in both, the coherent as well as the incoherent case,
highlighting the flexibility of this approach. However, the presented
expressions act on the intensity and not the complex amplitude which
is of significant consequence for the quality of the imaging.

A complete comparison is beyond the scope of this work and not
relevant for the presented experiment. A short example of the im-
pact the coherence of the illumination is presented for the interested
reader in Extra 9.1. Since the amplitude impulse response function h
occurs in both expressions, there is certainly a relation between the
OTF and the ATF to be found and indeed, the OTF is precisely the
autocorrelation of the ATF. In summary, ideal coherent and incoher-
ent imaging can be conveniently described by a transfer function or
its Fourier transform, the impulse response or PSF. The final image
can thus be obtained by convolving the original image in a superpo-
sition integral with the PSF or in frequency space by multiplication
with the appropriate transfer function. Since the convolution oper-
ation is rather involved, it is worthwhile for most practical purposes
to eschew the superposition integral in favor of Fourier transforming,
multiplication by the transfer function and reverse Fourier transform-
ing, which is highly efficient on modern computer hardware.

Aberrations and their effect on the frequency response

If a system is not perfectly diffraction-limited it is said to have aber-
rations. Here, the wavefront of a point source on the exit pupil is not
perfectly spherical. Aberrations can have many origins, from a sim-
ple error in focus to inherent properties of e. g. not perfectly spherical
lenses.

In order to describewavefront errors, one can imagine the exit pupil
to be perfectly illuminated by a spherical wavefront but that a phase-
shifting plate exists right at the aperture, thus deforming the wave-
front that leaves the pupil. Let the phase error at (x, y) be denoted by
kW(x, y), where k = 2π/λ andW is an effective path length error, then
the effect of the phase-shifting plate can be described by the complex
amplitude transmittance

𝒫(x, y) = P(x, y)eikW(x,y). (9.19)

How the departure from an ideal Gaussian wavefront is parameter-
ized by the introduced path length error is illustrated in Fig. 9.9.

[git] • Branch: jonas@9d918d4 • Time of Commit: 2018-09-19 22:00:24 +0200

Ideal
image
point

Actual
wavefront

Gaussian
reference
sphere

Exit
pupil

W( )

Figure 9.9: An illustration how imag-
ing aberrations are modeled in terms
of the effective path length error W.
Here the deformation at the exit pupil
is measured relative to an ideal Gaus-
sian spherical wave emanating from an
ideal image point. Figure adapted from
J. Goodman109.
109 J.W.Goodman: Introduction to Fourier
Optics, (2005)

In the discussion of linear systems we found that as a consequence
of Fourier transforming back and forth, the amplitude transfer func-
tion could bewritten in terms of a scaledpupil function, confer Eq. (9.15).
Similarly, the amplitude transfer function of an imaging system with
aberrations can be written with the generalized pupil function 𝒫 as

H(kx, ky) = 𝒫(λzikx, λziky)

= P(λzikx, λziky) eikW(λzikx,λziky). (9.20)

https://books.google.de/books?id=ow5xs%7B%5C_%7DRtt9AC
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The effect of aberrations can hence be modeled as the introduction of
amplitude and phase distortions via the generalized pupil function.
Thus, the knowledge of the aberration function W is pivotal to the
compensation of imaging effects onto our measured density distribu-
tions.

Experimental determination of the generalized pupil function

There exist several possibilities tomeasure the generalized pupil func-
tion or the ATF of a physical system. Since we have no point source
available in the observation volume, we chose to employ a technique
presented by C. Ching133 that only relies on uncorrelated density fluc- 133 C. L. Hung et al.: New J. Phys., vol. 13,

(2011)tuationswhich are conveniently obtained by preparing a thermal non-
interacting Fermi gas.

The basic idea of the extraction of the ATF from perfectly random
density fluctuations will be presented in brevity in the following.

As shown in the previous section, the experimentally measured
density distribution nexp(𝐫) is obtained by convolving the actual den-
sity distribution n(𝐫) with the PSF which contains the effect of the
imaging apparatus. The same is true for the density fluctuations δn(𝐫)
= n(𝐫) − n̄, where n̄ denotes the mean density. Hence, on every pixel
𝐫 on the camera, we measure the density fluctuation

δnexp(𝐫) ≈ ∫ δn(𝐫)PSF(𝐫j − 𝐫)d𝐫 . (9.21)

This convolution is transformed into amultiplication by Fourier trans-
forming the expression, thus

δnexp(𝐤) = δn(𝐤)ℱt{PSF}⏟⏟⏟⏟⏟⏟⏟
amplitude transfer function

. (9.22)

The second term on the right hand side is easily identified as the am-
plitude transfer function, which is the goal of this endeavor. How-
ever, the first term on the right hand side, the true density fluctua-
tions in frequency space δn(𝐤), i. e. the PSD, is still unknown. In or-
der to identify that term, a look at the density fluctuation correlations,
which define the density-density correlation function v(𝐫1 − 𝐫2) =
⟨δn(𝐫1)δn(𝐫2)⟩/n̄ proves to be worthwhile. The Fourier transform of
this correlation function is known as the static structure factor given
by

S(𝐤) = ∫ v(𝐫)e
−i𝐤𝐫 d𝐫 . (9.23)

Here, the normalization constant of the transform has been dropped
for notational convenience. Now, we can pull the Fourier transform
into the density fluctuations correlator and write the structure factor
in terms of the Fourier transform of each of the density fluctuations
δn(𝐤) = ∫ δn(𝐫)e−i𝐤𝐫 d𝐫 as

S(𝐤) = ⟨δn(𝐤)δn(−𝐤)⟩
n̄ = ⟨|δn(𝐤)|2⟩

n̄ . (9.24)

In the first step, the definition of δn(𝐤)was inserted and we made use
of fact that v(𝐫1−𝐫2) depends only on the distance 𝐫1−𝐫2. The second

http://dx.doi.org/10.1088/1367-2630/13/7/075019
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step relies on the fact that the density fluctuations are real valued, i. e.
δn(−𝐤) = δn∗(𝐤). Here, we have found the square of the sought after
term and are now able to exploit the uncorrelated density fluctuations
of the thermal Fermi gas in te following. In order to determine the
structure factor of such a gas, it is instructive to write S in terms of the
density-density correlation function g2, which is obtained by a few
straight forward substitutions from Eq. (9.23) to be134 134 L. Pitaevskii and S. Stringari: Bose-

Einstein Condensation, (2003)

S(𝐤) = 1 + n̄ ∫(g2(𝐫) − 1)e
−i𝐫𝐤 d𝐫 . (9.25)

Sinceg2 is unity for anuncorrelated gaswe immediately find the struc-
ture factor to be unity aswell. Thus, after taking the square of Eq. (9.22),
solving for the ATF and inserting S = 1, the absolute value of the ATF∗ ∗ The absolute value is also called the

modulus. However, the modulus of
the OTF for incoherent imaging is usu-
ally named modulation transfer func-
tion, hence it is refrained here from us-
ing MTF as the designation for the mod-
ulus of the ATF, to avoid confusion. Fur-
thermore, as the ATF is non-negative in
all cases relevant, the modulus will be
omitted and the absolute value |ATF|
will henceforth simply be referred to as
ATF.

is found to be proportional to the measured density fluctuations, i. e.

|atf(𝐤)| ≈ √⟨|δnexp(𝐤)|
2⟩. (9.26)

In order to employ this method experimentally, we produce an ap-
proximately uncorrelated gas by preparing a thermal gas of non-in-
teracting 6Li atoms at a magnetic field of ≈ 527G, which is close to
the zero crossing of the 3D scattering length. Due to the large tem-
perature, the fugacity z = eµ/(kBT) is small and the gas is in the non-
degenerate regime which exhibits Poissonian density fluctuations135. 135 J. J. Meineke: Fluctuations and Corre-

lations in Ultracold Fermi Gases, (2012)Hence, the structure factor is in good approximation constant and
close to unity.

In general one has to compensate not only for the imaging system
but also for the detection cell geometry. However, at the point where
the total ATF vanishes due to the imaging aperture, kmax = 2πNA

λD2
≈

0.9/µm, the transfer function of a single pixel has only decayed by ≈
3.4% and thus will be ignored henceforth.

In summary, the measurement of the density-density correlations
of a gas with Poissonian density fluctuations allows us to extract the
influence of the imaging apparatus in form of the frequency represen-
tation of the characteristic PSF. For in situ imaging, where the extent
of the sample is much smaller than the DoF, this result would be suffi-
cient in order to compensate for the imaging apparatus. However, the
size of the sample in direction of the imaging axis is on the order of a
millimeter in case of the matter wave focusing technique and even for
the shorter ToF used in the self-interference measurement, the extent
is still on the same order as the DoF and hence cannot be neglected.

