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Abstract

We probe in-situ phase fluctuations in a two-dimensional trapped Bose
gas to locally study the Berezinskii–Kosterlitz–Thouless transition. We gain
access to local phase fluctuations by performing a short expansion of the
cloud. During expansion phase fluctuations transform into density fluctua-
tions. We analyse spatial density correlations in expanded clouds to probe
the decay of phase correlations. Our high-resolution imaging setup allows to
restrict the evaluation of correlations to regions in the trapped cloud with
a certain density. In the central high-density area of the cloud we find evi-
dence for the algebraic decay of phase correlations. In the outer low-density
area of the cloud phase correlations decay quickly on a short length scale.
We determine the critical phase space density that marks the transition to
algebraically decaying phase correlations. A comparison with recent theoret-
ical studies enables us to extract the algebraic scaling exponent over a wide
range in phase space density. Using local values of the scaling exponent,
we reconstruct the local superfluid density of a two-dimensional Bose gas.
Our evaluation scheme is tested using simulated density distributions with
imprinted correlations.
In a separate set of measurements, we measure the critical velocity in the
BEC-BCS crossover. We stir an ultracold 6Li gas with a small attractive
potential moving with a certain velocity. Above a critical velocity heating is
observed. We determine the critical velocity for various interparticle inter-
action strengths and compare our results to the speed of sound, which we
measure in the same sample. We excite an outward travelling sound wave
by creating a local density perturbation in the center of a cloud. In the
BEC regime, our results for the critical velocity are supported by numerical
simulations.
In another endeavor, we measure the speed of sound vs in a two-dimensional
Fermi gas in the BEC-BCS crossover. We excite an outward travelling sound
wave by creating a local density perturbation in the center of a cloud. We
track the distance between cloud center and density maximum after vari-
ous delay times to obtain the speed of sound. We prepare clouds in the
interaction parameter range ln(kFa2D) ≈ −1.5 to 1.5 and compare our re-
sults for vs to values obtained from the derivative of the equation of state
v2s = 1/m · ∂P/∂n. The pressure equation of state P (n) is obtained from
in-situ absorption images of the density distribution n. We see excellent
agreement between the two approaches providing a link between static and
dynamic behaviour of strongly-interacting two-dimensional Fermi gases.





Zusammenfassung

Wir untersuchen in-situ Phasenfluktuationen in einem zweidimensionalen
Bosegas, um den Berezinskii–Kosterlitz–Thouless Übergang lokal zu cha-
rakterisieren. Wir extrahieren lokale Phasenkorrelationen durch eine kurze
Expansion des atomaren Gases. Während der Expansion werden Phasenf-
luktuationen in Dichtefluktuationen sichtbar. Wir werten räumliche Dichte-
Korrelationen in expandierten Wolken aus, um auf den Zerfall von Pha-
senkorrelationen zu schließen. Ein Abbildungssystem mit hoher räumlicher
Auflösung ermöglicht die Auswertung von Dichte-Korrelationen in Berei-
chen der Wolke mit einer bestimmten Dichte. Im Zentrum der Wolke mit
hoher Dichte finden wir einen Hinweis auf den algebraischen Zerfall von
Phasen-Korrelationen. Im äußeren Teil der Wolke mit niedriger Dichte zer-
fallen Phasen-Korrelationen auf kurzen Längenskalen. Wir bestimmen die
kritische Phasenraumdichte, die den Übergang zu algebraisch abfallenden
Phasen-Korrelationen markiert. Durch den Vergleich mit einer aktuellen
theoretischen Arbeit können wir den Exponenten des algebraischen Abfalls
über einen großen Bereich in der Phasenraumdichte bestimmen. Aus der
Dichteabhängigkeit des Exponenten rekonstruieren wir die lokale suprafluide
Dichte eines zweidimensionalen Bosegases. Das Auswerteschema wird mit-
tels simulierter Testverteilungen mit aufgeprägten Korrelationen getestet.
In einem weiteren Experiment bestimmen wir die kritische Geschwindig-
keit vc im BEC-BCS Übergang. Wir rühren mit einem attraktiven Potential
mit einer gewissen Geschwindigkeit in einem ultrakalten 6Li Gas. Oberhalb
einer kritischen Geschwindigkeit beobachten wir das Einsetzen eines Hitze-
einstrags in das System. Wir bestimmen die kritische Geschwindigkeit für
verschiedene Wechselwirkungsstärken und vergleichen unsere Ergebnisse mit
der Schallgeschwindigkeit, die wir im gleichen Gas bestimmen. Durch eine
lokale Dichtestörung wird im Zentrum der Wolke eine Dichtewelle angeregt,
die sich mit der Schallgeschwindigkeit nach außen bewegt. Unsere Ergebnisse
für vc im BEC Bereich werden durch numerische Simulationen unterstützt.
In einem weiteren Experiment, messen wir die Schallgeschwindigkeit vs in
einem zweidimensionalen Fermigas im BEC-BCS Übergang. Wir regen im
Zentrum der Wolke durch eine lokale Dichtestörung eine Schallwelle an und
messen die Distanz zwischen Dichtemaximum und Zentrum nach verschie-
denen Zeiten, um vs zu erhalten. Wir preparieren Wolken für verschiedene
Werte des Wechselwirkungsparameters ln(kFa2D) ≈ −1.5 bis 1.5 und ver-
gleichen unsere Ergebnisse jeweils mit der Schallgeschwindigkeit, die wir aus
der Ableitung der Zustandsgleichung erhalten v2s = 1/m·∂P/∂n. Die Dichte-
Zustandsgleichung P (n) bestimmen wir aus der in-situ Dichteverteilung n
für die jeweiligen Wechselwirkungsparameter. Die Ergebnisse beider Metho-
den stimmen sehr gut überein und bestätigen den Zusammenhang zwischen
statischem und dynamischem Verhalten eines stark wechselwirkenden zwei-
dimensionalen Fermigases.
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1 Introduction

A paradigm in modern physics is the reduction of complex phenomena to funda-
mental laws. However, just because we know the microscopic laws that govern a
system at the single-particle level we cannot in general start from those laws and
predict the behaviour of many interacting particles [1]. Among others, the obser-
vation of Mott insulators [2], heavy-fermion superconductors [3], high-temperature
superconductors [4] and the fractional quantum hall effect [5] revealed that in-
teractions can trigger a collective behaviour that is more than the sum of its
parts. While the fundamental quantum-mechanical laws of interacting electrons at
the single particle level are well-established the description of strongly correlated
quantum-many body systems remains one of the biggest challenges in contempo-
rary physics [6, 7]
Most experimental studies of condensed matter systems probe excitations or macro-
scopic observables like the conductivity to find evidence for the microscopic origin
of a phenomenon. Ultracold quantum gases provide the unique possibility to probe
the quantum mechanical state itself by analysing correlations in quantum fluctua-
tions [8].
Of special interest is the phase transition to a superfluid in a two-dimensional
(2D) system. While the Mermin-Wagner-Hohenberg (MWH) theorem rules out
any long-range phase coherence in 2D [9,10], 2D systems can still be a superfluid.
Berezinskii, Kosterlitz and Thouless (BKT) revealed that the formation of bound
vortex-antivortex pairs prevents the rapid decay of phase correlations [11, 12]. In
their ground-breaking work they proposed a direct link between the superfluid den-
sity and the form of the decay of phase correlations.
The BKT transition in an ultracold 2D Bose gas was first observed by Hadzibabic
et al. [13]. They analysed the density distribution of two interfering condensates
to probe the decay of phase correlations. Their experiment was only sensitive to
global properties of the gas and did not provide local information about the decay
of phase correlations. While first studies of local phase fluctuations in 2D Bose
gases were already performed [14], the algebraic decay of phase correlations could
not be observed so far.
Here, we probe in-situ phase correlations in a strongly interacting 2D Bose gas.
We extract local information about phase correlations by performing a short time
of flight. During expansion phase fluctuations transform into density fluctuations.
We measure local density-density correlations to access the local decay of phase
correlations. Our measurement opens the opportunity to probe the BKT tran-
sition locally. We find clear evidence for the predicted algebraic decay of phase
correlations in the superfluid phase of a 2D Bose gas. A quantitative analysis of
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the local decay of phase correlations allows us to determine the algebraic scaling
exponent over a wide range in phase space density. The scaling exponent decreases
significantly with increasing density. Values of the scaling exponent allow us to
reconstruct the local superfluid density of a trapped 2D Bose gas. The study con-
stitutes an important step to test the connection between phase correlations and
superfluidity in two-dimensional systems.
In a separate endeavor, we probe the stability of superfluids against external per-
turbations in the BEC-BCS crossover [15]. A small attractive potential is dragged
through an ultracold gas of 6Li with a certain velocity. Above a critical velocity
we observe the onset of heating. According to the Landau criterion the critical ve-
locity is directly connected to the excitation spectrum of the system. We compare
our results for the critical velocity to the speed of sound which we measure in the
BEC-BCS crossover. We observe significant deviations from Bogolioubov theory
which predicts that speed of sound and critical velocity should match in the BEC
regime. Our results for the critical velocity are supported by numerical simulations
carried out in the BEC regime.
In another endeavor, we measure the speed of sound in a 2D Fermi gas in the BEC-
BCS crossover. We excite an outwards travelling density wave in the cloud’s center
and measure its propagation speed for different interaction strengths. The sound
wave is excited by a local density perturbation using a red-detuned tightly focused
dipole trap As a comparison, we determine the equation of state of a 2D Fermi gas
in the BEC-BCS crossover by analysing in-situ density distributions. Derivatives
of the equation of state enable an alternative method to determine the speed of
sound. We observe excellent agreement between the static and dynamic approach.
Our measurements give insight in the dynamic behaviour of strongly interacting
Fermi gases, which previously generated surprising results [16,17]. Similarly to our
measurements in 3D, the speed of sound in 2D will serve as a reference for future
studies of the critical velocity in a 2D Fermi gas.

All the experiments described here were performed in the group of Prof. Hen-
ning Moritz. The studies rely on an experimental apparatus which was built over
the last years by the PhD students Wolf Weimer and Kai Morgener. During the
construction phase, Jonas Siegl and later Klaus Hueck joined the group as PhD
students. While I contributed to many parts of our work on the speed of sound
in 3D and 2D, our results are only briefly presented in chapter 5 and chapter 6 of
this thesis. The measurement of the critical velocity in the BEC-BCS crossover
is described in detail in the PhD thesis by Wolf Weimer [18]. The measurement
of the speed of sound in 2D will be described in detail in the PhD thesis by Kai
Morgener [19].
Intrigued by the appearance of density ripples in a 2D Bose gases after short expan-
sion, I dedicated the last two months of my work as a Master student to understand
and analyse these density patterns. I am happy that the analysis of spatial density
correlations in expanded 2D Bose gases turned out to be so rich that I can report
our results in detail in chapter 3 and 4 of this thesis.
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2 Strongly interacting
two-dimensional Fermi gases

Two-dimensional quantum systems offer a variety of fascinating quantum-many
body effects [20]. The discoveries of superfluidity in liquid helium films [21],
the fractional quantum hall effect [5], high-temperature superconductivity [4] and
massless Dirac fermions in graphene [22] are only a few examples of the rich phe-
nomena encountered in two-dimensional systems. All of these phenomena were
observed in the context of macroscopic liquids or solids, where it can be hard to
extract the fundamental origin of the effect due to the complexity of compounds,
defects and little controllability over microscopic details. Further, it is impossible
to prepare isolated low-dimensional materials as they always need a substrate or
compound for stability.
The interaction between laser light and atoms enables the controlled creation, ma-
nipulation and detection of isolated low-dimensional quantum systems. Using mag-
netic fields and specifically tailored optical potentials one can simulate physical sys-
tems with tunable interactions ranging from lattice structures in solids [23] to the
effect of strong magnetic fields [24]. The ground-breaking experiment which showed
that quantum gases can be used as versatile quantum simulators was the observa-
tion of the quantum phase transition1 from a superfluid to a Mott-insulator [26,27].
In our experiment, we prepare an ultracold two-dimensional Fermi gas of 6Li. By
exposing the gas to a magnetic field we can tune interactions between atoms in
a wide range. Microscope objectives allow local manipulation and probing of the
quantum gas with a resolution approaching the interparticle distance. Thereby, we
can gain information about microscopic details of quantum-many body phenomena
in two dimensions.
Here, I will first give a short overview of the main steps to prepare an ultra-
cold quantum gas. I will then sketch how we prepare and characterise a single
two-dimensional layer of 6Li atoms. Finally, I will conclude by giving a short intro-
duction to the properties which distinguish strongly interacting 2D quantum gases
from their counterparts in 3D. The overview given in this section is far from being
complete2. A detailed description of our experimental setup can be found in the
recent PhD thesis by Wolf Weimer [18] and the PhD thesis by Kai Morgener [19]
which is in preparation.