Effective transfer function

Due to the large extent of the atom cloud during imaging, not all parts
of the sample are subject to the same transfer function. Each slice per-
pendicular to the imaging axis of the extended sample has a differ-
ent distance to the focus position and thus picks up a unique wave
front error. Since we cannot treat the object as two-dimensional, a
two-dimensional transfer function fails to yield an adequate descrip-
tion of the imaging process.

http://books.google.de/books/about/Bose%7B%5C_%7DEinstein%7B%5C_%7DCondensation.html?id=7J-ZngEACAAJ%7B%5C&%7Dredir%7B%5C_%7Desc=y
http://e-collection.library.ethz.ch/eserv/eth:6287/eth-6287-02.pdf#search=%22jakob%20meineke%22
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For extended objects, a three-dimensional transfer function in de-
pendence of the z-direction along the imaging axis should be applied
to the actual three-dimensional density distribution. However, the
volume density is neither known normeasured since the imaging pro-
cedure effectively integrates along the imaging axis and thus produces
a 2D column density. The process we use to account for the varying
influence of the imaging apparatus is outlined in the following.

If multiphoton scattering is ignored, i. e. the imaging light incident
on each slice is identical, the imaged density distribution can be ap-
proximated by an average over all 2D density slices convolved with
their respective PSF

nexp(x, y) ≈∑
zi
n(x, y, zi) ⊗ PSF(x, y, zi). (9.27)

Note that the normalization constant has been dropped here for no-
tational convenience. Since we are interested in the transfer function,
we Fourier transform the above expression, hence turning the convo-
lution ⊗ into a multiplication

nexp(kx, kz) ≈∑
ki
n(kx, ky, kz) ⋅ ATF(kx, ky, kz). (9.28)

The arguments k∗ represent momenta associated with the directions
x, y, z. Now, we make use of the fact that the gas resides in the har-
monic oscillator ground state in the z-direction Ψ(z) ∝ e−mωzz2/(ℏ2),
with the vertical trap frequencyωz = 2π ⋅ νz. Therefore, the momen-
tum space representation is also a Gaussian, i. e.Ψ(kz) ∝ e−ℏk2z/2mωz .
If we assume the density to be separable, n(x, y, z) = n(x, y) ⋅n(z), we
obtain Here, the factor 2 in the denominator

of the exponential cancels out since the
density is obtained by taking the square
of the wave functions.

nexp(kx, kz) ≈ n(kx, ky) ∑
ki

e−ℏk2z/mωzATF(kx, ky, kz)
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

ATFeff

. (9.29)

Here, the summation over the weighted amplitude transfer functions
is denoted by the effective amplitude transfer function (ATFeff). With the
previously measured ATF in focus and the knowledge that imaging
aberrations such as defocus can be described by a simple quadratic
wavefront distortion136 we are able to estimate the influence of the 136 E. Hecht: Optics, (2017)
imaging apparatus also for extended samples.

An example of a number of ATFs for different positions along the
imaging axis are shown in Fig. 9.10a. The sole influence of defocus is
a change in the complex phase depicted in the bottom plot, the indi-
vidual amplitudes are unaffected. The real part scaled to the relative
density contribution for that distance is plotted in the upper part of
Fig. 9.10a. In the summation, the imaginary parts cancel and a real
ATFeff remains that is plotted in Fig. 9.10b. This is not necessarily al-
ways the case, for examplewhen the ATFs are not averaged symmetri-
cally around the focus position. In this case, a constant complex phase
remains indicating e. g. amisalignment. However, since we ultimately
image the intensity which is obtained by taking the square of the light
field amplitude, we would have obtained a real value regardless. In

http://books.google.com/books?vid=ISBN978-1-292-09693-3
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Figure 9.10: (a) Examples of the den-
sity weighted real part and the phase
of ATFs for three distances to the focus
position (blue to purple) which lies at
the cloud center. The abscissa denotes
the spatial frequency k. The location of
the slice is indicated by lines of corre-
sponding color in the sketched atomic
cloud shown in the inset. The only ef-
fect of defocus is the introduction of a
phase, the amplitude is not altered and
thus not shown. Note that the phase
changes sign when crossing the optimal
focus. The imaginary part (not shown)
shows a similar dependence which ul-
timately averages out in this situation.
(b) Comparison of the resultant effec-
tive ATF (red dashed) for a cloud with
1/√e radius σz ≈ 18µm and the ideal
ATF (blue) of a diffraction limited imag-
ing system with NA = 0.082 in de-
pendence of the spatial frequency k.
The vertical extent corresponds approxi-
mately to 1ms ToF in the presentedmea-
surements.

general, the phase carries information about the position, for example
a deflection by a wedge in the imaging path could be represented by
a phase gradient.

Fitting of g2 considering the imaging apparatus

The effective ATFwe have estimated in this fashion can have strong in-
fluence on the lower resolution limit. The impact is illustrated in the
following in the context of the density-density correlation function g2
obtained during the short ToFmeasurement. We have seen that imag-
ing out of focus results in a narrower ATF, i. e. higher frequencies are
stronger suppressed compared to the case of ideal imaging. Neverthe-
less, also imaging free of aberrations is still restricted by the finite NA,
which defines the largest obtainable frequency and thus the smallest
resolved feature. The effect of the ideal ATF and two effective ATFs
for two different cloud sizes on a theoretical estimate of g2,thoery are
plotted in Fig. 9.11.
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Ideal ATF,NA = 0.1
ATFeff, σz ≈ 18µm
ATFeff, σz ≈ 90µm

Figure 9.11: The effect of imperfect
imaging on the measured density-
density correlation function g2 is
demonstrated for various degrees of
defocus. The theoretical g2 is plotted in
blue (dashed) and compared to diffrac-
tion limited imaging with NA = 0.1
and the effective ATF for 18µm and
90µm 1/√e cloud radii in blue, red
and yellow, respectively. The imaged
g2 is still comparable to the theoretical
values for small cloud extent. However,
for the large cloud sizes reached in the
matter wave focusing measurement,
a strong deviation can be seen. The
parameters η and acut-off are 0.125 and
3µm respectively.The parameters of the theoretical g2 are taken to be typical values

for the expected temperature range, i. e. η = 0.125 and acut-off = 3µm.
It is immediately obvious that even aberration free imaging has visible
impact on the shape of g2 and especially the location and amplitude
of the minimum. If fitted without compensation, significant errors
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in the determination of η and acut-off must be expected, which can be
significantly reduced by application of a suitable ATF as is discussed
in Section 9.3.

.. Compensating for in situ density fluctuations

Not only the imaging apparatus introduces systematic errors which
need to be compensated for in order to obtain a suitable density-density
correlation function from the self-interference method. The basis of
the extraction of g2 from short ToF is that the phase information trans-
forms into a density modulation which can be imaged. This process
occurs simultaneously in reverse, i. e. the density fluctuations present
in situ are rotated into phase space. After a quarter of the trapping pe-
riod T/4, the phase has been completely transformed into density and
vice versa. However, for the shorter expansion times like those used in
the self-interference method, the process has not yet been completed.
Thus, remnants of the in situ density fluctuations remain.

As discussed earlier, ab initio treatment of the in situ density fluctu-
ations in the computation of the g2 used for fitting is computationally
prohibitively expensive. As an approximative alternative, we subtract
the propagated in situ density-density correlation functiong2,in situ(t =
ToF) from the density-density correlation function obtained after ToF
g2,tof, as suggested by V. Singh and L. Mathey84. To this end, the time 84 V. P. Singh and L. Mathey: Phys. Rev.

A, vol. 89, (2014)evolution operator is applied to an in situ wave function with fluctu-
ating phase as well as fluctuating density, which ultimately yields the
PSD after expansion of time t as

psd(𝐤, t) ≈ cos2(
ℏt𝐤2
2m )δn(𝐤)

2

+ 4 sin2(
ℏt𝐤2
2m )δθ(𝐤)

2

+ 2δn(𝐤)δθ(𝐤) sin(
ℏt𝐤2
m ) . (9.30)

Details on the derivation of this relation can be found in the thesis of
R. Desbuquois27. Here, the first term contains the known density fluc- 27 R. Desbuquois: Thermal and superfluid

properties of the two-dimensional Bose gas,
(2013)

tuation δn whereas the second term describes the sought after phase
fluctuation δθ after ToF. The third term describes the interference be-
tween the density and the phase fluctuations and is thus assumed to
be small and is ignored. From the first term, it is immediately obvious If the interference term would turn out

to be significant, the analysis would
have to be performed in an iterative self-
consistent approach, further raising the
computational cost.

that the in situ density fluctuations δn(𝐤) are modulated with time by
the term cos2 (

ℏt𝐤2
2m ). Thus, the measured in situ density fluctuations

cannot simply be subtracted but must first be propagated by multipli-
cation with the cosine term.

The analysis sequence is as follows.
1. Measure the in situ density fluctuations and extract

g2,in situ(t = 0).

http://dx.doi.org/10.1103/PhysRevA.89.053612
https://tel.archives-ouvertes.fr/tel-00973469/document
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2. Measure the density fluctuations after short ToF and ex-
tract

g2,tof.

3. Timepropagate the in situ density-density correlation func-
tion by multiplication with the cosine term in frequency
space, i. e. schematically:

g2,in situ(t = ToF) =

ℱt{ℱt {g2,in situ(t = 0)}
2 ⋅ cos2(

ℏt𝐤2
2m )} .

4. Subtract the time-propagated in situ density-density cor-
relation function from thedensity-density correlation func-
tion acquired after short ToF to obtain,

g2 = g2,tof − g2,in situ(t = ToF).

The effect of this time propagation on our measured in situ den-
sity fluctuations is illustrated in Fig. 9.12. It can be seen that although
the in situ density-density correlation function has diminished, the
change of shape is still significant and must be considered in the anal-
ysis of the density-density correlation function after ToF.

(µm)

In situ average
In situ time evolved

Figure 9.12: The azimuthal average of
the in situ density-density correlation
function of a single realization is plotted
as blue circles whereas the time propa-
gated g2 is shown as red squares. Here,
only the cosine term of Eq. (9.30) is
considered. Note the diminished peak
amplitude and increased oscillations at
larger length scales.

.      

When constructing ameasuring device, it must be verified that it mea-
sures accurately. This is equally true for the numerical analysis pre-
sented here. Since no ultracold gas with known parameters exists we
employ data simulated on a high performance cluster by V. Singh. The
tests of two aspects of our numerical analysis are presented in the fol-
lowing. First, we verify that the compensation of in situ density fluc-
tuations via the time propagation ansatz as well as the consideration
of an imperfect imaging apparatus improves the fitted result. Second,
the numerical image preparation, correlation and fitting sequence is
verified. To this end, synthetic density images with noise according to
the PSD supplied by V. Singh and L.Mathey84 are created and fed into 84 V. P. Singh and L. Mathey: Phys. Rev.

A, vol. 89, (2014)the analysis routines and hence treated identically to experimentally
obtained images.

http://dx.doi.org/10.1103/PhysRevA.89.053612
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.. Verification of compensation and fitting routines

To establish a baseline, uncompensated fits to simulated data are pre-
sented first. Subsequently, the applied compensations are introduced
iteratively to highlight their respective effects. The influence of the
imaging apparatus has been simulated by a convolution with the PSF
expected for our imaging system. Two simulated density-density cor-
relation functions and their respective fits are presented in the each
of the following plots. An ideal correlation function for quasi-con-
densates with only phase fluctuations, g2,δθ, is plotted in blue and a
realistic correlation function for a gas with additional thermal in situ
density fluctuations, g2,δθ+δn, is plotted in red. The corresponding
fits are colored accordingly. The thermal excitations are assumed to
be Gaussian with a de Broglie wavelength of λT ≈ 1.9µm, which cor-
responds to a typical temperature of ultracold 6Li gases of 70 nK. Fur-
thermore, the results for three different scaling exponents η are given
in order to compare the fitting performance close to T = 0 with tem-
peratures approaching the critical point.
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Figure 9.13: Uncompensated fitting of
simulated data for three different scal-
ing exponents η. The simulated corre-
lation functions (dot dashed) are given
in comparison to the data as imaged
i. e. when subjected to our imaging sys-
tem (dashed). Uncompensated fits are
made to the data as imaged (solid lines).
Two simulated g2 are compared: only
in situ phase fluctuations (blue) and
including in situ density fluctuations
(red). The actual ηact is given in com-
parison to the fittedηfit anda ≡ acut-off
for the phase only case δθ or in com-
bination with in situ density fluctua-
tions δn + δθ. The cut-off is fixed
at a = 3µm. The unit as well as
the error which is always less than the
difference to the input value is omit-
ted. (a) ηact = 0.125: Phase only fits
yield reasonable agreement with ηfit =
0.137± 0.003 whereas not compensat-
ing for the in situ density fluctuations
in the fit results in unacceptable discrep-
ancy ηfit = 0.270± 0.005. The cut-
off likewise. (b) ηact = 0.05: Phase
only fits yield excellent agreement with
ηfit = 0.055± 0.001 whereas not com-
pensating for the in situ density fluc-
tuations in the fit results in unaccept-
able discrepancy ηfit = 0.241± 0.004.
The cut-off likewise (c) ηact = 0.2:
Phase only fits yield reasonable agree-
ment with ηfit = 0.220± 0.005 whereas
not compensating for the in situ density
fluctuations in the fit results in unaccept-
able discrepancy ηfit = 0.335± 0.006.
The cut-off likewise.

If the simulateddensity-density correlation functions are fittedwith-
out any compensation for the imaging system or in situ density fluc-
tuations, the results plotted in Fig. 9.13 are obtained. Interestingly,
the uncompensated fits to the phase-only g2 yield reasonable results
albeit with a systematic error of approximately 10%. The uncompen-
sated fits fail, however, to yield acceptable results when in situ density
fluctuations are present. This is especially obvious for small η, where
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the relative amplitude caused by the artificially introduced thermal
excitations dominates.
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Figure 9.14: Imaging compensated fit-
ting of simulated data for three differ-
ent scaling exponents η. The simulated
correlation functions (dot dashed) are
given in comparison to the data as im-
aged i. e. when subjected to our imag-
ing system (dashed). Fits for which
the influence of the imaging system is
considered are made to the data as im-
aged (solid lines). Two simulated g2
are compared: only in situ phase fluctu-
ations (blue) and including in situ den-
sity fluctuations (red). The actual ηact
is given in comparison to the fitted ηfit
and a ≡ acut-off for the phase only case
δθ or in combination with in situ den-
sity fluctuations δn + δθ. The cut-off
is fixed at a = 3µm. The unit as well
as the error which is always less than
the difference to the input value is omit-
ted. (a) ηact = 0.125: Phase only fits
yield reasonable agreement with ηfit =
0.123± 0.001 whereas not compensat-
ing for the in situ density fluctuations
in the fit results in unacceptable discrep-
ancy ηfit = 0.258± 0.003. The cut-
off likewise. (b) ηact = 0.05: Phase
only fits yield excellent agreement with
ηfit = 0.0500± 0.0002whereas not com-
pensating for the in situ density fluctu-
ations in the fit results in unacceptable
discrepancy ηfit = 0.237± 0.003. The
cut-off likewise (c) ηact = 0.2: Phase
only fits yield excellent agreement with
ηfit = 0.197± 0.001 whereas not com-
pensating for the in situ density fluctu-
ations in the fit results in unacceptable
discrepancy ηfit = 0.313± 0.003. The
cut-off likewise.

The fits plotted in Fig. 9.14 show the effect of compensating for the
imaging apparatus by convolving the model function prior to fitting
with the PSF of the assumed imaging apparatus. As expected, the
discrepancy due to in situ density fluctuations still persists but the
relative error is seen to be significantly reduced. The fits to the phase-
only density-density correlation function show excellent agreement
within the statistical error bounds, as expected. The fits to the density-
density correlation function with included in situ density fluctuations
yield an improved discrepancy of Δηfit/ηact = 204.8% compared to
216% when the imaging system has not been considered. However,
these values aswell as the cut-offΔacut-off/acut-off, act = 151.3% arewell
beyond acceptable, regardless of the small fit error on the order of 5%
in each case.

The greatest discrepancy in the input parameters (η, acut-off) and fit-
ted output is caused by the introduction of in situ density fluctuations.
However, since an ab initio treatment is computationally prohibitively
expensive, we chose to subtract the in situ density-density correlation
function after it has been time evolved to compensate for the ToF. The
beneficial effect of this compensation can clearly be seen in Fig. 9.15.
The fully compensated fits to the simulated density-density correla-
tion function including in situ fluctuations yield excellent agreement
for the scaling exponent with a discrepancy of 14.4% to the reference
and a value of 0.107± 0.001 and much improved results for the cut-
off with a discrepancy of up to Δafit/aact = 6.8%. These results show



   137

(a)

Actual η: 0.125
η/aδn+ δθ: 0.107/2.90

0 2 4 6 8 10

0

0.1

0.2

r (µm)

g 2
−
1

Full compensated fits to simulated g2 subject to imaging

Phase(δθ) + density (δn)
δθ + δn as imaged
Fit to δθ + δn as imaged
In situ δn
In situ δn propagated
In situ δn propagated as imaged

(b)

0 5 10

0

0.1

0.2
Actual η: 0.05
η/aδn+ δθ: 0.0500/3.22

r (µm)

g 2
−
1

(c)

0 5 10

0

0.1

0.2
Actual η: 0.2
η/aδn+ δθ: 0.171/2.90

r (µm)

g 2
−
1

Figure 9.15: Imaging and in situ den-
sity fluctuations compensated fitting of
simulated data for three different scal-
ing exponents η. The simulated corre-
lation functions (dot dashed) are given
in comparison to the data as imaged
i. e. when subjected to our imaging sys-
tem (dashed). Fits for which the influ-
ence of the imaging system as well as in
situ density fluctuations are considered
are made to the data as imaged (solid
lines). Only the case including in situ
density fluctuations (red) is kept since
the phase only case has been treated sat-
isfactorily in the prior plot. Addition-
ally, the expected in situ density fluctua-
tions (dotted) are plotted as propagated
(dot dashed) and propagated as images
(dashed). The actual ηact is given in
comparison to the fitted ηfit and a ≡
acut-off for the phase only case δθ or in
combination with in situ density fluc-
tuations δn + δθ. The cut-off is fixed
at a = 3µm. The unit as well as the
error which is always less than the dif-
ference to the input value is omitted.
(a) ηact = 0.125: When compensat-
ing also for in situ density fluctuations,
the fit results in acceptable agreement
ηfit = 0.107± 0.001. The cut-off like-
wise. (b) ηact = 0.05: When com-
pensating also for in situ density fluctu-
ations, the fit results in excellent agree-
ment ηfit = 0.0500± 0.0003. The cut-
off likewise (c) ηact = 0.2: When com-
pensating also for in situ density fluctua-
tions, the fit results in acceptable agree-
ment ηfit = 0.171± 0.001. The cut-off
likewise.

that the compensation of the imaging apparatus and in situ density
fluctuations are not only necessary but also that the employed mea-
sures successfully counteract the systematic errors introduced when
applying the self-interference method under actual experimental con-
ditions.