1In contrast to regular phase transitions, a quantum phase transition occurs at zero temperature
and is driven by quantum fluctuations. A detailed description can be found in Ref. [25]

2An overview of the creation of ultracold Fermi gases is given in Ref. [28]. An overview of the
simulation of quantum-many body phenoma with quantum gases is given in Ref. [20].
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2.1 Creation of an ultracold quantum gas

The development of laser cooling starting in the late 1970s opened the possibilty
to cool an atomic gas down to temperatures where its quantum nature becomes
relevant [29–31]. As first demonstrated in the ground-breaking works at MIT and
JILA in 1995 [32, 33], below a critical temperature bosonic 87Rb atoms can form
a new state of matter: a Bose-Einstein condensate. Our experimental setup uses
fermionic 6Li atoms, which due to the Pauli exclusion principle cannot condense
but form a degenerate Fermi gas. One of the biggest appeals of 6Li is its tun-
ability of interactions. By exposing the atomic cloud to a magnetic field one can
facilitate a so called Feshbach-resonance to tune interactions between atoms over
a wide range as first shown for a BEC in [34]. The first degenerate Fermi gas with
ultracold atoms was realised in the group of Deborah Jin in 1999 [35]. Using a
Feshbach resonance they [36] and the group of Rudolf Grimm [37] demonstrated in
2003 that fermionic 40K atoms can form bosonic molecules which in turn condensed
to a BEC. The formation of a molecular BEC of 6Li dimers was demonstrated in
the following year [38]. Here, I will briefly sketch how we reach a molecular BEC
in our experimental setup.
The overall process to create an ultracold quantum gas of 6Li with our setup lasts

about 10 s and includes multiple stages which are precisely timed and coordinated.
Figure 2.1 shows an overivew of our experiment. In general, the preparation of
atomic gases is extremely sensitive to external perturbations and requires a com-
plete isolation from the environment. The process therefore takes place inside an
ultra-high vacuum system reaching pressures as low as 1× 10−11 mbar. The source
of 6Li atoms is a chunk of Lithium which is heated inside an oven to temperatures
of about 400 ◦C. The atoms leaving the oven form a collimated beam which is
directed towards the first cooling stage of our setup: the Zeeman slower. Here, the
fast thermal atoms leaving the oven are decelerated by a counterpropagating light
beam. To maintain resonance between the laser beam and atoms over a larger
range of atom velocities we use an inhomogenous magnetic field in propagation
direction. The magnetic field compensates the velocity dependent Doppler shift of
decelerated atoms through the Zeeman shift of atomic levels.
The decelerated beam enters the next stage of our cooling scheme: a magneto-
optical trap (MOT). Here, the atoms are trapped and cooled through a combina-
tion of magnetic gradient fields and three pairs of counterpropagating laser beams.
At this stage we expect the cloud’s temperature to be on the order of the so-called
Doppler temperature T ≈ 140 µK, which is determined by the linewidth of the
addressed atomic transition in 6Li 3.
In a next step, we compress the cloud and transfer it to a large volume trap formed
by a red-detuned standing wave inside an optical resonator. By ramping down the
intensity of both resonator beams we perform the first evaporation inside multi-

3Zeeman slower and MOT address the D2 transition of 6Li. We could also address the D1 line
to create a gray molasses which promises temperatures below the Doppler limit [40].
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Figure 2.1: Overview of the experimental apparatus to create an ultracold Fermi
gas of 6Li. Top panel: Picture of the experimental setup as of October 2013, reprinted
from [39] Bottom panel: Schematic drawing of the main stages to prepare and probe and
ultracold 6Li gas as explained in the text, reprinted from [18].
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(a) (b) (c)

Figure 2.2: Formation of a molecular BEC of 6Li dimers. A non-degenerate gas of 6Li
atoms is trapped inside the focus of a red-detuned transport beam (a). We evaporatively cool
the gas by ramping down the intensity of the transport beam while applying a magnetic field
B = 832 G. By ramping the magnetic field to lower values, 6Li atoms form bosonic dimers
which condense to a molecular BEC, clearly visible in the bimodal density distribution (b,c).

ple maxima of the standing wave4. After evaporation the atoms are transported
from the main chamber to the science cell which provides excellent optical access
required for our envisaged experiments. The transport is realised inside the focus
of another far red-detuned dipole trap. We shift the beam’s focus and thereby
move the atomic cloud from the resonator position to the science cell. Inside the
science cell the atoms form a cigar shaped cloud whose form is determined by the
intensity distribution inside the focus of the transport beam. At this point we
achieve atomic clouds containing a few 105 atoms with a temperature still too high
for quantum degeneracy. We therefore perform another evaporation step in which
the intensity of the transport beam is ramped down. Thereby, we loose the hottest
atoms while the rest of the cloud rethermalises. The process of thermalisation is
greatly enhanced at a Feshbach resonance where the scattering rate between atoms
is increased significantly. We approach a Feshbach resonance of 6Li by ramping
the magnetic field to values of around B = 832 G [41]. After evaporation we can
ramp the magnetic field to lower values where 6Li forms bosonic dimers. As shown
in Fig. 2.2 we observe a clear bimodal density distribution indicating the phase
transition to a molecular BEC5. The condensation of 6Li dimers indicates that we
have achieved the prerequisite for the following experiments in two dimensions: a
quantum-degenerate Fermi gas. The next section will explain how we squeeze the
three-dimensional atomic cloud to a thin two-dimensional layer.

4Originally, it was intended to transport the cloud inside the maxima of the standing wave to
the focal plane of the resonator beams. Here, a more efficient evaporation inside the running
wave of one of the resonator beams would have been possible. This scheme was not adopted
due to parametric heating during the transport.

5In the local density approximation, the density of a BEC follows the harmonic trapping poten-
tial, whereas the distribution of thermal atoms is described by a Gaussian function.
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(a) (b) (c)

Figure 2.3: Illustration of the preparation of a single two-dimensional layer. We
transfer the 3D Fermi gas from a cigar shaped transport beam (a) to a pancake-shaped red-
detuned dipole trap (b). After compression inside the pancake trap the atoms are transferred
into the single layer of a blue-detuned optical lattice (c). Reprinted from [18].

2.2 Preparation of a single two-dimensional layer

The preparation of a clean two-dimensional atomic sample is a technically chal-
lenging task. In solids one always needs a substrate or compound material to
stabilise the system. In ultracold quantum gases one has the unique possibility
to achieve isolated 2D quantum systems by using a tight optical confinement in
one direction of the atomic cloud. While the first two-dimensional atomic gases
could already be realised with bosons [42, 43] and fermions [44, 45] about 10 years
ago, the preparation and verification of isolated layers remains a technical chal-
lenge. Two-dimensional systems require a tight confinement which can be realised
by using dipole traps with a high trap-frequency aspect ratio [46], a blue-detuned
TEM01 mode [47] or a one-dimensional optical lattice [13]. While optical lattices
due to small lattice spacings of a few µm are best suited to create 2D systems it
is in general hard to resolve and load individual sites. The first direct observation
of a 2D ultracold Fermi gas revealed multiple occupied lattice sites [48]. Here, we
employ a two-step loading procedure similar to that in [49] that allows for a reliable
preparation of single 2D layers of 6Li with neglegible occupancy of neighbouring
lattice sites. The experimental setup was built up and successfully implemented
by Klaus Hueck in the framework of his Master’s thesis [39].

In the first step of the loading procedure, the atomic cloud is transfered from
the cigar-shaped transport beam to a pancake-shaped dipole trap as shown in Fig.
2.3a. After a final evaporation step inside the pancake trap, we can achieve around
2× 104 to 3× 104 atoms6 with a condensate fraction deep in the BEC regime of
about 90 %. Due to the relatively high trap-frequency aspect ratio ωz/ωr ≈ 40
of the pancake trap and the weak magnetic confinement in radial direction, we
can squeeze the atomic cloud in z-direction by increasing the beam intensity. The
expected Thomas-Fermi-radius of the squeezed cloud should be on the order of
1 µm in z-direction for a beam power of P ≈ 1 W. This allows us to transfer the
cloud into a single layer of a repulsive blue-detuned one-dimensional optical lattice

6All atom numbers given in this thesis refer to the atom number per spin state. This num-
ber coincides with the atom number obtained from absorption images over the BEC-BCS
crossover.
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(a) (b)

(c) (d)

Figure 2.4: Verification of the creation of a single two-dimensional layer. The
symmetry axis of red-detuned pancake trap (red) and blue-detuned optical lattice (green)
do not coincide (b,d). Depending on the position of the pancake trap in axial direction we
load a single (b) or two (d) 2D layers. Imaging along axial direction reveals the loading of a
single (a) and two (c) 2D layers. Reprinted from [18].

as shown in Fig. 2.3c. The lattice is formed by two laser beams with wavelength
λ = 532 m which interfere under an angle of 10.4◦ resulting in a lattice spacing of
d ≈ 2.9 µm. After loading into a single layer, the pancake trap is slowly ramped
down and the cloud remains trapped between the intensity maxima of the repulsive
lattice. The trapping in radial direction is ensured by a weak magnetic trap with
frequency ωr ≈ 2π·30 Hz. The strong lattice confinement ωz ≈ 2π·25 kHz compared
to the weak radial confinement results in a very high aspect ratio ωz/ωr ≈ 830.
In general, a system is called two-dimensional when only the ground state of the
harmonic oscillator in axial direction is occupied. Assuming the Fermi energy EF
of a non-interacting system we achieve a ratio

EF
~ωz

=
~ωr
√

2N

~ωz
=
ωz
ωr

√
2N ≈ 0.2 (2.1)

for a particle number of N = 3× 104. Therefore, the occupation of excited state in
axial direction is heavily suppressed for low temperatures and the gas can be treated
as 2D. As shown in Fig. 2.3c the loading into a single lattice site only works when
the pancake trap is aligned with a minimum of the optical lattice. Therefore, the
procedure described above greatly depends on the relative position between the two
traps. Using piezo actuated mirrors we can shift the axial position of the pancake
trap with respect to the lattice. But how do we determine its optimal position?
In contrast to the experiment described in Ref. [48] our imaging setup along the
radial cloud direction does not provide sufficient resolution to resolve neighbouring
lattice sites. In principle, one would expect a difference in radial cloud size when
loading into one or multiple layers, but this method did not provide realiable results.
Surprisingly, the answer in our case is provided by a misalignment. The symmetry
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axis of the pancake trap does not coincide with the symmetry axis of the lattice,
but is tilted by a few degrees as shown in Fig. 2.4. By imaging along the axial
direction we can directly detect the number of occupied layers and adjust the axial
position of the pancake trap accordingly. Absorption images in Fig. 2.4a show that
we observe no significant occupancy of neighbouring lattice sites when loading into
a single layer. Our resolution here is only limited by the thermal wings of the 2D
cloud which overlap with neighbouring sites when imaged in axial direction. In the
case of other occupied sites one would expect a bump on the thermal wings, which
is not observed here. We have therefore prepared and verified the deterministic
preparation of a single two-dimensional layer of a strongly interacting Fermi gas.