.. Verification of image preparation and correlation analysis rou-
tines

In addition to the compensation of the imaging system and the in situ
density fluctuations, also the numeric analysis sequence as a whole
must be tested in order to verify the numerical implementation.

In order to do so, we have produced synthetic density images with
fluctuating noise of known spectrum, and hence known correlation,
which can be fed into the analysis instead of actual experimental den-
sity images. The subsequent numerical analysis, however, is identi-
cal. The used routine relies on the inverse Fourier transformation of a
known PSD which has been multiplied by a point symmetric random
phase factor, hence distributing the power evenly over position space
and yielding a real valued output. This process is implemented in the
MATLAB programming language via the following excerpt.

1 N = 256; % The size of the required image in pixels
2 EffectivePixelSize = PixelSize * Binning / Magnification;
3 X = −N/2:N/2−1; % Create an array of length N
4 X = X * EffectivePixelSize; % Convert from px values to meter
5



138

6 [xx, yy] = meshgrid(X, −X); % Create a grid of x,y values
7
8 [theta, rho] = cart2pol(xx, yy); % Convert from Cartesian to polar coordinates
9

10 % pointrand is a custom function that creates a point symmetric matrix of size N with random
values [−1, 1] of uniform spectrum

11 randPhase = 1i*pi*pointrand(N);
12
13 % The magnitude is computed from the input power spectrum (psd) and the phase
14 magn = sqrt(psd) .* exp(randPhase);
15
16 % The magnitude is tranformed to position space and masked by a heaviside function to emulate

the shape of our sample. This is only done here for illustration. The *shift commands
ensure proper positioning

17 img = heaviside(62− abs(rho)) .* (1 + N/(EffectivePixelSize) .* ifftshift(ifft2(fftshift(magn))
));

18
19 % The dominant real part is kept, however the imaginary part is only due to numeric errors and

very small with abs(imag(img)) < 1e−20
20 img = real(img)

Here, the most important steps occur on line 14 and 17. The square
root of the predefined PSD is multiplied by a random phase factor
and Fourier transformed from frequency to position space. Since posi-
tion information is encoded in the randomphase, the resulting density
image exhibits uniform density noise which obeys the defined power
spectrum. For the PSD, we have chosen the analytical and numerical
expressions for a systemwith algebraically decaying phase correlation
function supplied by V. Singh and L. Mathey84. 84 V. P. Singh and L. Mathey: Phys. Rev.

A, vol. 89, (2014)

0.5ms

1ms

2ms

Figure 9.16: Examples of synthetic den-
sity ripple images for varying ToF. Form
left to right, the time of flight increases
from 0.5ms over 1ms to 2ms. Note, how
the length scale of the density modula-
tion changes.

Examples of images with algebraically decaying phase correlations
for three different ToFs are shown in Fig. 9.16. Visual comparison indi-
cates that the change in correlation length is qualitatively compatible
with our experimentally acquired density images.

The results of the numerical analysis for 1ms time of flight and
varying η are shown in Fig. 9.17. Here, simulated data using the nu-
merical expression for a phase fluctuating condensate without in situ
density fluctuations are plotted in blue. Fits to the full numerical ex-
pression (analytical approximation) are shown in red (dashed). It is
refrained from plotting data from both, numerical expression and an-
alytical approximation, due to the fact that they are visually almost
indistinguishable. The fitted value in the legend corresponds to fits
to data generated from the full numerical expression. The examples
shown and the overview of the fitted errors and mean in Fig. 9.18, in-

http://dx.doi.org/10.1103/PhysRevA.89.053612
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Figure 9.17: Examples of simulated
density ripples images for varying η.
From (a) η = 0.05 fitted ηf ≈ 0.0502
over (b) η = 0.15 fitted ηf ≈ 0.1683
to (c)η = 0.225 fitted ηf ≈ 0.2181.
Note the fivefold increase in the y-axis
scale from (a) to (b). The data is fitted
between 2–25µm.

dicate that the numerical analysis reproduces the input parameters in
good agreement, at least when input and fit rely on the same data.
For smaller η, fitting the data created from the full numeric expres-
sionwith the analytical expression still yields accurate results and vice
versa. However, towards the critical point at η = 0.25 the cross fit-
ted means begin to diverge by ≈ ±17% from the ideal diagonal and
the statistical error given by one standard deviation increases from
approximately 2.5% to 13.6%. In contrast, when data and fit model
are derived from the same data, the mean deviation is always less
than 0.75% while the statistical spread increases from approximately
2.92% to 12.43%.
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PSD: Analytical, Fit: Analytical
PSD: Numerical, Fit: Numerical
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Figure 9.18: Comparison of the fitting
errors of different implementations for
generating the noise spectrum and fit
model. The values represent the mean
over 100 analyzed images where the er-
ror bar indicated one standard devia-
tion. The colored lines are a guide to
the eye and the ideal diagonal is marked
with a gray dashed line. Note that
the numerical analysis produces accu-
rate results for both relevant caseswhere
the noise spectrum and the fit model are
determined from the same data. How-
ever, the statistical distribution increases
towards the critical point ηc = 0.25.

In conclusion, we have determined that the numerical analysis pro-
cedure yields excellent results for the average scaling exponentη, where-
as fits to individual realizations suffers errors up to 12.43% when ap-
proaching the critical point, which we deem acceptable.

The short range cut-offacut-off yields similar results but since amean-
ingful analysis showed to be impractical, we refrain from presenting
detailed characteristics of the numerical analysis.

Nonetheless, the accuracy of the analysis is subject to amultitude of
parameters, bot technical and experimentallymotivated. Twoof these,
the choice of the fit limits for the density-density correlation function
and the size of the region of interest are summarized exemplary in the
following.

.. Fit limits

Due to the high sensitivity of the fittedmodel parameters to the shape
of the data, the fit limits must be chosen carefully. Since the dominant
signal occurs at small distances, we expect that the outer fit limit can
be chosen freely in an interval larger than the main feature and small
enough to not contain significant noise at large distances. The choice
of the inner fit limit, however, is crucial. Towards r = 0, significant de-
viations in the experimental data from the expected functional form
can be observed due to the finite resolution and the atomic shot noise
contribution. Thus, the inner fit limit must be chosen such that small
distances are excluded but sufficient signal is still contained in the in-
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terval to ensure a successful fit. To determine the optimal interval,
the simulated data is fit with varying inner and outer fit limit and the
fitted ηfit is compared to the input value of ηin = 0.15. The relative de-
viation, Δη = ηfit − ηin, from the input is plotted three-dimensionally
in Fig. 9.19. Here, optimal parameters are depicted in white color,
whereas too small (too large) values are plotted in blue (red) color.
The dependence on the outer fit limit is given normal to the viewing
plane. The almost constant relative deviation indicates that the outer
limit can indeed be chosen freely in the interval 10–30µm and most
likely up to the maximum valid distance given by the size of the region
of interest (RoI). The dependence of the relative Δη/ηin deviation on
the inner fit limit is given on the horizontal axis, here a strong effect
can be observed if the inner fit limit is chosen too small (≲ 1µm) or
too large ( ≳ 4µm). Examples of the used fit limits are given in the
respective inset. Using this data, we have chosen the inner (outer) fit
limit to be 2.5µm (25µm). Here, the dependence is minimal as indi-
cated by the broad plateaus.
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Figure 9.19: Comparison of the effect
of different fit limits on the fitted ηfit.
Here, the inner and outer fit limit are
adjusted from 0–9µm and 10–30µm, re-
spectively. The inner fit limit is given on
the horizontal axis and the outer fit limit
axis is normal to the viewing plane. The
vertical axis and the color denote the rel-
ative difference of the fittedηfit to the in-
put of ηin = 0.15. Note that the outer fit
limit has negligible effect and the exis-
tence of a plateau around inner fit limit
values of approximately 1µm. Exam-
ple fits are shown as insets below, with
dashed lines indicating the correspond-
ing regime.

.. Size the of region of interest

In principle, the size and shape of the RoI can be compensated for by
considering the correlation function of the created binarymask. How-
ever, there is no benefit from compensation, when the RoI does not
contain sufficient signal on the relevant length scales. Clearly, there
exists a lower size limit that generates acceptable results. In order to
estimate the error introduced by the size of the RoI, we successively



   141

increase the RoI and subsequently compare the fitted η with the in-
put value. A plot of the relative difference Δη/ηint = ηfit − ηin/ηin of
the fitted value from the input is shown in Fig. 9.20. The error bars
denote the statistical spread expected for the analysis of a single den-
sity image, whereas the error in the averaged η is always less than
3.3%. The vertical dashed line indicates the size of the RoI used in
this experiment. Here, the uncertainty for a single realization is ap-
proximately 12.3% and the discrepancy of the mean to the expected
value is less than 0.32%. Hence, we conclude that the RoI chosen in
this experiment lies in a regime with acceptable accuracy for individ-
ual realizations and excellent results for the number of density images
considered in the presented analysis.

Disk radius (µm)

Figure 9.20: Effect of the size of the re-
gion of interest. The x-axis denotes in-
creasing radius of a disk shaped RoI.
The y-axis denotes the relative diver-
gence of the average fitted value of ηfit
to the input of ηin = 0.15. The error
bars represent the statistical spread ex-
pected if a single image is analyzed. The
vertical dashed line indicates the size of
the RoI used in this experiment. In the
presented analysis, we evaluate about
a hundred images, which decreases the
divergence from the true value consid-
erably. Examples of the size of the RoI
are shown as insetswith dashed lines in-
dicating the correspondence to the main
plot.

.    g2    

In contrast to the aforementioned prior work, the focus of this thesis
lies on the analysis of the density-density correlation function of ultra-
cold gases. Theoretically, it is often advantageous to study coherence
properties via the PSD in Fourier space instead of position space. This
should also be true for the experiment presented in this thesis. An in-
termediary step of the computation of g2 actually yields the PSD and
V. Singh and L.Mathey have also presented an analytical expression in
momentum space. However, the dependence of the introduced noise
with distance made the analysis in Fourier space impractical. This
is due to the fact that less data is present for correlations over larger
distances, which causes the statistical error of the density-density cor-
relation function to scale proportional with distance. A Fourier trans-
form, however, eliminates the clear separation of the low-noise and
high-noise regimes and yields a significant admixture of the statistical
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noise to all momenta. The resultant PSD is ill suited for numerical fit-
ting of the required accuracy. Since we ultimately rely on a numerical
expression for either the PSD or g2, we chose to perform the analy-
sis in position space where the noise can be easily separated from the
signal.



10 CONC LU S I ON AND OU T LOOK

This thesis reports on measurements of the coherence properties of
2D Bose gases. The fact that we have recently realized homogeneous
gases is particularly advantageous, since it allows to measure global
properties without averaging over an inhomogeneous density distri-
bution. We have used two methods to study the phase coherence of
ultracold bosonic 6Li dimers, which are held in an optical dipole trap
for a varying amount of time.

First, we have measured the momentum distribution via a matter
wave focusing technique and observed that the population of low-
momentum modes decreases significantly with hold time on the or-
der of 50ms. This behavior could be caused by heating. Yet, fits to
the high-momentum modes indicate only a minor increase in temper-
ature. Furthermore, the timescale of the low-momentum population
decrease is fast, similar to the time a sound wave required to travel
across the system, a process relevant for global thermalization. These
observations suggest that the gas is not necessarily in thermal equilib-
rium.

The second method to investigate the phase properties relies on
self-interference. When the gas is left to expand for a short time, in situ
phase excitations transform into density fluctuations. After short time
of flight, we have observed a density distribution reminiscent of a laser
speckle pattern, whichwould not have occurred for aBose-Einstein con-
densate (BEC) with true long-range order where the phase is constant.
However, in a 2D gas only quasi-long-range order is maintained and,
in a simplified picture, the gas can be thought of as a collection of
patcheswith constant – but different – phase. During the time of flight,
these matter wave fields begin to overlap and interfere constructively
and destructively producing the aforementioned speckle pattern.

Analyzing the data from the short time of flight method, we find
that the relative amplitude of the density fluctuations remains approx-
imately constant for all hold times. However, destructive interference
produces a pronounced minimum in the density-density correlation
function, which is present immediately after the preparation but van-
ishes for hold times on the order of 50ms. Following theoretical work
by V. Singh and L. Mathey, the scaling exponent governing the alge-
braic decay of phase correlations is extracted from the density-density
correlation function, assuming that we are in range of applicability of
the theory and especially in thermal equilibrium. The scaling expo-
nent determined in this fashion decreases with longer hold times.

Interestingly, the observations from the two methods are inconsis-
tent with our theoretical expectation for a quasi-long-range ordered
Berezinskii-Kosterlitz-Thouless (BKT) state being subject to heating. While
the decrease of low-momentum modes is in agreement with this sce-
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nario, the temperature extracted from the high-momentummodes and
the scaling exponent do not increase as expected, rather, the scaling
exponent even decreases. We argue that these discrepancies are most
likely due to non-equilibrium effects, especially in view of the fast
timescale on which low-momentum modes are lost. Yet, other as-
sumptions of the theoretical model are also violated in our system
which is of finite size, has strong interactions and experiences colli-
sions during expansion. It is hence possible that reliable conclusions
about the in situ phase coherence and its scaling exponent cannot be
extracted using the short time of flight method.

In summary, we have presented the first measurements of the co-
herence properties of a strongly interacting homogeneous 2D gas of
composite bosons with a high performance imaging system and have
overcome issues experienced previously, such as strong systematic er-
rors or density patterns caused by defocused or non-resonant imag-
ing.

Recent improvements
The measurements presented in this thesis and summarized above
suffer strongly from the very fast loss of low-momentummodeswhich
potentially lead to a non-equilibrium state of the gas. Towards the end
of the year 2017, the PhD students succeeding me, N. Luick and L.
Sobirey, realized that the fast loss of low-momentum states might be
caused by an insufficient vacuum pressure. The single particle atomic
loss rate due to collisions with the background gas is only approxi-
mately 8 s, hence limiting the lifetime of the condensate fraction in 3D
condensates to a maximum of 2 s and typically only 50–300ms in the
regime that we are interested in. Other groups have observed life-
times an order of magnitude longer. The precise origin of the insuffi-
cient vacuum could not be determined conclusively. Leaks could not
be found, but high background pressure can also be caused either by
a high outgassing rate of the metallic experiment chamber combined
with a very lowpumping rate or alternatively outgassing from the get-
ter foil placed in the tube connecting the experiment chamber to the
main chamber. Ultimately, they have replaced the metallic chamber
by a glass cell which has been previously commissioned and delivered
already in 2011 but not used since the anti-reflection coatings had de-
teriorated substantially during manufacturing. With this glass cell,
the aforementioned vacuum problem has been solved, now reaching
lifetimes in excess of 130 s. Additionally, the condensate lifetime at
≈710G has also been improved by a factor of more than 15.

Furthermore, they took this opportunity to implement improved
coil holders and microscope mounts. By slitting the coil holders, the
effect of eddy currents have been suppressed further. Furthermore,
they removed superfluous conducting retaining rings used in the mi-
croscope mounts that may have caused vibrations and fringes in the
images due to eddy currents. These improvements enablemuch faster
changes of the magnetic field. This may allow us to study non-equi-
librium effects in a more systematic fashion.
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Outlook
With the upgrades detailed above, it should now be possible to apply
the methods developed in this thesis to perform improved studies of
the coherence properties of 2D systems, with the important difference
that the systems should now be in thermal equilibrium.

As I have shown here with proof of principle measurements, in
equilibrium systems the self-interference method allows the extrac-
tion of the scaling exponent with high signal-to-noise ratio (SNR). The
method is particularly attractive for inhomogeneous systems, since af-
ter a short time of flight the signal from regions of different density are
still discernible since the atoms have not traveled far. This is in contrast
to the case where the g1 function is extracted from the trap averaged
momentum distribution. While I have not discussed it extensively in
the thesis, a substantial part of my dissertation work was devoted to
extracting the scaling exponent from short time of flight images of har-
monically trapped clouds in order to investigate the Kosterlitz-Thouless
(KT) transition spatially. I found that the self-interference method is
optimally suited to be applied locally and it is possible to extract a
scaling exponent even from small patches. An example of the data
quality possible is shown in Fig. 10.1 which demonstrates the capabil-
ity to extract local phase properties from ultracold gases. However,
these measurements have also been plagued by an unusually fast loss
of coherence most likely caused by the insufficiently low background
pressure.
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Figure 10.1: Example local analysis on
two density intervals of an inhomo-
geneous gas of ultracold 6Li dimers.
The data represents 30 averaged real-
izations. Two patches of approximately
constant density are highlighted, a patch
around the center of the cloud and the
corresponding density-density correla-
tion function are shown in blue whereas
a region of lower density towards the
wings of the cloud and its correspond-
ing density-density correlation function
is shown in red. Note that the data qual-
ity remains high even for rather small
sample patch sizes and a difference in
the amplitude of g2 is observable. Pre-
liminary fits to g2 with the tools pre-
sented in this thesis are plotted in gray
(dashed).