2.3 Strong interactions in two dimensions

Probably the most fascinating phenomena in nature are those which are not yet
understood. While many poorly understood phenomena in high-energy physics
enjoy great theoretical dedication, there is often a lack of experimental input to
test theories against. Strongly interacting two-dimensional quantum gases are an
example of a fruitful interplay between the development of new theoretical ap-
proaches and direct experimental input. Here, I will explain a few aspects why the
world of strong interactions in two dimensions is worth exploring.
One of the most universal tools in physics is the solution of a complicated complex
problem by reducing it to a simple problem with known solution. Starting from the
simple solution one can then step-by-step estimate the effect of the simplifications
to approximate the solution to the complicated problem. One prime example of
this method is perturbation theory. In perturbation theory one describes an in-
teracting system by reducing it to a well-understood non-interacting system. The
effect of interactions are then treated as a perturbation of the non-interacting sys-
tem which are step-by-step added to the solution. This treatmeant forms the basis
of a large part of our understanding of physical phenomena. In the context of con-
densed matter systems, a perturbative treatment led to the fundamental results of
Fermi liquid theory where interacting systems can effectively be described as non-
interacting systems with renormalised parameters [50, 51]. In strongly correlated
quantum systems this method usually breaks down. Here, the non-interacting sys-
tem is not a good reference point anymore and non-perturbative approaches [52,53]
or computationally demanding Quantum Monte Carlo studies [54] are required.
Recent measurements of the equation of state in a strongly interacting 3D Fermi
gas are a beautiful example of the invaluable input experiments with ultracold
quantum gases can deliver to test newly developed theoretical approaches [55].
Not only strong interactions, but also the reduction of dimension has dramatic ef-
fects on the description of a quantum system. There are several exciting predictions
of phenomena in two dimensions covering high-temperature superconductivity [7],
quasi-particles with non-abelian statistics [56] and fault-tolerant quantum com-
puters [57]. While there is great ongoing effort to realise these systems with cold
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atoms, they require atomic gases with extremely low temperatures or entropies
which are currently out of reach. Here, I will focus on the more basic question
what we mean by strong interactions in a 2D quantum gas, before giving a short
introduction to the pecularities of phase transitions in 2D which will be covered in
more detail in the next chapter.
As already mentioned in section 2.1, the broad Feshbach resonance of 6Li allows
us to control interactions between atoms. More precisely, we can tune the 3D scat-
tering length a3D which determines the mean field interaction strength g between
6Li atoms of mass m:

g =
4π~2a3D

m
. (2.2)

When we prepare a two-dimensional gas in a tight axial confinement, we introduce
another length scale which influences scattering and thereby interactions in our
system. The relevent length scale is the harmonic oscillator length lz =

√
~/mωz

which determines the extent of the ground-state wave function in a trap with fre-
quency ωz. Most experiments in 2D Bose gases were performed in the weakly
interacting regime where a3D � lz. In the weakly interacting limit the 2D interac-
tion strength can be expressed by a dimensionless7 quantity [59]

g̃ =
√

8π
a3D
lz
. (2.3)

Only recently the regime of strong interactions in 2D where g > 1 has become
accessible [49, 60–62]. Here a3D is on the order of lz and the coupling strength in
eq. 2.3 needs to be replaced by a density dependent expression. This is in sharp
contrast to the interaction parameter 2.2 which remains density independent for
all values of a3D. The analysis by Petrov et al. [63] revealed that scattering in this
regime can be described just as in a pure 2D system, where microscopic scattering
is still 3D. Moreover, the Feshbach resonance of 6Li allows us to reach a regime
where a3D greatly exceeds lz and the microscopic nature of scattering changes from
3D to 2D [64].
Finally, I will turn to some aspects of phase transitions in 2D. In a 3D system
the transition to a BEC can be described by some macroscopic wavefunction Ψ,
which is associated with long-range phase coherence. Bose-Einstein condensation
in 3D might be a quantum-mechanical effect but its description with a scalar
wave function does not require any treatment in terms of quantum operators. In
other words: a mean-field description which ignores any quantum fluctuations is
justified. This approximation breaks down in 2D, where fluctuations are necessary
to describe the quantum state of the system. The presence of fluctuations might

7It turns out that the dimensionless coupling strength in combination with the underlying
SO(2, 1) symmetry of the Hamiltonian results in scale invariance of weakly interacting Bose
gases for all temperatures. Hung et al. [58] and Yefsah et al. [59] revealed scale invariance for
coupling strengths g < 1 by showing that the scaled density nλ2T and its fluctuations are a
function of the ratio µ/T instead of the chemical potential µ and temperature T separately.
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suggest that no long-range order and therefore no Bose-Einstein condensation can
occur. Surprisingly, despite fluctuations a 2D system can show superfluidity as was
first observed in liquid helium films [21] and recently demonstrated in a 2D Bose
gas [65]. Due to fluctuations the phase transition to a superfluid does not involve
a broken symmetry or long-range ordering but is characterised by a very subtle
change in the decay of phase correlations.
In the following chapters 3 and 4 we will describe, how we can access this subtle
change in phase correlations to probe the BKT transition in a 2D Bose gas.
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3 Local probing of the
Berezinskii-Kosterlitz-Thouless
transition in a two-dimensional
Bose gas

Phase transitions are one of the most profound manifestations of a system’s collec-
tive behaviour. As temperature, density or interactions are changed materials can
suddenly freeze, vaporise, magnetize or even become superconducting. Each phase
transition is associated with the occurence of a certain type of order or coherence,
which is usually connected to a broken symmetry. When the temperature in a 3D
Bose gas is lowered below a critical value, the system breaks its U(1)-symmetry by
picking a global phase and becomes long-range phase coherent.
In a 2D system the Mermin-Wagner-Hohenberg (MWH) theorem rules out the oc-
curence of a spontaneously broken symmetry [9,10]. However, Berezinskii, Koster-
litz and Thouless (BKT) pointed out that there can still exist a certain degree of
coherence via the formation of bound vortex-antivortex pairs [11, 12]. In contrast
to second-order phase transitions in 3D, the BKT transition is not characterised
by any broken symmetry but only a qualitative change in the decay of phase corre-
lations. While the decay of phase correlations prevents the occurence of true-long
range order in 2D the system can still be a superfluid.
The analysis of correlations provides a powerful tool to gain insight into funda-
mental properties of quantum systems [8]. The landmark experiment performed by
Hanbury Brown and Twiss used noise correlations of a distant light source to probe
the nature of the light field [66]. In the context of cold atoms noise correlations
were used to study the pairing of fermions [67], ordering in optical lattices [68,69]
and (anti-)bunching of bosonic (fermionic) atoms [70–72]. The analysis of phase
correlations is difficult because the local phase of an atomic cloud is not directly
accessible from absorption images. In the experiment performed by Hadzibabic et
al. [13] the BKT transition was revealed by interfering two independent 2D Bose
gases as suggested by Polkovnikov et al [73]. Their experiment provided evidence
for quasi long-range order and the microscopic mechanism of the transition, but
did not provide local information about the decay of phase correlations. First lo-
cal studies of phase fluctuations in 2D Bose gases were reported in Ref. [74] and
Ref. [14]. So far, no experimental studies are available which probe the predicted
connection between the decay of phase correlations and the superfluid density.
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Here, we are performing the first local studies of the BKT transition. We probe
local phase correlations in a strongly interacting two-dimensional Bose gas by per-
forming a short expansion of the cloud. During the expansion phase fluctuations
are transformed into density fluctuations by free time evolution. The local anal-
ysis of spatial density correlations allows us to distinguish between regions in the
cloud with exponentially and algebraically decaying correlations. By performing a
quantitative comparison with recent theoretical predictions [75] we gain access to
the algebraic scaling exponent which is directly connected to the superfluid den-
sity. Since the overall density of the cloud does not deviate significantly from its
original distribution for short expansion times we are able to compare the derived
superfluid density to the total density of a two-dimensional Bose gas.

3.1 The BKT transition in a 2D Bose gas

Due to the absence of true long-range order it is puzzling that there exists a phase
transitions in 2D at all. It turns out that the transition and the associated order
is much more subtle than in 3D. In this section we will briefly review fundamental
concepts of second order phase transitions to explain how we can understand and
classify the BKT transition in a strongly interacting 2D Bose gas.

3.1.1 Universal phase transitions

Phase transitions are omnipresent in nature. They range from the transition be-
tween liquid, gaseous and solid phases over the magnetisation of solids to more
exotic quantum phase transitions which are only driven by quantum flucatuations.
Despite their diverse nature most transitions can be described very accurately
within the same framework of Statistical Mechanics. Remarkably, systems close to
a phase transition behave completely independent of their microscopic details but
only according to their universality class determined by very general properties
like dimension, symmetry and the type of interactions.
One of the main quantities to characterise a phase transition is the (local) order
parameter Ψ(r), which quantifies (local) ordering in the system. Most easily under-
stood is the case of a second-order phase transition in which the order parameter
changes in a continuous but not-differentiable way at the critical point.
An illustrative example of this type of transiton is the spontaneous magnetisation

of ferromagnets. Here the local order parameter describes the local magnetisation
of the system Ψ(r) = S(r). As the temperature is lowered towards a critical value
Tc, microscopic domains are forming where all the spins are pointing in the same
direction1. However, there is no correlation between individual domains and there-
fore no net magnetisation of the solid. As the temperature is further decreased,

1In the theory of phase transition the order parameter Ψ(r) is just a classical scalar function.
While the terminology of spins might suggest a quantum-mechanical treatment, we simply
treat spins classically rather than as operators.
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Figure 3.1: Phase correlations in a trapped 3D Bose gas. Below a critical temperature
Tc a BEC forms in the center of a trapped 3D Bose gas. A 3D BEC is characterised by the
occurence of long range phase coherence g1(r) ≈ const.. In the thermal wings of the cloud
phase correlations decay exponentially g1(r) ∝ exp(−r/ξ) on a length scale ξ. The correlation
length ξ diverges with a universal critical exponent ν as the temperature is lowered from
above towards Tc.

domains grow larger and reach the macroscopic size of the system at a critical
temperature Tc. Here the system picks up a net magnetisation which continuously
breaks the spin rotation symmetry. Since there are still various domains with dif-
ferent spin orientation at the critical point, the magnetisation does not jump to
a finite value but continuously increases as the temperature is lowered below Tc.
Further below Tc, the net magnetisation increases until it reaches its maximal value
at T = 0.
Besides global properties like the overall magnetisation, phase transitions can be
fully characterised by local correlations of the order parameter. The fundamental
quantity to quantify correlations is the normalised two-point correlation function

g1(r, r
′) =

〈
Ψ̂(r)Ψ̂(r′)

〉

〈
Ψ̂(r)

〉〈
Ψ̂(r′)

〉 , (3.1)

which, in the context of a ferromagnet, measures the correlation between the spin
orientation at position r and another spin at position r′. For T < Tc the formation
of domains of size ξ is captured in an exponentially decaying correlation function

g1(r, r
′) ∝ e−|r−r

′|/ξ . (3.2)

We see from eq. 3.2 that spins within a single domain, i.e. r = |r − r′| � ξ,
are well correlated and g1 ≈ const. while correlations between indivual domains,
i.e. |r − r′| � ξ, decay very quickly and g1 ≈ 0. We will therefore refer to ξ as
the correlation length. As we approach Tc from above, macroscopic domains are
forming which is captured in a diverging correlation length

ξ ∝ 1

(T − Tc)ν
. (3.3)
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with a universal critical exponent ν. At the critical point spin correlations decay
algebraically without any characteristic length scale

g1(r) ∝
1

r
. (3.4)

Below the critical temperature T < Tc magnetic domains stretch over the whole
system. We therefore have long-range magnetic order and the correlation function
remains constant over the system size.
The qualitative features described above are a general property of second-order
phase transitions and can be applied to describe the transition to a 3D BEC as
well. Just like the net magnetisation of a 3D ferromagnet, the total particle num-
ber of condensed atoms increases continuously as we cool the Bose gas below a
critical temperature Tc. In a 3D BEC the local order parameter is the conden-
sate wavefunction Ψ(r) =

√
n(r)eiϕ itself. Similarly to magnetic domains with a

common spin orientation, a 3D BEC picks a global phase and becomes long-range
phase coherent. The connection between long-range coherence and condensation
is directly visible in the Penrose-Onsager definition of the condensate density [76]:

nc = lim
r→∞

〈
Ψ̂(r)Ψ̂(0)

〉
(3.5)

The analogy between a 3D Bose gas and a 3D ferromagnet explained so far was
based on common qualitative features. In general, quantitative details like the
critical temperature or the correlation length depend on the microscopic details of
the transition. While spontaneous magnetisation is driven by interactions between
spins, a BEC is the result of a Bose gas reaching a critical phase space density.
It is therefore very surprising that in a 3D Bose gas and a 3D ferromagnet the
correlation length in eq. 3.3 diverges with the same critical exponent ν. This is an
example of systems which fall into the same universality class2.
The aim of this section was to introduce the basic phenomenology of second-order
phase transitions in three-dimensional systems. We introduced the two-point cor-
relation function g1 and saw that the phase transitions to a 3D BEC and a 3D
ferromanget are associated with the occurence of long-range order where the phase
correlation function g1(r) ≈ const..