Since a box potential and hence a homogeneous Fermi gas was re-
alized during the time frame of this thesis, the advantage of the self-
interferencemethod, namely the ability to access the coherence locally
in inhomogeneous clouds, is not so relevant anymore. Rather, in ho-
mogeneous systems, the momentum distribution, and hence g1, can
be accessed directly via the momentum focusing technique since the
undesirable averaging over different densities is eliminated. This was
also recognized by the group of J. Dalibard, where suchmeasurements
are being performedwith a homogeneous gas of bosonic 87Rb atoms∗. ∗ Private communication, H. Moritz
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Thus, with the improvements that have been made, other direc-
tions have become more promising. For example, the group plans to
investigate the buildup of coherence following a quench from a ther-
mal gas in the weakly attractive fermionic regime to the strongly in-
teracting bosonic regime. To this end, it is planned to use the matter
wave focusingmethod established here to observe the increase of low-
momentum modes as a function of hold time after the quench and
determine the g1 function via Fourier transform.

Also, measurements of completely different phenomena have be-
come feasible. For example, the study of imbalanced Fermi gases in
the homogeneous box potential might shed new light on the phase di-
agram of systems where theoretical studies propose a first order tran-
sition between a fully paired and a partially paired state, which would
be observable in the formation of domains.

Furthermore, it would be fascinating to observe the Josephson ef-
fect in twodimensions, or even the propagation of second sound,which
is an entropy wave predominantly mediated by oscillations between
the normal and superfluid component. In both cases, the sudden jump
of the superfluid density at the critical temperature of the KT transi-
tion might be observable. At the transition, both, the amplitude of
the Josephson oscillations and the second sound mode should van-
ish. Hence, recent experimental advances indicate that the superfluid
jump at the KT transition, which originally motivated this work, may
finally be observed in ultracold atom systems in the near future.



A DE TA I L E D DER I VAT I ON OF S IMU L AT ED DENS I T Y- D ENS I T Y
CO R R E L AT I ON FUNC T I ON A F T E R T IM E O F F L I G H T

Here, the detailed derivation of the expression for the density-density
correlation function g2 after time of flight (ToF) used in the numerical
analysis is presented. This derivation follows the work of A. Imam-
bekov et al.82 and V. Singh and L. Mathey84. I have recreated the cal- 82 A. Imambekov et al.: Phys. Rev. A,

vol. 80, (2009)

84 V. P. Singh and L. Mathey: Phys. Rev.
A, vol. 89, (2014)

culation in detail in order to gain an intuitive understanding of the
resulting integral expression. It is presented here for the interested
reader aiming to do the same. If not explicitly noted all integrals run
from −∞ to∞.

We beginwith an expression for the single particle wave function of
the bosonic gas and aim to obtain an expression relating the density-
density correlation function after ToF g2(𝐫, t) to the in situ phase cor-
relation function g1(𝐫, t = 0). To this end, the in situ wave func-
tion Ψ(𝐫, t = 0) is propagated to arbitrary time t via application of
a Green’s function propagator G(𝐫, t).

Ψ(𝐫, t) = ∫G(𝐫 − 𝐫
′)Ψ(𝐫′, 0)d𝐫′ . (A.1)

Note that this expression bears great similarity to the way the light
fieldwas propagated in space in a superposition integral in the context
of linear systems, see Section 9.2.2. The Green’s function propagator
is given as

G(𝐫, t) =
√

m
2πiℏt eim𝐫2

2ℏt . (A.2)

Here,m denotes the mass of the studied particle and ℏ represents the
reduced Planck constant. The prefactor, without the imaginary, unit
will be abbreviated as A = √ m

2πℏt in the following, since the deriva-
tion is otherwise rather verbose. The imaginary unit is excluded as it
will be eliminated shortly. Ultimately, we can only measure the den-
sity and not the wave function itself. With the time propagated in situ
wave function, the density after ToF can be written as

n(𝐫, t) = ⟨Ψ†(𝐫, t)Ψ(𝐫, t)⟩ (A.3)

= A2
i ∬d𝐯 e− im

2ℏt (𝐫−𝐯)2Ψ†(𝐯, 0)d𝐰 e im
2ℏt (𝐫−𝐰)2Ψ(𝐰, 0).

(A.4)
Here, the definition of Ψ(𝐫, t) has simply been inserted and new co-
ordinate names have been chosen for the 𝐫′ coordinate. To simplify
the notation, we define Ψ0(𝐫) = Ψ(𝐫, 0) and perform a center of mass
transformation, i. e. insert the relative distance 𝐬 = 𝐯 − 𝐰 and the
center of mass coordinate 𝐒 = 1

2 (𝐯 + 𝐰). When the exponents are
combined, this results in

n(𝐫, t) = A2
i ∬d𝐬d𝐒 e− im

ℏt (𝐒−𝐫)𝐬 Ψ†
0 (𝐒 +

𝐬
2)Ψ0 (𝐒 −

𝐬
2) . (A.5)

http://dx.doi.org/10.1103/PhysRevA.80.033604
http://dx.doi.org/10.1103/PhysRevA.89.053612
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Although, we measure the density, we are actually interested in com-
paring the density-density correlations ⟨n(𝐫1, t)n(𝐫2, t)⟩. Combining
two of the density expressions results in four integrals over 2D space
in the expression for the density-density correlation. Here, 𝐮 and 𝐔
correspond to 𝐬 and 𝐒 in Eq. (A.5), respectively.

⟨n(𝐫1, t)n(𝐫2, t)⟩ = A4⨌d𝐬d𝐒d𝐮d𝐔 e− im
ℏt (𝐒−𝐫1)𝐬 e− im

ℏt (𝐔−𝐫2)𝐮

⋅ 〈Ψ
†
0 (𝐒 +

𝐬
2)Ψ0 (𝐒 −

𝐬
2)Ψ

†
0 (𝐔+

𝐮
2 )Ψ0 (𝐔−

𝐮
2 )〉

= A4⨌ the same as above

⋅ 〈Ψ
†
0 (𝐒 +

𝐬
2)Ψ

†
0 (𝐔+

𝐮
2 )Ψ0 (𝐒 −

𝐬
2)Ψ0 (𝐔−

𝐮
2 )〉

+ n0δ(𝐫1 − 𝐫2) (A.6)

Here, the terms after the line break are understood to still be contained
within the bounds of the integral, also the imaginary unit i drops out
of the equation since two of theGreen’s functions appear complex con-
jugated and hence i ⋅ (−i) = 1. In the second step, the wave functions
Ψ and Ψ† have been reordered to be in so called normal order, i. e. all
conjugates appear first in the expectation value ⟨∗⟩. This step is nec-
essary since the density correlations contain also the autocorrelation
of the individual atoms with themselves, the n0δ term, where n0 de-
notes the mean density. The second order correlation function g2,
however, does not contain the aforementioned autocorrelations and
thus they are subtracted from both sides. We can identify the density
correlations on the left hand side minus the autocorrelation term as
the sought after density-density correlation function n20g2.

Now, we identify the term in angle brackets to be the densitymatrix
⟨∗⟩ = ρ(1, 2, 3, 4) and perform another center of mass transformation.
This time, we insert the relative distance 𝐫12 = 𝐫1 − 𝐫2 and the center
of mass coordinate 𝐑12 = 1

2 (𝐫1 + 𝐫2),

n20g2(𝐫1, 𝐫2, t) = A4⨌d𝐬d𝐒d𝐮d𝐔

⋅ e− im
ℏt [(𝐒−

𝐫12
2 )𝐬+(𝐔+ 𝐫12

2 )𝐮−𝐑12(𝐬+𝐮)]

⋅ ρ (𝐒 +
𝐬
2,𝐔 +

𝐮
2 , 𝐒 −

𝐬
2,𝐔 −

𝐮
2 ) . (A.7)

The center ofmass transformation simplifies the expectation value but
introduces additional complexity into the exponential term. However,
since there is no dependence on 𝐑12 in the wave functions, we are
able to integrate over it and evaluate the integral ∫d𝐑12 = B on both
sides. On the left hand side, this results in B ⋅ n20g2(𝐫1 − 𝐫2, t) since
in homogeneous systems g2(𝐫1, 𝐫2, t) = g2(𝐫1 − 𝐫2, t) and thus no
dependency on the center ofmass coordinate exists. On the right hand
side, the evaluation of said integral results in a Dirac delta distribution

(
m
ℏt)

2

∫d𝐑12 e
im
2ℏt (𝐬+𝐮)𝐑12 = (2π)2δ(𝐬 + 𝐮). (A.8)
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When the delta distribution is inserted in the above equation, it now
reads

B ⋅ n20g2(𝐫1 − 𝐫2, t) = A2⨌d𝐬d𝐒d𝐮d𝐔

⋅ e− im
ℏt [(𝐒−

𝐫12
2 )𝐬+(𝐔+ 𝐫12

2 )𝐮] ⋅ δ(𝐬 + 𝐮)