3.1.2 Mechanism and phenomenology of the BKT transition

The examples of spontaneous magnetisation and Bose-Einstein condensation in 3D
systems might suggest that all phase transitions are naturally accompanied with
some broken symmetry and long-range ordering. Consequently, the MWH-theorem
would rule out the existence of any phase transition. It turns out that there can
be phase transitions which do not break any symmetry of the system. The most

2Non-interacting BECs fall into the universality class of a Gaussian complex-field model, while
any interactions in the BEC lead to the universality class of the 3D xy-model used to describe
ferromagnets [77].
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Figure 3.2: Phase correlations in a trapped 2D Bose gas. For sufficiently low temper-
atures T < Tc phase fluctuations are suppressed and a pure BEC forms in the cloud’s center.
Close to the center phase correlations decay algebraically g1(r) ∝ (1/r)τ/4 with a scaling ex-
ponent τ due to the formation of bound V-AV pairs. In the outer thermal region of the cloud
free vortices can proliferate and phase correlations decay exponentially g1(r) ∝ exp(−r/ξ)
on a length scale ξ.

prominent example for this surprising result is the BKT transition. Here, we will
first give a short overview of the mechanism and phenomenology, before explaining
in the next section how we can apply the ideas of the BKT transition to a 2D Bose
gas. In parts, this section follows the treatment by Hadzibabic et al. [64], which
gives an illustrative yet comprehensive introduction to the topic from an atomic
physics perspective.
In their original work [11] Kosterlitz and Thouless studied the so called XY-model:

H = −J
∑

〈ij〉

cos(ϕi − ϕj) . (3.6)

The Hamiltonian of eq. 3.6 describes spins on neighbouring lattices sites i, j,
which interact through their relative in-plane spin orientation ϕi, ϕj. The sign of
the coupling constant J determines whether a parallel (J > 0) or anti-parallel
(J < 0) spin alignment is energetically favorable. Usually, one would expect that
thermally activated phonons and vortices destroy any long-range phase ordering at
temperatures T > 0 in 2D. However, Kosterlitz and Thouless revealed that below a
certain temperature TBKT vortices with opposite circulation can form stable vortex-
antivortex (V-AV) pairs. These pairs disturb the phase on a length scale that is
on the order of the vortex distance and do not qualitiatively affect the long range
behaviour of the system. It turns out that the existance of bound V-AV pairs only
results in a renormalisation of the superfluid density ns rather than completely
destroying it. This results in the remarkable prediction that the superfluid density
ns directly determines the long-range decay of phase correlations. One can show
that correlations decay algebraically for all temperatures T < TBKT as [75]

g1(r) =

(
a2

a2 + r2

)τ/8
, (3.7)
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with some scaling exponent τ = 4/(nsλ
2
T ), cutoff length a and thermal de Broglie

wavelength λT = 2π~/
√

2πmKBT . In 3D systems, we encountered the algebraic
decay of g1 at the critical point of the phase transition. In 2D, the system remains
critical for all temperatures T < TBKT . Therefore, there is no long-range order and
g1(r) → 0 for large distances r. However, as we will see below, phase correlations
decay only very weakly since in general τ < 1. Therefore, the BKT transition is
associtated with the occurence of quasi-long range order.
As the temperature is increased, the size of vortex-antivortex pairs increases, which
renormalises ns to lower values and g1 decays faster. When the temperature is
further increased and reaches T = TBKT the formation of bound V-AV pairs is
not energetically favorable anymore and free vortices can proliferate. This leads to
the remarkable result that the superfluid density jumps from nsλ

2
T = 4 to 0 at the

BKT transition point3. In the non-superfluid regime above TBKT , free vortices can
proliferate and g1 decays exponentially

g1(r) ∝ e−r/ξ , (3.9)

where the correlation length diverges exponentially

ξ ∝ exp

(√
TBKT

T − TBKT

)
(3.10)

when approaching TBKT from above. This is in sharp contrast to the power law
divergence in the 3D case from eq. 3.3 and basically a feature of an infinite-
order phase transition, where no discontinuities in derivatives of the free energy
are encountered.
The above section gave a short introduction to what makes a phase transition in 2D
special. In sharp contrast to a second-order phase transition in a 3D system, the
BKT transition in 2D is not connected with the occurence of long-range order. The
quantum state of the BKT phase does not break the symmetry of the Hamiltonian
eq. 3.6 and can still show fluctuations in phase. Therefore, the transition cannot
be described by a classical order parameter. Instead, the transition is characterised
by a change in the form of the correlation function g1(r) from an exponential to an
algebraic decay at the transition. The next section will explain how we can apply
these ideas to the system we are interested in: a strongly interacting 2D Bose gas.

3This was shown using a Renormalisation Group analysis by Nelson et al. [78]. It can be
understood by considering the energy E = ~2πnsln(R/ξ)/m and entropy S = 2kBln(R/ξ) of
a single vortex in a disk with radius R which results in the free energy:

F = E − TS =
kBT

2

(
nsλ

2
T − 4

)(R
ξ

)
(3.8)

At nsλ
2
T = 4, F changes sign which makes the system instable against proliferation of free

vortices and renormalises ns to 0.
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3.1.3 The BKT transition in a trapped 2D Bose gas:
Just an ordinary BEC after all?

The occurence of Bose-Einstein condensation in 3D can already be understood by
considering a simple model of a non-interacting uniform Bose gas. The inclusion
of a trapping potential and finite interactions might affect the phase quantitatively
but does not change the mechanism of the transition. The situation changes dra-
matically in a 2D system. Here, a BEC is impossible in a non-interacting uniform
Bose gas and only the effect of finite interactions or a trapping potential enable
the existence of a phase transition. The trapping potential enables the existence
of a pure BEC, while interactions are driving the BKT transition. This delicate
behaviour makes it quite subtle to understand the underlying mechanism of the
phase transition in a trapped interacting 2D Bose gas. Therefore, the next section
aims to understand when we can apply the BKT theory to a 2D Bose gas and how
the BKT phase competes with a pure BEC.
Let’s consider a non-interacting Bose gas first. The reason that there is no BEC
in a non-interacting uniform 2D system can be seen in the relation between phase
space density nλ2T and chemical potential µ,

nλ2T = − ln
(
1− eµ/kBT

)
, (3.11)

which has a solution for µ for every value of nλ2T [20]. This is in sharp contrast to
the 3D case where condensation is characterised by the absence of a solution for
µ above a critical phase space density of nλ3 ≈ 2.612. However, when a trapping
potential is turned on, the density of states changes and we can achieve a pure BEC
in the trap center. The analysis by Bagnato et al. [79] revealed that condensation in
a non-interacting trapped Bose gas occurs below a critical temperature Tc < TBKT :

Tc =
~ω
kBπ

√
6N , (3.12)

determined by the radial trapping frequency ω and the number of bosons N .
We now turn our attention to an interacting uniform gas, where the MWH theorem
and the above reasoning might suggest that no phase transition to a superfluid is
possible. Here, the BKT theory developed for the 2D XY model from section 3.1.2
helps to understand why the system can develop superfluidity at all.
At first sight, the application of the ideas developed for the spin model to a 2D
BEC seems straight forward: One simply replaces the local spin orientation with
the complex phase of the wave function. However, the XY model does not take into
account that a 2D BEC can show significant density fluctuations as well. We did
not encounter this problem in 3D because here for temperatures T < Tc the mean
field (MF) approximation is justified where the quantum field Ψ̂ is simply replaced
by its expectation value Ψ(r) =

√
n(r)eiϕ. While n(r) can still vary spatially, the

MF approximation does not allow for any quantum fluctuations

∆n2 =
〈
n̂2
〉
− 〈n̂〉2 (3.13)
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of the density. It turns out that this simplification is too restrictive in 2D sys-
tems where we need to capture fluctuations of phase and density. Fortunately, at
low temperatures T compared to the MF interaction energy EMF = gn density
fluctuations are supressed [64]

(∆n)2

n2
=

2

nλ2T
ln

(
kBT

2gn

)
� 1 . (3.14)

Therefore, for sufficiently low temperatures or strong interactions we can apply the
BKT theory to a 2D Bose gas. The regime where ∆n is suppressed below thermal
fluctuations of a Poisson distribution, i.e. ∆n2 < n, is called a quasi-condensate.
Consequently, the quasi-condensate density nqc is usually defined as [80]

nqc =
(
2 〈n〉2 −

〈
n2(r)

〉)1/2
. (3.15)

It is important to note that a quasi-condensate is not a superfluid, but only as-
sociated with the suppresion of density fluctuations. The reason for this is that
the suppression of density fluctuations sets in earlier than the suppression of phase
fluctuations [81]. We can think of a quasi-condensate as a neccessary but not suf-
ficient condition for the occurence of a BKT transition. So what is the sufficient
condition, i.e. the critical phase space density of the BKT transition? We know
that the superfluid density exhibits a universal jump at nsλ

2
T = 4. But this is

not very helpful in practice since only the total density is directly accessible from
absorption images. It turns out that an estimate of the critical phase space density
(nλ2T )c is a theoretically challenging task. There were intensive theoretical inves-
tigations based on Quantum Monte Carlo methods by Prokofev et al. [80] which
revealed that for a weakly interacting Bose gas, where the dimensionless coupling
constant g̃ < 1:

(
nλ2T

)
c

= ln

(
380± 3

g̃

)
. (3.16)

We see from eq. 3.16 that strong interactions reduce the critical density (nλ2T )c
and thereby favor the occurence of a quasi-condensate with algebraically decaying
phase correlations. However, it remains unclear to what extent we can apply their
result to the strongly interacting regime where g̃ � 1.
Finally, we turn to the nature of the phase transition to a superfluid in an inter-
acting trapped Bose gas, which is still debated [20]. In principle, we can apply the
above reasoning for a uniform system using the local density approximation. Then,
for some temperature T < TBKT , one would expect the BKT transition to occur
in the outer, low density region of the cloud where (nλ2T )c reaches its critical value
as in eq. 3.16. However, Petrov et al. [81] showed that both a pure BEC and a
BKT driven transition are possible in a trapped interacting Bose gas. For temper-
atures far below the critical point, T � TBKT , phase fluctuations are significantly
suppressed,

(∆φ)2 =
T

TBKT

( ng

4π~2
)2

lnN , (3.17)
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and a pure condensate emerges which stretches over the whole system [81]. For
slightly higher temperatures, still below TBKT , both a BEC and a BKT phase
can coexist as pointed out by Simula et al. [82]. In this regime we expect a pure
condensate in the central region of the cloud while outer regions should form a
quasi-condensate. For even higher temperatures, but still for T < TBKT , only the
quasi-condensate remains and we should have algebraically decaying phase correla-
tions stretching over the center of the cloud [83]. Therefore, to study the algebraic
decay of phase correlations over a wide range in phase space density, it is actually
favorable to achieve temperatures not too far below TBKT .
In summary, a study of phase correlations in a strongly interacting 2D Bose gas is
of fundamental interest to gain information about the critical point and the fun-
damental mechanism of the BKT transition. So far, no predictions for the critical
point in the strongly interacting regime are available. A quantitative analysis of
g1(r) could reveal the regime of algebraically and exponentially decaying phase
correlations which would be interesting to compare to the superfluid density. In
principle, both a quasi-condensate and and a pure BEC are possible in 2D. How-
ever, the results of eq. 3.16 suggests that strong interactions favor a BKT-type
transition. As we will see in section 4.1.2, currently achievable temperatures with
our setup are not too far below TBKT , which might suppress the occurence of a
pure BEC in the center of the trap.
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Figure 3.3: Free expansion as a probe of phase correlations on different length
scales. A two-dimensional gas of strongly interacting 6Li dimers is released from its tight
axial confinement and expands freely in a weakly confining magnetic trap. After short
expansion times we analyse the density ripple pattern as a probe of local phase correlations.
After long expansion times the cloud is mapped to its bimodal momentum distribution from
which we obtain the temperature and quasi-condensed fraction of the gas.

3.2 Revealing in-situ phase fluctuations after short
time of flight

The BKT transition is not connected with the occurence of long-range order, but
a qualitative change in the form of spatial correlations between phase fluctuations.
Consequently, the characteristics of the transition are not detectable in in-situ
density distributions, but are hidden in its quantum noise of phase fluctuations.
In principle, one can extract phase information by interfering the cloud with a
reference system with a defined phase [84]. In the first observation of the BKT
transition in a 2D Bose gas, Hadzibabic et al. [13] prepared several independent
layers, which were brought to interference as suggested by [73]. By studying the
contrast of the resulting interference pattern they found evidence for quasi-long-
range order and the unbinding of V-AV pairs at the transition point. However,
due to long expansion times and imaging in radial cloud direction their experiment
lacks a direct connection to the local density. Especially the effect of an inhomoge-
nous density distribution on the interference pattern is still debated. The following
section describes how we use a different scheme that allows us to extract local in-
formation about phase fluctuations in a 2D Bose gas.
As diverse experiments with ultracold quantum gases may be, the results of most
experiments are simply images of atoms. The challenge to probe quantum many
body systems is to capture and extract in the these images the information about
the quantum state we are interested in. A common approach to capture informa-
tion about phase is to expand the atomic cloud for a certain time. In one of the
first observations of a BEC, macroscopic phase coherence could be observed in a
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sharp density peak after time of flight [33]. In many systems with more complex
phase correlations the mean density profile after time of flight does not reveal de-
tails about the quantum state. For example, BCS superfluidity of weakly paired
fermions does not appear as a sharp density peak in momentum space. Neither,
can we fully characterise Mott-insulating states in optical lattices just from its
incoherent momentum distribution. Instead, the analysis of spatial density corre-
lations after time of flight provides a powerful tool to probe strongly correlated
quantum systems [8]. Greiner et al. [67] could reveal pair correlations in momen-
tum space of dissociated molecules. So far, momentum space pairing of fermions
which results in BCS superfluidity could not be observed. Spatial density correla-
tions of bosons released from an optical lattice revealed details of Mott-insulating
states [68]. More recent experiments by Hofferberth et al. [85] and Manz et al. [86]
gave an insight into quasi-longe range order in one-dimensional Bose gases. The
contrast of interference of two interfering 2D Bose gases revealed the BKT tran-
sition and quasi-long-range order [13]. First local analyses of density correlations
in 2D Bose gases were recently performed by Choi et al. [14] and in Ref. [74]. So
far there are no experiments that provide local information about the decay phase
correlations.
Here, we probe local phase fluctuations in a 2D Bose gas by performing a short
expansion of the cloud. During expansion phase fluctuations transform into den-
sity fluctuations, which are imaged along the transverse cloud direction with high
optical resolution. As shown in Fig. 3.3, a density ripple pattern develops after
the cloud is released from its trap potential. In this section we will concentrate
on short expansion times of 0 ms, 0.5 ms, 1 ms and 2 ms, where the overall density
profile does not deviate significantly from its in-situ distribution4. In section 4.1.2
we will extract the momentum distribution from images taken after long expansion
times t ≈ 9 ms As shown in Fig. 3.4 the length scale of the density pattern in-
creases with increasing expansion time. It turns out that the fluctuations of density
after a certain expansion time contain information about initial phase fluctuations
on a certain length scale. We study spatial correlations of the density fluctuation
pattern to extract the local decay of phase correlations.
The fundamental quantity to characterise spatial density correlations is the nor-

malised density-density correlation

g2(r, r
′) =

〈n(r)n(r′)〉
n2

. (3.18)

First, we will restrict our analysis of correlations to the central region of the cloud
where the density is almost homogenous n ≈ 2.1 µm−2. The 2D correlation function
is calculated as the scalar product of an image with the same image shifted by a
vector r−r′. Therefore, images of g2 show a distinct minimum at a certain distance
r, which corresponds to the distance between a local maximum and the following

4During expansion a weakly confining magnetic trap with frequency ωr ≈ 30 Hz results in an
overall decrease in the cloud size. We will use the magnetic confinement as a tool to obtain
the momentum distribution as described in section 4.1.2.
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Figure 3.4: Extracting density-density correlations after variable expansion time.
A strongly interacting 2D BEC of 6Li dimers with particle number N ≈ 33000 and tempera-
ture T ≈ 24 nK is prepared in a single layer of a strongly confining blue-detuned lattice with
trapping frequency ω = 2π ·25 kHz and suddenly released. Top panel (a): individual absorp-
tion images along the axial cloud direction for different expansion times. Middle panel (b):
2D density-density correlation g2(r) in the homogenuous central part where n ≈ 2.1 µm−2.
The results shown are averaged over 60 to 110 realisations. Lower panel (c): Radially aver-
aged correlation function g2(r). The distinct minimum in g2(r) occurs at larger radii r for
longer expansion times.
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minimum of density ripples as seen in Fig. 3.4. The increasing length scale of the
density pattern for increasing expansion time results in a shift of the minima in g2
to larger distances. While the observed ripple pattern changes significantly between
individual shots, the underlying correlation does not. To improve the signal quality,
the density correlation images shown are averaged over 60-110 realisations. Further,
we perform a radial average and obtain the radial density-density correlation g2(r).

3.2.1 Understanding the connection between phase
fluctuations and density fluctuations

Since we are not probing the phase correlation function g1 itself, it is important
to understand the connection between phase fluctuations and the resulting density
fluctuations after short expansion. The development of the density ripple pattern
shown in Fig. 3.4 can be understood in analogy to the Talbot effect [87] as pointed
out by Imambekov et al. [88]. When a monochromatic light of wavelength λ passes
through a binary amplitude grating with period a, its near field diffraction pattern
develops a fractal structure known as Talbot carpet [89]. The diffraction pattern
repeats itself after the Talbot distance zT = 2a2/λ, where the period of the grating
is directly visible in the intensity distribution. When using a sinusoidal phase
grating instead of an amplitude grating, a similar diffraction pattern develops in
the near field as shown in Fig. 3.5. In the latter case, the grating pattern is
recovered after a distance z = zT/4 = a2/2λ as pointed out by Lohmann et al.
[90]. At z = zT/4 the interference pattern is most pronounced and dominates
over structures obtained for other propagation distances. Now let us consider the
analogy to a Bose gas with phase fluctuations. Instead of a short propagation
distance z in the near field, we analyse the evolution of the wavefunction after a
short expansion time t. The wavelength of the light source is replaced by the de
Broglie wavelength λT = 2π~/p of the Bose gas. We expect to recover the length
scale a of intitial phase fluctuations after a time

t =
zT
4

m

p
=
a2m

4π~
. (3.19)

In other words: to each expansion time t corresponds a certain length scale a which
would maximise the interference pattern. One of the most striking features of the
superfluid BKT phase is the critical behaviour for all temperatures below TBKT as
explained in section 3.1.2. Hence, there is no characteristic length scale of phase
correlations. Therefore, for each expansion time t, there will always be a length
scale a of phase fluctuations which matches condition 3.19 and will consequently
dominate the interference pattern.
In terms of wave functions, the previous reasoning can be understood as follow-
ing [91]. We assume a wave function with some periodical phase modulation cor-
responding to the momentum q = 2π/a:

Ψ(r) = exp(iδφ cos(qr)) ≈ 1 + iδφ cos(qr). (3.20)

34



 phase 

grating

Near Field Propagation

   

light wave

matter wave
    phase 

fluctuations  Free Time Evolution

incoming

plane wave

Figure 3.5: Probing phase correlations on different length scales. When monochro-
matic light of wavelength λ passes through a phase grating with period a, a fractal diffraction
pattern develops which reveals the phase grating after a distance z = a2/2λ 5. When a BEC
with a characteristic length a of phase fluctuations expands freely, the largest density contrast
in the interference pattern occurs after a time t = ma2/4π~. Since there is no characteristic
length scale in the superfluid BKT phase, a certain expansion time t reveals the dominant
momentum contribution q = 2π/a =

√
πm/~t.

Since the expansion in direction of the strongly confined axis is much faster than
scattering events between atoms, we can treat the time evolution as non-interacting:

Ψ(r, t) = Ψ(r) exp

(
i
~q2

2m
t

)
. (3.21)

Therefore, fluctuations of density n(r) = |Ψ(r)|2 take the form

δn(r) = 2δφ cos(qr) sin

(
~q2

2m
t

)
. (3.22)

When the condition 3.19 is fulfilled, i.e. ~q2t/m = π, we see from eq. 3.22 that
density fluctuations corresponding to a momentum q2 = πm/~t have the largest
amplitude and will dominate the density ripple pattern. Our observation that the
distinct minimum in g2(r) is shifted to larger distances for longer expansion times
is a first indicator for the algebraic decay of phase correlations in a 2D Bose gas. So
far we restricted our analysis to the central region of the cloud. In the following we
will give a short preview of our analysis in areas of lower density. A more detailed
analysis follows in section 4.2.2, where we use the density dependence of phase
correlations to extract information about the critical point of the BKT transition
and the algebraic scaling exponent.
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Figure 3.6: Density-density correlations in areas of specific density. A strongly
interacting 2D BEC of 6Li dimers expands freely for 1 ms and is destructively imaged as
shown in Fig. 3.4. We evaluate the density-density correlation g2 for each individual reali-
sation on areas of comparable density (colored inset). The results plotted are averaged over
100 realisations. Upper panel: Radially averaged correlation function g2(r). The indicated
shaded area represents the standard deviation of the mean. The reference density is taken
from the mean of all realisations. We observe a distinct minimum in g2 which vanishes for
lower densities indicating the phase transition from algebraically to exponentially decaying
correlations. Lower panel: Corresponding 2D density-density correlation images for different
densities n.
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3.2.2 Density dependence of phase correlations

In the local density approximation, we expect the superfluid phase to be present
only in the central region of the cloud. In the outer region where the density
has dropped below a critical value (nλT )c we expect phase correlations to decay
quickly. To analyse the density dependence of phase correlations we evaluate g2(r)
in areas of the cloud with a certain density as indicated by the colored regions in
Fig. 3.6. We show g2(r) at fixed expansion time t = 1 ms and variable density
n = (1.1 − 2.1)µm−2. We clearly observe a distinct minimum for high densities
n ≈ 2 µm−2 which vanishes for lower densities n ≈ 1 µm−2. This is a signature for
the transition from algebraically decaying phase correlations in the superfluid to
quickly decaying phase correlations in the thermal part of the cloud. For each ex-
pansion time t we probe a certain length scale

√
~t/m of coherence in our system.

For the superfluid part we expect that an interference pattern can develop even
for long expansion times t. For the thermal part of the cloud, phase correlations
decay quickly on a short length scale ξ, i.e. g1(r) ∝ exp(−r/ξ). We therefore
expect that after a short time of flight t for which ξ <

√
~t/m no interference

pattern and no distinct minimum in g2 should be visible. In general, we expect
the difference between the thermal and superfluid to be most significant for long
expansion times as pointed out in [75]. Overall, our data from Fig. 3.6 seems to
match our theoretical expectation well. Below a density n ≈ 1.1 µm−2 there is no
overall change in the behaviour of g2 and no minimum detectable.
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4 Extracting the algebraic scaling
exponent

The work presented in this thesis aims at providing a quantitative study of spatial
density correlations. Since the evaluation of correlations is a delicate task, we need
to be aware of a number of influencing factors that might distort our results. Before
we proceed to our final results for the algebraic scaling exponent in section 4.2.2,
we will therefore give a detailed overview of our measurement scheme (4.1.1), the
temperature determination (4.1.2) and the data analyis (4.1.3). In section 4.1.4,
we will develop a method to test our evaluation scheme. Further, we will give
a short overview of contributions to measured correlations that might arise from
other sources of noise and our imaging system in section 4.1.5.