⋅ ρ (𝐒 +
𝐬
2,𝐔 +

𝐮
2 , 𝐒 −

𝐬
2,𝐔 −

𝐮
2 ) . (A.9)

We integrate over 𝐮 so that the Dirac delta distribution yields the sub-
stitution 𝐮⟶−𝐬, thus

B ⋅ n20g2(𝐫12, t) = A4∭d𝐬d𝐒d𝐔 e− im
ℏt (𝐒−𝐔−𝐫12)𝐬

⋅ ρ (𝐒 +
𝐬
2,𝐔 −

𝐬
2, 𝐒 −

𝐬
2,𝐔 +

𝐬
2) . (A.10)

Yet another center of mass transformation is performed in order to ex-
ploit the translational invariance of the homogeneous wave function
Ψ. Here, the relative coordinate is 𝐱 = 𝐒 − 𝐔 and the center of mass
coordinate is given by𝐗 = 𝐒+𝐔. Note, that unlike the earlier variable
substitutions, this transformation does not include a division by two
and hence introduces a Jacobian determinant of 1/2 which is moved
out of the integral. After the coordinate transformation, the expres-
sion for g2 reads

B ⋅ n20g2(𝐫12, t) =
A2
2 ∭d𝐬d𝐱d𝐗 e− im

ℏt (𝐱−𝐫12)𝐬 (A.11)

⋅ ρ(𝐗2 +
1
2(𝐱 + 𝐬),

𝐗
2 −

1
2(𝐱 + 𝐬),

𝐗
2 +

1
2(𝐱 − 𝐬),

𝐗
2 −

1
2(𝐱 − 𝐬)).

Now, the translational invariance Ψ0(𝐗+ 𝛏) = Ψ0(𝛏) can be exploited
which allows us to perform an integral over𝐗 and thus obtain another
B

B ⋅ n20g2(𝐫12, t) = B
A2
2 ∬d𝐬d𝐱 e− im

ℏt (𝐱−𝐫12)𝐬 (A.12)

⋅ ρ(12(𝐱 + 𝐬),−
1
2(𝐱 + 𝐬),

1
2(𝐱 − 𝐬),−

1
2(𝐱 − 𝐬)).

The B on both sides of the equation cancel and a last coordinate trans-
formation, 𝐫′ = 𝐱 − 𝐬 and 𝐫 = 𝐱 + 𝐬, reveals the simplified expression

n20g2(𝐫12, t) =
A2
4 ∬d𝐫d𝐫′ e− im

4ℏt (𝐫2−𝐫′2−2𝐫12(𝐫−𝐫′))

⋅ ρ(𝐫
′

2 ,−
𝐫′
2 ,
𝐫
2 ,−

𝐫
2). (A.13)

Note that the Jacobian determinant is again 1/2 and has been moved
out of the integral. Finally, no free variables remain and no additional
integrals can be eliminated. Interestingly, the state of the gas, e. g. su-
perfluid or normal, is solely encoded in the density matrix ρ, the time
dependence, however, is identical in either case.
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Since we wish to relate the density-density correlation function g2
to the phase correlation function g1, all that remains is to write the
density matrix ρ in terms of g1. With this, we can write the density
matrix as

ρ(𝐫a, 𝐫b, 𝐫c, 𝐫d) = n20⟨ei[θ(𝐫a)+θ(𝐫b)−θ(𝐫c)−θ(𝐫d)]⟩ (A.14)

= n20e〈[θ(𝐫a)+θ(𝐫b)−θ(𝐫c)−θ(𝐫d)]
2〉/2 (A.15)

= n20
g1(𝐫a − 𝐫c)g1(𝐫a − 𝐫d)g1(𝐫b − 𝐫c)g1(𝐫b − 𝐫d)

g1(𝐫a − 𝐫b)g1(𝐫c − 𝐫d)
.

To this end, we recall that ⟨eiô⟩ = e 1
2 〈ô2〉, for details see Extra 4.1. Also,

we have used the fact that g1 can be written with as g1(𝐫i − 𝐫j) ∝
exp(−1/2⟨θ(𝐫i)†θ(𝐫i) − θ(𝐫i)†θ(𝐫j) − θ(𝐫j)†θ(𝐫i) + θ(𝐫j)†θ(𝐫j)), which
can be inserted after expanding the square in the exponent.

Insertion of the arguments 𝐫a = 𝐫′/2, 𝐫b = −𝐫′/2, 𝐫c = 𝐫/2, and
𝐫d = −𝐫/2 yields

ρ(𝐫′/2,−𝐫′/, 𝐫/2,−𝐫/2) = (A.16)

n20
g1(12 (𝐫′ − 𝐫))g1(12 (𝐫′ + 𝐫))g1(−1

2 (𝐫′ + 𝐫))g1(−1
2 (𝐫′ − 𝐫))

g1(12 (𝐫′ + 𝐫′))g1(12 (𝐫 + 𝐫))
.

Since g1 is symmetric across the origin, i. e. g1(12 (𝐫′−𝐫)) = g1(−1
2 (𝐫′−

𝐫)), we can combine all functions of equal argument and obtain

ρ(𝐫′/2,−𝐫′/, 𝐫/2,−𝐫/2) = n20
g1(12 (𝐫′ − 𝐫))2g1(12 (𝐫′ + 𝐫))2

g1(𝐫′)g1(𝐫)
. (A.17)

In conclusion, the expression to compute the density-density correla-
tion function g2 after time of flight for a given in situ phase correlation
function g1 is given as

g2(𝐫12, t) =
A4
4 ∬d𝐫d𝐫′ e− im

8ℏt (𝐫2−𝐫′2−2𝐫12(𝐫−𝐫′))

⋅ g1(
1
2 (𝐫′ − 𝐫))2g1(12 (𝐫′ + 𝐫))2

g1(𝐫′)g1(𝐫)
. (A.18)



B DE TA I L E D NUMER I C A L AN A LYS I S P RO C EDURE

This appendix presents three aspects of the numerical analysis proce-
dure in more detail on the basis of its respective flowchart. First, the
image preparation is discussed after the intensity images have been
converted to density as outlined in Section 9.2.1. Next, the steps of
the correlation analysis of the aforementioned density images are pre-
sented including a possible offset correction. Finally, the procedure of
combining the density-density correlation functions from in situ and
after time of flight (ToF) as well as the necessary steps involved in nu-
merical fitting are discussed.

The flowcharts depict the flow of information passed along the ar-
rows. Each node represents the numerical shape of the data, e. g. a
vector or a matrix, or a process applied on one or more prior nodes.

A short description of the nodes used in the flowcharts follows:

I/O

3d-array

2d-array

1d-
array

vector

process

test

Input or output from and to sources external to the flow
chart

A three-dimensional array, i. e. a stack of two-dimensional
images. The third dimension running over the number of
realizations

A two-dimensional array, usually a two-dimensional image.
In some cases also an array of vectors

A one-dimensional array in the third dimension, usually a
value per realization. Thus, the ”third” dimension runs over
the number of realization

A one-dimensional vector, e. g. dependent on the radial dis-
tance. Distinct from the 1D-array since no dimension runs
over the realizations, otherwise identical

A process applied on the prior nodes. If subject to two in-
puts, the input’s role is labeled next to the incoming arrow

A decision made in respect to user input. The data exits the
node labeled yes or no respectively

An arrow represents the flow of information, a junction is
denoted by a filled circle. Here, the data flows out in both
directions simultaneously
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.  

The first stage of the numerical analysis consists of the preparation of
the measured density profiles in order to obtain a normalized density
fluctuation signal. The process is sketched in Fig. B.1. Note that al-
though this process is only strictly necessary for inhomogeneous gases
and less so for the homogeneous gases used in this thesis, compensat-
ing for the mean density always yields a more manageable signal.

In order to isolate the density fluctuations, a region of interest is
chosen by the user formwhich a binary mask is created. This mask is
applied by element-wise multiplication with the image array, a stack
of density images, yielding the masked images array. Simultaneously,
the image array is averaged over all realizations, yielding the mean
density.

If it is chosen to scale the masked images to the mean, the masked
images are piecewise divided by the scale factor, which returns the
scaled masked images. Regardless of scaling, the image arrays are
piecewise divided by the mean density and all NaN are replaced by
zero, which yields the normalized masked or normalized, scaled,
masked images, respectively. The replacement of NaN is necessary since
the mean density might contain values of zero due to noise.

(a)

(a.u)

(a
.u
)

Total density afte ToF
Mean density

(b)

[git] • Branch: jonas@9d918d4 • Time of Commit: 2018-09-19 22:00:24 +0200

(a.u)

(a
.u
)

density fluct.
Figure B.1: (a) Sketch of the total den-
sity after ToF in an inhomogeneous sys-
tem. Here, the density is modulated by
the fluctuations according to n(r) =
n̄(1+δn(r)) (a) After division by the
mean density, the density fluctuations
are isolated. The boundary of the sam-
ple is indicated by vertical dashed lines.
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analysis

average

2D sum

piecewise
mult

scaled masked
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piecewise
div
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apply mask
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density

2D sum

piecewise
div
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factoryesno

num.
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num.
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.  