4.1 Methods

4.1.1 Measurement procedure

Preparation

The high-resolution detection of density fluctuations in a two-dimensional Fermi
gas is an experimentally challenging task. It requires the preparation of a single-
layer 2D cloud with significant quasi-condensed fraction and sufficient optical reso-
lution to probe fluctuations on small length scales. We prepare an ultracold Fermi
gas of 6Li atoms in a single layer of a blue-detuned optical lattice as described in
section 2.1. A prerequisite to probe phase fluctuations through density fluctua-
tions is a quasi-condensate, which can only be realised with bosons. The broad
Feshbach resonance of 6Li allows us to tune interactions in a wide range. In 3D,
6Li atoms form bosonic dimers at a positive scattering length a3D. The dimers
can in turn condense to a BEC below a critical phase space density (nλT )c. In
2D, the formation of bound dimers becomes favorable as well. However, due to
the algebraic decay of correlations, bosonic dimers only form a quasi-condensate.
We achieve temperatures of Tc = 0.05 TF , well below expected critical temper-
atures of T ≈ 0.1TF [92] ensuring a sufficient condensate fraction of about 49 %
as shown in Fig. 4.2. In the weakly interacting quasi-2D regime, the interaction
strength is density-independent and determined only by the harmonic oscillator
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length lz =
√
~/mωz and the 3D scattering length a3D:

g̃ =
√

8π
a3D
lz

(4.1)

For a magnetic field of B = 710 G and a trapping frequency ωz = 2π · 25 kHz the
harmonic oscillator length lz ≈ 5000a0 is on the order of the 3D scattering length
a3D ≈ 1800a0, where a0 is the Bohr radius. Therefore, we might need to consider
a density dependence of interactions. Using the more general1 expression derived
by Petrov et al. [63] and the experimental parameters described above, we obtain
g̃ ≈ 2.7 for a density of n = 2.3 µm−2. This value clearly deviates from g̃ ≈ 1.9
obtained using the approximate expression 4.1.

Detection

After preparing the cloud, we suddenly turn off the repulsive lattice. Because of
the strong confinement in axial direction the resulting expansion in that direction
should be so quick that the evolution of the state can simply be described as non-
interacting. The relevant scales for this approximation are the mean field energy
EMF and the level spacing ∆E = ~ωz of the vertical confinement. Using the
calculated interaction strength g ≈ 2.7 and a density n = 2.3 µm−2 we obtain

EMF

∆E
=

~2
m
g̃n

~ωz
=

~g̃n
2mωz

≈ 0.07 . (4.2)

We can therefore ignore interaction effects during expansion which suggests that
phase fluctuations are transformed in density fluctuations by free time evolution.
We detect density fluctuations after various expansion times 0 ms, 0.5 ms, 1 ms
and 2 ms by absorption imaging with resonant light. Here the increasing size in
z-direction might be limiting our resolution because of our limited depth of field
as explained in section 4.1.5.

4.1.2 Temperature and condensate fraction

The determination of temperature in a strongly interacting system is a challenging
task. In general, the temperature of an ensemble can be obtained from its momen-
tum distribution. While the momentum distribution of non-interacting systems
are well known there are no reliable predictions for the strongly interacting regime.
In principle, there are two ways to circumvent this issue:

1. Use a non-interacting system in thermal equilibrium with the interacting one

2. Map the strongly interacting distribution to that of a non-interacting system

1Only recently the strongly interacting regime in 2D has become accessible [49, 61, 62]. The
regime corresponds to lz � a3D where the nature of interactions changes from 3D to truly
2D and the expression for g̃ derived by Petrov et al. [63] looses its validity.
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(a) (b) (c)

Figure 4.1: Images of the momentum distribution for different interaction
strengths. A strongly interacting 2D Bose gas is prepared with different interaction pa-
rameters ln(kFa2D) = −1.9 (a), ln(kFa2D) = −0.8 (b), ln(kFa2D) = −0.3 (c) by exposing
the gas to a magnetic field B = 710 G (a), B = 770 G (b), B = 810 G (c). Absorption
images shown are taken 9 ms after a sudden release from the cloud’s tight axial confinement.
The expansion time corresponds to T/4 of the radial magnetic confinement with frequency
ω = 2π/T ≈ 30 Hz

While the second option sounds exotic, it turns out that it can be easily realised
for a two-dimensional system. When the strongly confining potential is suddenly
switched off, the cloud expands so quickly in axial direction that interactions be-
tween atoms in the early stage of the expansion can be safely ignored. In the
far-field, i.e. in the limit of very long expansion times, the density distribution
of the strongly interacting system is mapped to the momentum distribution of an
ideal gas. When there is no additional trapping potential present the far-field is
only reached after very long expansion times which are not achievable in our setup.
However, when the cloud expands in the presence of a weak radial harmonic confine-
ment with trapping frequency ω = 2π/T , the position space distribution is already
mapped to momentum space after an expansion time t = T/4. This method was
recently suggested by Murthy et al. [93] and succesfully implemented to determine
the phase diagram of a strongly interacting 2D Fermi gas [49].
Here, the method enables us to determine the temperature of a strongly interacting
2D Bose gas of 6Li dimers. After suddenly switching of the repulsive lattice, we
detect the momentum distribution after an expansion time of t = T/4 ≈ 9 ms. To
access the temperature of the cloud we fit the outer thermal part of the gas with
the momentum distribution of an ideal Bose gas:

f(p) ∝ e−p
2/2mkBT . (4.3)

We restrict the fit to a radial interval [r0, rmax] from the cloud’s center. While
rmax = 80 µm is determined by our image size, it is not obvious what minimal
radius r0 we should choose. Here, we fit the radial density distribution with the
general expression

n(r) = A+B · e−(r/w)2 , r0 < r < rmax . (4.4)
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for various values of r0 and determine the R2-value of the fit. We keep the offset
A fixed and vary amplitude B and waist w. As shown in Fig. 4.3, above a certain
value of r0 the R2-value reaches its maximum in the form of a plateau which we
therefore associate with the optimal value. We repeat this procedure for different
values of the offset A. The correct value for A is found when the plateau of the
R2-values coincides with a plateau in the values of the waist w. For the realisation
shown in Fig. 4.2, we obtain w = (52.0± 0.3) µm, which for t = 9 ms corresponds
to a temperature of

T =
mdw

2

2kBt2
≈ (24.0± 0.3) nK . (4.5)

When using eq. 4.5 it is important to use the mass md = 2m of 6Li dimers.
Further, t should be obtained from the trap frequency ω = 2π/T instead of the
actual expansion time texp. The momentum distribution shown in Fig. 4.2 allows us
to determine the quasi-condensed fraction Nqc/N ≈ 0.49. Here, we treat the non-
Gaussian distribution as the quasi-condensate as done by Clade et al. [46]. Similarly
to their results, we observe a trimodal distribution with a region between r =
30 µm and r = 40 µm which is neither part of the central parabola nor the outher
Gaussian shape. As already pointed out by Clade et al. [46] this observation is in
contrast to the results obtained by Kruger et al. [94], who observed a clear bimodal
distribution. In our case, the trimodal distribution is in parts the result of a ring
around the quasi-condensed center of the momentum distribution as can be seen in
Fig. 4.1a. We do not fully resolve the ring structure in the radial distribution in Fig.
4.2, because we performed a running average of width 7 µm to increase the signal
quality for large r. One might think that the ring corresponds to the binding energy
of molecules which was already analysed in [61] using RF-spectroscopy. After the
strong axial confiment is switched off, we expect 6Li dimers to be dissociated. Since
dimers of the quasi-condensate do not carry any net-momentum both dissociated
atoms carry a momentum k with same size but opposite direction which would
result in a ring structure at a certain distance

r =
~k
m
t =

√
EB
m
t (4.6)

Using the 2D scattering length a2D ≈ 2.09 · lz exp(−
√
π/2lz/a3D) [95] with 3D

scattering length a3D ≈ ·1900a0 and harmonic oscillator length lz = 4900 · a0,
where a0 is the Bohr radius, to calculate the binding energy EB = ~2/ma22D, we
obtain r ≈ 2.5 mm. The ring structure in Fig. 4.1a occurs at a distance of about
25µm and cannot be explained by the above reasoning.

4.1.3 Local evaluation of correlations

We are interested in evaluating and comparing spatial density correlations in areas
of the cloud within a specific density interval [nmin, nmax]. This can be a challeng-
ing task since for inhomogenous density distributions the form and size of the areas
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Figure 4.2: Radial momentum distribution of a strongly interacting 2D Bose gas.
After sudden release from its tight axial confinement the cloud expands freely in a weakly
confining magnetic trap with frequency ω ≈ 2π · 30 Hz = 2π/T . After an expansion time
t = T/4 the position space distribution is mapped to momentum space. We determine quasi-
condensate fraction Nqc/N ≈ 0.49 and temperature T = (24.0± 0.3) nK. Inset: A Gaussian
is fitted to the outer part r > r0 of the distribution as described in Fig. 4.3. We radially
average the distribution with a moving average of width 7 µm to increase the signal quality
for large r. Therefore, the ring features of Fig. 4.1a are not fully resolved here and appear
as an apparent trimodal distribution.
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Figure 4.3: Waist determination of a thermal Bose gas. A Gaussian function
A + B exp(−r2/w2) is fitted to our momentum distribution in Fig. 4.2 in an inter-
val [r0, 80µm] with varying exclusion radius r0 and fixed offset A = 3.7 µm. The cor-
rect waist w = (52.0± 0.3) µm is independent of the exclusion radius in a large interval
r0 = 42 µm − 50 µm and coincides with a maximum in the goodness of fit (R2-value) when
the correct offset is chosen.
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where the correlations are evaluated on differ significantly from each other. The fol-
lowing section will give a step-by-step procedure to obtain comparable correlation
functions independent of the evaluation area. To check that the calculated corre-
lation functions only capture physical information we will validate the procedure
using test distributions with an imprinted pixel-pixel correlation.

Extracting density-density correlations on areas of constant density

The following steps are performed to calculate the normalised density-density cor-
relation function

g2 =
〈n(r)n(0)〉

n2
(4.7)

1. Average over sufficiently large number N of density images ni(r) to get a
smooth mean density distribution

nmean(r) =
1

N

N∑

i

ni(r) (4.8)

The mean density will serve as a reference for the following steps and should
not contain any fluctuations on scales smaller than the actual cloud form.
We therefore fit nmean(r) using a smoothing spline.

2. Divide each individual realisation by the mean distribution. This way the
normalisation of eq. 4.7 is automatically fulfilled when calculating g2 in step
5.

nnorm,i(r) = ni(r)/nmean(r) (4.9)

3. Crop the normalised density to an area A within the desired density interval
[nmin, nmax]:

A(r) =

{
1 for nmin < nmean(r) < nmax

0 else

ncrop,i(r) = nnorm,i(r) · A(r) (4.10)

4. Reduce the effect of fluctuations of the total atom number by dividing each
ncrop,i by its mean density:

nfinal,i(r) =
ncrop,i(r)∑
r′ ncrop,i(r)

(4.11)
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5. Calculate the autocorrelation g̃2,i for each individual realisation and average
over all realisations

g̃2,i(r) =
∑

r′

nfinal,i(r
′)nfinal,i(r

′ − r) (4.12)

g̃2(r) =
1

N

N∑

i

g̃2,i(r) (4.13)

6. Calculate the autocorrelation gA of the binary area A to normalise g̃2,i. This
will allow us to compare correlations which are evaluated on different regions
of the cloud.

g2,A(r) =
∑

r′

A(r′)A(r′ − r) (4.14)

g2(r) = g̃2(r)/g2,A(r) (4.15)

The above calculation of correlations on a restricted area A assumes that the form
of g2 doesn’t change within A. This assumption is valid when A corresponds to
an area inside the cloud within a narrow density interval, i.e. an almost constant
phase space density.

Evaluation of the power spectrum

It is often convenient to analyse correlations in momentum-space, where the rel-
evant length scales are directly visible. The main quantity for our subsequent
analysis is the power spectrum, which is obtained from g2 via Fourier transforma-
tion:

p(q) =

∫
d2r cos(qr)(g2(r, t)− 1) . (4.16)

Our absorption images contain information in discrete pixel values of size ∆x =
0.8 µm on a quadratic n×n grid. We therefore evaluate eq. 4.16 via a discrete fast
Fourier transformation. The position space pixel size ∆x then corresponds to a
pixel size ∆q = n∆x/2π in Fourier space. Further, each pixel value of the discrete
power spectrum has units of (∆x)2 = 0.64 µm2.

4.1.4 Testing the evaluation scheme

Any reliable evaluation of correlations needs testing. This holds especially true
for our analysis where the size and shape of the area on which correlations are
evaluated change significantly. To test the validity and robustness of our analysis
method we need a set of reference distributions with given correlations. In prin-
ciple, one could take another physical system like a thermal cloud as a reference.
Images of thermal ensembles would be suited to analyse contributions of shot noise
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and technical noise which should appear on very small length scales. However, we
are interested in probing correlations on significantly larger length scales, where no
trivial physical reference system exists.
We therefore numerically create a set of test distributions with an explicitly im-
printed pixel-pixel correlation. This allows us to understand how we can uncover
density-density correlations on a finite region from a finite set of images.
First, we create a set of N test images {Ti}i=1...N by convolving pseudo-random
matrices Mi with a certain imprinting function f

Ti =Mi ? f (4.17)

In analogy to density fluctuations we consider fluctuations with a certain amplitude
A around 1 of the form

Mi = 1 + A ·
(
Ri −

1

2

)
, (4.18)

with a pseudorandom standard uniform distribution Ri on the open interval (0, 1)
which is generated with Matlab’s implemented function rand. Since Var(R) = 1/12
we get pixel fluctuations in Mi with variance

Var(Mi) =
A2

12
(4.19)

The pixel-pixel correlation g2 is then approximately reproduced by averaging over
a sufficiently large number of images

g2 ≈
N∑

i

Ti ? Ti =
N∑

i

(Mi ? f) ? (Mi ? f) =
N∑

i

(Mi ?Mi) ? (f ? f) (4.20)

=
A2

12
f ? f (4.21)

We can therefore test our evaluation scheme of section 4.1.3 by comparing g2 ob-
tained from the set of test images to the theoretical expectation 4.21. Here, we
take f(r) = sinc(r/w) with a characteristic length scale w = 5 px as imprinting
function. Correlations then also take the form of a sinc-function which resembles
the theoretical expectation derived in Ref. [88] and Ref. [75]. Figure 4.4 shows a
comparison between imprinted correlations from eq. 4.21 and our evaluation re-
sults according to the procedure described in section 4.1.3 with an image number of
N = 10, 50, 100. Here, we use an evaluation area which corresponds to a density in-
terval n = 2µm−2±∆n in the image shown in Fig. 3.4 with ∆n = (0.1−0.2)µm−2.
We see that for a given density interval ∆n the signal-to-noise ratio greatly in-
creases with the number N of images taken. Analogously, at a fixed number N the
signal improves for larger density intervals.
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Figure 4.4: Testing the evaluation of density-density correlations using test dis-
tributions. We imprint a specific pixel-pixel corelation to test images (top row). Using
our evaluation scheme of section 4.1.3 we recover the imprinted density-density correlation
g2 (left column) and its power spectrum p (right column) from N test images generated as
described in section 4.1.4. Here, we use an evaluation area which corresponds to a density
interval n = 2µm−2±∆n in the image shown in Fig. 3.4 with ∆n = (0.1−0.2)µm−2. Bottom
row: radial average of correlations evaluated with N = 100. Correlations for ∆n = 0.2µm−2

(blue line) match the theoretical expectation (dashed line), while ∆n = 0.1µm−2 (red) re-
sults in significant noise contributions especially in the low-momentum part of the power
spectrum.
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Similarly, we test our evaluation of the power spectrum p(q) by applying 4.16 to the
previously generated test images. Since we evaluate g2 on restricted areas, values
for large r do not contain physical information. We therefore restrict the evaluation
of the power spectrum to small distances r < rmax and ignore contributions for
larger r where g2(r) ≈ 1. This is done by setting:

g(r) =

{
g(r) for |r| < rmax

1 else
(4.22)

The value of rmax has to be chosen very carefully, such that all resolvable fea-
tures of g2 are still considered. For the following test we set rmax = 25 px. The
right column of Fig. 4.4 shows that our evaluation scheme allows to recover the
imprinted power spectrum. It is clearly visible that for a narrow density interval
∆n = 0.1 µm−2 even for large N the low-momentum part of the power spectrum
deviates significantly from the imprinted spectrum. For a larger density interval
∆n = 0.1 µm−2 we are able to recover the low-momentum part quite well.
The present section gave an overview of our data analysis of correlations. We
described a step by step procedure to calculate density-density correlations on re-
stricted areas. We introduced the power spectrum p(q), which will be the central
quantity for the following determination of the algebraic scaling exponent. Finally,
our evaluation scheme was successfully tested by evaluating correlations on areas
which correspond to a certain density interval in actual absorption images. The
tests indicated that in general a large density interval is favorable to improve the
signal to noise ratio. Since we took about N = 50−100 absorption images for each
expansion time we find a good compromise of density resolution and signal quality
in an interval of ∆n = nmax − nmin = 0.2 µm−2 for the following analysis.

4.1.5 Other influences to measured correlations

We saw in the previous section that for a sufficiently large density interval and
number of realisations we can in principle almost perfectly recover g2(r) and p(q).
Before we can extract quantitative information about the decay of phase correla-
tions from these quantities, we need to consider other influences apart from phase
fluctuations that might affect the density correlations we obtain from our analysis.
Here, we will concentrate on the effect of shot noise and the imaging system. While
atomic shot noise is an intrinsic physical contribution to correlations, the imaging
system only affects the imaged distribution.

Shot noise

It is an intrinsic quantum-mechanical property that there is no definite particle
number N for T > 0. Instead, between individual measurements one always has
fluctuations ∆N2 ≈ N in atom number. When performing absorption imaging
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Figure 4.5: Subtraction of the shot noise contribution. We use the density correlation
of the in-situ distribution (a) to subtract the shot noise contribution from the correlation
function g2 (b) and the power spectrum p (c) after an expansion time of 1 ms. For illustration,
we evaluate correlations in a density interval n = (2.0± 0.1) µm−2. Image (a) shows only the
central part of the density-density correlation and is scaled to its maximum value. For the
subtraction it is sufficient to restrict the shot noise contribution to its central peak, which is
a factor 10 larger than its neighbouring pixels.

of an atomic cloud we have mainly two shot noise contributions: atom shot noise
and photon shot noise. Both contribute to the total fluctuation of imaged particle
number on a single pixel. Naively, one might not expect any spatial correlation
between individual pixels due to shot noise. Consequently, there should not be
any contribution to our evaluation of g2(r) apart from r = 0. However, this
statement only holds when individual pixel values are completely independent from
each other. The limited optical resolution of any imaging systems results in a
smearing out of individual pixels. In other words: each pixel contains a bit of
information of neighbouring pixels and is therefore correlated with them. Formally,
we can interpret our images as a convolution of the actual atomic distribution and
a characteristic imaging function, called point-spread-function2. The width of the
point-spread function determines the actual spot size that can be optically resolved.
It is a great benefit of our high-resolution imaging system providing a resolution on
the order of 1 µm3. This enables us to separate between shot noise contributions and
density correlations due to phase fluctuations even for relatively short expansion
times. Still, the question remains how we can reliably determine the shot noise
contribution g2,shot which we eventually subtract from g2.
Here, we simply take the in-situ distribution as a reference and use our evaluation
scheme of section 4.1.3 to get g2,shot for a specific density interval as shown in Fig.
4.5. We see that the dominant contribution to g2,shot occurs in the center of the
image corresponding to r = 0. Since the center pixel value is significantly larger
than neighbouring pixel values it is sufficient to restrict g2 to its center value only
when performing the subtraction. This observation might support the expectation

2A detailed analysis how to extract the point spread function from in-situ absorption images is
given in Ref. [96].

3Our imaging system is described in detail in Ref. [18] and Ref. [97].
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that the resolution of our imaging system should be on the order of the pixel size
∆x = 0.8 µm. However, the r = 0 value will be affected by uncorrelated technical
noise as well. Therefore, a more careful analysis is needed when we want to extract
the resolution of our imaging system. Nevertheless, we see in Fig. 4.5b and Fig.
4.5c that the in-situ distribution provides a reliable reference to subtract the shot
noise component in densit-density correlations. For an expansion time of t = 1 ms
the overall offset of the power spectrum seen in Fig. 4.5c is successfully subtracted.

Limited depth of field

The above analysis concentrated on correlations that are inherent to the physical
system itself. However, absorption images do not necessarily reflect only the intrin-
sic properties of the atomic gas but are always influenced by the imaging system
itself. In the previous section we encountered the influence of limited optical res-
olution which resulted in a smearing out of the shot noise contribution. Now, we
will focus on the effect of a limited depth of field in axial direction. While the shot
noise contribution only affected the high-momentum part of p(q) we will see that
the finite extent in axial direction affects correlations on all length scales. The
following section is therefore of fundamental importance to extract quantitative
information about correlations from absorption images.
While we can image structures inside the focal plane with diffraction limited res-
olution, outside the focal plane resolution decreases. The characteristic distance
over which resolution degrades is called depth of field. When the cloud is released
from its tightly confining potential it quickly expands in axial direction as shown
in Fig. 4.6. Thereby the cloud’s width in axial direction quickly exceeds the depth
of field of our imaging system. Therefore, absorption images even after short ex-
pansion time naturally cover an integration over multiple planes, where structures
far from the focal plane are not resolvable. Thus, we expect a diffuse background
to decrease the contrast of density fluctuation patterns. In general we expect the
ratio of depth of field d and axial cloud width w to determine the reduction in
contrast. When we assume that only structures inside the depth of field are resolv-
able, imaged correlations for d < w should be averaged out and thereby reduced
by a factor D < 1.

g2,avg(r) = 1 +D (g2(r)− 1) (4.23)

pavg(q) = D · p(q) (4.24)

In general, the exact value of the prefactor in eq. 4.24 depends on details of
the imaging like spatially varying magnetic field strengths and is therefore hard to
determine. Introducing the prefactor as third free parameter in eq. 4.26 besides the
scaling exponent and the cutoff length would cause a redundancy in determining
the scaling exponent. We therefore adopt the method recently suggested in [93]
to reduce the expansion in axial direction. Quickly, after the strongly confining
lattice is switched off we turn on an attractive dipole trap for a short time. Figure
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Figure 4.6: Deceleration of the rapid expansion in axial direction. Left panel: A 2D
Bose gas is released from its tight harmonic potential and expands quickly in axial direction.
Right panel: Same as left panel where an additional red-detuned dipole trap is flashed on to
stop the motion in axial direction. A comparison of the width in axial direction is found in
Fig. 4.7
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Figure 4.7: Reducing the cloud width in axial direction after free expansion.
A red-detuned dipole trap is flashed on to stop the rapid expansion of the cloud in axial
direction. The axial width of the cloud remains small for expansion times up to 2 ms. This
will enable us to study density correlations without taking into account the limited depth of
field of our imaging setup.
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4.6 and 4.7 show that this method can successfully reduce the expansion in axial
direction. We therefore expect that even for expansion times up to 2 ms we can fully
resolve density fluctuations. At the time of writing, the effect of the axial cloud
width on the measured correlation spectrum was not analysed. When it comes to
quantitative results, we will therefore restrict ourselves to a short expansion time
t = 0.5 ms where the cloud width is still on the order of the depth of field.