Extracting the density-density correlation function from the density
modulation after ToF lies at the core of the self-interference method
presented in this thesis. Thus, a detailed report of the steps involved
follows.

The correlation analysis requires three inputs: The normalized –
and possibly rescaled – density images from the image preparation
step, the binary mask used in the previous step do define the region
of interest, and a maximum radius restricting the evaluation of the
measured g2. The latter parameter is necessary since we evaluate a
finite area by setting the outer part to zero which is not considered
by the correlation algorithm. Hence, we must eliminate the values of
excessive noise or where divided by zero.

The normalized masked images as well as the binary mask are
autocorrelated which is denoted by xcorr. The resultant density-den- In practice, the autocorrelation is im-

plemented as a Fourier transform pair
due to the large advantage in perfor-
mance, i. e. xcorr(<>) = ℱt{(ℱt{<>
})2}. This yields almost identical re-
sults apart from numerical rounding er-
ror, hence the intuitively much easier to
understand autocorrelation function de-
noted as xcorr(<>) is used.

sity correlation function of the density images is divided by the en-
sity-density correlation function of the mask, which compensates for
the suppression of long wavelength excitations.

Subsequently, the user decides whether to correct for the offset of
g2. This serves two purposes. On the one hand, it compensates for
small errors in the imaging since for large distances all g2 should ap-
proach unity. On the other hand, it simplifies the numerical analy-
sis due to the fact that subsequent Fourier transforms do not produce
large zero frequency peaks. Furthermore, the theoretical predictions by
V. Singh and L. Mathey84 yield also g2 − 1 for comparison. Hence, 84 V. P. Singh and L. Mathey: Phys. Rev.

A, vol. 89, (2014)the analysis almost always proceeds on that route, except when raw
g2 values are of interest.

Finally, the resultant g2 is restricted to a well behaved domain by
piecewise multiplication with the earlier defined binary mask for g2

http://dx.doi.org/10.1103/PhysRevA.89.053612
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xcorr

g2 raw
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offset

piecewise
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piecewise
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to fitting
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piecewise
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piecewise
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.       g2

The flowchart on the right illustrates the numerical fitting procedure
used to extract the scaling exponent η and the short-range cut-off ac ≡
acut-off. This process is identicalwhen an exponentially decayingphase
correlation function is used as an input to the fitting routine, then
yielding the correlation length r0 and the short-range parameter c.

Three inputs must be processed and combined in order to obtain
the optimal fit. Twoofwhich are the arrays of two-dimensional density-
density correlation functions, for in situ and after ToF, g2,is(x, y) and
g2,ToF(x, y) respectively. Both arrays are subsequently azimuthally
averaged, which yields an array of g2,∗(r), each row a different real-
ization. From now, the in situ g2 must be treated differently, since
we require the in situ density correlation evolved to the point in time
the ToF data is taken. Hence, we Hankel transform each row in or-
der to multiply the in situ density-density correlation function by the
cosine term, cos2 (

ℏt𝐤2
2m ), in frequency space, for details confer Sec-

tion 9.2.3. After an inverse Hankel transform, the time evolved in situ
g2,is(r, ToF) is subtracted from g2,ToF(r) which yields the compen-
sated density-density correlation function g2,comp(r). This completes
the preparation necessary for our fitting procedure which will be de-
tailed next.

The fitting routine relies on the third input, which consists of a
precomputed three-dimensional array of density-density correlation
functions. Each dimension of the array contains samples for an in-
dependent parameter. The parameter intervals for the particular ToF
investigated in this thesis, 1ms, can be found in Table B.1.

Unit Algebraic decay Exponential decay

0.0025 ≤ η < 1.25 0.5 ≤ c < 3.5
µm 0.8 ≤ act-off < 8 0.5 ≤ r0 < 50
µm 0 ≤ r < 25 0 ≤ r < 20

Table B.1: Overview of the parameter
space used for fitting g2 for 1ms time of
flight.

In advance to starting the fitting procedure, the density-density cor-
relation functions have been simulated by V. Singh on a high perfor-
mance cluster due to the high computational cost of solving a four di-
mensional integral for each η, acut-off and r, refer Eq. (8.14). In order to
use the step adaptive fitting routines of the MATLAB∗ computing en- ∗MATLAB and Statistics Toolbox Re-

lease 2018a, The MathWorks, Inc., Nat-
ick, Massachusetts, United States

vironment we interpolate the three-dimensional g2 array linearly. The
resultant interpolant is evaluated by the fitting routine for a particular
(η, acut-off, r ) tuple and subsequently Hankel transformed, since com-
pensating for the imaging apparatus is most convenient in frequency
space.

We have chosen to impart the effect of the imaging apparatus onto
the theoretical prediction instead of trying to remove it from the mea-
sured density distribution. This is due to the fact that our imaging
system is close to ideal, i. e. the amplitude transfer function (ATF) is
similar to a Heaviside step function. The dominant effect of such a
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transfer function is the abrupt elimination of frequency components
beyond a maximum spacial frequency kmax. Since, these frequency
components are permanently lost, a deconvolution technique, i. e. di-
viding the image spectrum by the ATF, would produce no noticeable
image improvement. However, apodization of the theoretical g2 by an
abrupt ATF envelope does produce a signal that contains the same im-
age imperfections as the measured density-density correlation. Note
that since the density is contained twice in the density-density cor-
relation function, the square of the ATF must be used. This process
is completed by an inverse Hankel transform, which is linearly inter-
polated in the remaining independent variable r, since the MATLAB
fitting routine requires a callable function and not a static vector of
values.

Ultimately, the values for η and acut-off obtained for each realization
are pruned for 3σ-outliers and averaged to yield the final result.



C I N S I T U T EMPER AT U R E DE T E RM I N AT I ON OF A HOMOGE -
N EOUS G A S

Here, an in situ method to extract the temperature from a homoge-
neous gas is presented. It relies on the applicaiton of a potential gra-
dient in order to exploit the fact that the degenerate part follows the
gradient whereas the thermal part deviates. Unfortunately, we have
not applied a sufficient gradient in the experiments performed in the
context of this thesis to observe the deviation of the thermal part and
hence could not extract a temperature. However, the method itself
proved to be rather convenient for setups with high spatial imaging
resolution since no expansion out of the depth of field (DoF) is neces-
sary. For this reason, a short synopsis of our efforts is given in the
following.

[git] • Branch: jonas@3704b4b • Time of Commit: 2018-09-26 19:13:29 +0200
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Figure C.1: (Above) Sample of a 2D in
situ image with applied magnetic field
gradient, not usable for temperature de-
termination of a relatively cold gas. (Be-
low) Density profile of the above im-
age. Note that the profile is almost com-
pletely linear with negligible amount
of thermal density expected on the left
hand side.

Since temperature is an intensive thermodynamic property of the
gas, it is necessary to evaluate a finite partition of the sample. A com-
mon method to extract the temperature is to fit the density equation
of state (EOS) which depends on chemical potential μ and tempera-
ture T , n2D(μ, T), to a non-degenerate area of varying density. Since
the in situ density distribution of a homogeneous disk does not of-
fer a sufficient density gradient, we applied a linear magnetic field.
While in principle viable, the analysis yielded insufficient deviation
of the thermal density from the linear potential for accurate fitting in
the acquired data. This can be seen as the absence of a non-linear den-
sity dependence on the potential in Fig. C.1. Unfortunately, no corre-
sponding data with increased gradient is available, hence this method
had to be abandoned.
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A C RON YMS

2DEG two-dimensional electron gas. 3, 4

ATF amplitude transfer function. 83, 84, 85, 101, 115, 117, 118, 127, 128, 129, 130, 131, 132, 133, 156, 158

ATFeff effective amplitude transfer function. 131

BEC Bose-Einstein condensate. 17, 22, 24, 25, 38, 47, 51, 75, 78, 82, 83, 84, 88, 90, 143

BKT Berezinskii-Kosterlitz-Thouless. 4, 74, 79, 84, 85, 90, 92, 93, 100, 109, 111, 143

DoF depth of field. 14, 60, 66, 71, 90, 95, 98, 99, 115, 116, 124, 130, 159

DoS density of states. 17, 20, 25, 75

EOS equation of state. 19, 72, 110, 159

FORT far off resonance trap. 121

FWHM full width at half maximum. 78

GoF goodness of fit. 103, 106, 107

GPE Gross-Pitaevskii equation. 28, 35, 45

KT Kosterlitz-Thouless. 4, 5, 37, 44, 46, 47, 50, 75, 78, 82, 89, 145, 146

LIS linear invariant system. 124

LRO long-range order. 17, 18, 23, 24, 27, 28, 29, 47

MOT magneto optical trap. 12

MTF modulation transfer function. 127

NA numerical aperture. 14, 116, 117, 124, 130, 132

OTF optical transfer function. 127, 128, 130

PSD power spectral density. 92, 115, 116, 117, 129, 133, 134, 137, 138, 141, 142

PSF point spread function. 15, 70, 84, 98, 99, 105, 115, 117, 124, 128, 129, 130, 131, 135, 136, 163
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