4.2 Results

We saw in section 3.2 that we can successfully extract information about phase
correlations in a 2D Bose by studying density-density correlations after short time
of flight. The high signal quality of the extracted correlation function g2 enabled
us to probe local phase correlations in areas with a certain density. Now that
we have tested our evaluation scheme and understood the main contributions to
measured density correlations after time of flight, we will apply the developed
methods to locally probe the BKT transition in a 2D Bose gas. First, we will
determine the critical point of the BKT transition. Afterwards, we will extract
quantitative information about the local decay of phase correlations to obtain the
algebraic scaling exponent.

4.2.1 Critical point of the BKT transition

Previous studies of the critical point of the BKT transition relied on the onset of a
bimodal density distribution in time of flight [46, 94] or universal scaling near the
transition [58]. Here, local probing of phase fluctuations allows us to determine the
critical point which marks the characterising feature of the BKT transition: the
transition from exponentially to algebraically decaying phase correlations.
As described in section 3.2.2 we evaluate density-density correlations after short

time of flight on areas of a specific density. We measure the value of the minimum in
g2(r) for a range of densities and expansion times t = 0.5 ms and t = 1 ms as shown
in Fig. 4.8. For both expansion times, the minimum value of g2 increases with
decreasing density as expected. For densities below a density nc = (1.1± 0.1) µm−2

there is no change in the minimal value anymore. Below the critical density nc the
coherence length ξ drops below the characteristic length scale

√
~t/m. Therefore,

smaller values of ξ in areas of lower densities have no effect on the imaged density
fluctuations and the behaviour of g2 remains unchanged for lower density n < nc.
Thus, we interpret nc as the critical density for the BKT transition. To calculate
the critical phase space density (nλ2T )c we extract the temperature of the cloud
from its momentum distribution obtained via the T/4-method described in 4.1.2.
We obtain T ≈ 24 nK and get

(nλ2T )c = 11.6± 1.1 (4.25)
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Figure 4.8: Critical point of the BKT transition in a strongly interacting Bose
gas. The minimum value of g2 is tracked for various densities for expansion times t = 0.5 ms
and t = 1 ms. Below a density of nc = (1.1± 0.1) µm−2 the minimum which is clearly visible
for higher densities dissappears. Using the measured temperature T ≈ 24 nK we associate
nc with the critical phase space density (nλ2T )c = 11.6± 1.1 .
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Figure 4.9: Density fluctuations after time of flight. We measure density fluctuations
∆n2(n) on indivual pixels with mean density n for the in-situ distribution t = 0 ms and
expanded clouds after t = 0.5 ms and t = 1 ms respectively. We perform a moving average
on the data. Fluctuations are suppressed above n ≈ 1.3 µm−2 for the in-situ distribution
and above n ≈ 1.1 µm−2 for both expansion times. The linear behaviour of fluctuations in
the low-density regime of the in-situ distribution is indicated by the dashed line.
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While the theoretical prediction 3.16 for the critical phase space density by Prokofev
et al. [80] was calculated for the weakly interacting regime it is interesting to make
a comparison here. We prepare a strongly interacting Bose gas with an interaction
parameter g̃ ≈ 2.7 and would expect (nλ2T )c ≈ 5 according to eq. 3.16 which is
considerably lower than our measured value. Consequently, the effect of strong in-
teraction on superfluidity cannot be understood by extrapolating from the weakly
interacting regime.
We note that the critical point determined here is sensitive to our density calibra-
tion. In future experiments, we could check the validity of our results by preparing
a gas with a higher temperature. While the total density n at the transition point
will be higher, the critical phase space density (nλ2T )c should remain unchanged.
Here, we will concentrate on the onset of a quasi-condensate as a cross-check of
our results.
We directly access the quasi-condensate density as defined in 3.15 by studying den-
sity fluctuations ∆n around the mean density n of single pixels of our absorption
images. In Fig. 4.9, we see a kink of ∆n2(n) at a density n ≈ 1.3 µm−2 for the
in-situ distribution and at n ≈ 1.1 µm−2 for both expansion times t = 0.5 ms and
t = 1 ms. The critical density for suppression of density fluctuations in the in-situ
image suggests that a quasi-condensate occurs at a comparable point as the BKT
transition. This is quite remarkable since the density fluctuations analysed here
are analysed on indiviual pixels and thereby occur on a very different length scale
than density fluctuations due to phase correlations.
It is interesting to note that for low density part of the in-situ distribution we have
∆n2 = (1.48± 0.03) n, which for a pixel size of 0.8 µm × 0.8 µm corresponds to a
particle number fluctuation of ∆N2 = (0.95± 0.02) N in good agreement with the
expected scaling of shot noise ∆N2 = N . In hindsight, this might justify our den-
sity calibration of absorption images. However, the exact value of the fluctuation
amplitude is affected by photon shot noise and technical noise, which we did not
consider here. Therefore our result for ∆N2 rather serves as a rough estimate than
an accurate determination.

4.2.2 Revealing the algebraic decay of phase correlations

While the previous section used only the minimum value of g2 to determine the
critical point, we will now analyse the overall behaviour of spatial density correla-
tions. The main quantity for the following analysis is the power spectrum p, which
we calculate as described in section 4.1.3. By comparing our results to the recent
theoretical study by Singh et al. [75], we find evidence for the algebraic decay
of phase correlations and determine the scaling exponent τ which determines the
decay of phase correlations in the superfluid phase.
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Figure 4.10: Extracting the scaling exponent and cutoff from the power spectrum.
After an expansion of t = 0.5 ms we locally evaluate g2(r) in an area of constant density
n = (1.1± 0.1) µm−2 [n = (2.0± 0.1) µm−2] in a 2D Bose gas with temperature T = 24 nK.
We evaluate the power spectrum p(q) by Fourier transformation of g2(r) restricted to values
r < rmax = 15[25] px and subsequent radial averaging. We fit the data using expression 4.26
to obtain the algebraic scaling exponent τ and the cutoff a which determine the decay of
phase correlations in a 2D Bose gas.

Fitting the power spectrum of spatial density correlations

There is a very illustrative theoretical prediction made in Ref. [75], for the power
spectrum of density-density correlations after a free expansion time t in the super-
fluid phase, i.e. T < TBKT :

p(q) ≈ πaτK1(aq)

q

(
a2

a2 + q2~2t2/m2

)τ/4

alg

(
1− cos

(
q2~t
m

))

MF

(4.26)

Expression 4.26 contains a mean field (MF ) part that roughly determines the po-
sition of the maximum around 1/q =

√
~t/m as explained in section 3.2. Further,

the algebraically decaying phase correlation function g1 of eq. 3.7 directly appears
as a factor (alg) where r is replaced by q2~2t2/m2. The prefactor which contains
the first order Bessel function K1 is a result of the cutoff length a. We will fit
our experimental results with eq. 4.26 to extract the algebraic scaling exponent τ
and the cutoff length a. While expression 4.26 was derived to first order in τ , the
authors of Ref. [75] showed that it is a good approximation to numerical results in
the full range 0 < τ < 1.
In principle, one could fit the low-momentum part of the power spectrum only,
which should be independent of the cutoff a and contain the scaling exponent τ as
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Figure 4.11: Effect of evaluation radius rmax on the power spectrum. p(q) shows
less low-momentum noise when restricting the area to the physically signifcant part only.
When rmax is set too low we get unphysical contribution to the low momentum part of the
spectrum. When rmax is set too high we pick up significant overall noise on the signal. The
main behaviour of p(q) remains unchanged for in a large interval of rmax which is indicated
by the obtained parameters τ and a.

the only free parameter:

p(q) ≈ πτ
~2q2t2

2m2
. (4.27)

However, we saw in section 4.1.4 that the signal to noise ratio of the low-momentum
part is in general quite poor and sensitive to the chosen evaluation radius rmax. We
can understand this behaviour as the result of analysing fluctuations on restricted
areas, which effectively introduces a low-momentum cutoff. Section 4.1.4 showed
that while in principle we can cover fluctuations on length scales on the order
of the evaluation area, the signal to noise ratio decreases for larger distancences.
Therefore, we set g2(r) = 1 for all values r > rmax for our calculation of the power
spectrum p(r) as described in section 4.1.4. Figure 4.11 shows how the cutoff radius
rmax affects the calculated power spectrum. When rmax is set too low we obtain
unphysical low-momentum contributions corresponding to the cutoff length. We
obtain the optimal value for rmax when the low-momentum contribution vanishes
while the behaviour of p(q) for larger q remains the same. When the cutoff rmax
is set to even larger values the signal to noise decreases significantly. As we are
actively removing a part of the data in g2 we need to be very careful not to affect any
physical information in p(q). Here, we use the full expression 4.26 to fit p(r) and
check the dependence of the fit results on rmax. We observe that the fit parameters
a and τ remain unchanged within a large interval of rmax.

Finally, we apply the method described above to obtain the power spectrum for a
fixed expansion time t = 0.5 ms and varying density n = 0.7 µm−2− 2.2 µm−2 with
intervals of ∆n = 0.2 µm−2. As the density is decreased the peak value of the power
spectrum increases and occurs at lower momenta resulting in a steeper rise for low
q (s.Fig 4.10). A comparison with eq. 4.27 indicates that the scaling exponent τ
increases towards lower densities. In general, we observe excellent agreement with
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Figure 4.12: Algebraic scaling exponent and cutoff length in a strongly inter-
acting 2D Bose gas. We locally evaluate the power spectrum p(q) in a 2D Bose with
temperature T = 24nK after short expansion t = 0.5 ms on areas of constant density
n = (0.8− 2.2)/µm−2 ± 0.1µm−2 as illustrated in Fig. 4.10. By fitting p(q) with the expres-
sion 4.26 we obtain the algebraic scaling exponent τ and the cutoff length a in dependence
of local phase space density nλ2T .

the full expression 4.26 over the full range of densities. We therefore observe a
signature of algebraically decaying phase correlations. Further, we expect that our
method constitutes a reliable determination of the scaling exponent. As expected,
the value of τ significantly increases in areas of lower density as can be seen in
Fig. 4.12. For n = (1.1± 0.1) µm−2 corresponding to nλ2T = 11.5± 1.0 we obtain
τ ≈ 1 consistent with the determination of the critical point in section 4.2.1.
Since expression 4.26 is only valid for τ < 1 we cannot quantify the regime of
exponentially decaying correlations. Here, a quantitative analysis might reveal the
exponential divergence of the correlation length ξ as outlined in the introduction.

Reconstructing the superfluid density of a trapped 2D Bose gas

One of the most remarkable features of the BKT transition is the jump of the super-
fluid density at a universal critical point nsλ

2
T = 4. In a trapped system using the

local density approximation we expect the jump to occur at a certain distance from
the cloud’s center. Therefore the superfluid density should be distributed mainly
over the central region, while the thermal component can in principle stretch over
the whole system4. So far, the value of the local superfluid density was an inac-
cessible quantity in two-dimensional quantum gases. Here, we assume that the

4A mean field analysis of scattering between superfluid and thermal atoms shows that the
thermal part is actually repelled by the superfluid component to the outer part of the cloud
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Figure 4.13: Superfluid density reconstructed from the algebraic scaling expo-
nent. We extract the scaling exponent τ from the power spectra as shown in Fig. 4.12.
The superfluid density ns is calculated via nsλ

2
T = 4/τ using the temperature T = 24 nK

obtained from the momentum distribution described in section 4.1.2. We use the radial total
density from in-situ images as a reference. The dashed red line corresponds to τ > 1 where
eq. 4.26 is not valid and we expect the superfluid density to drop to zero.

fundamental prediction of BKT theory for the long-range decay of phase correla-
tions as described by eq. 3.7 holds. Thereby, we can use the values of the algebraic
scaling exponent τ(n) to deduce the local superfluid density ns in a trapped 2D
Bose gas as show in Fig. 4.13. Overall the deduced superfluid component follows
the behaviour of the total density in the center of the cloud. Further, the total
superfluid part seems in good agreement with the quasi-condensed fraction shown
in Fig. 4.2.

Robustness to different expansion times

Next, we evaluate density-density correlations from another expansion time t =
1 ms. In principle, considering multiple expansion times provides an important
cross-check of our method and might allow us to study the delocalisation of the
superfluid component. However, as already pointed out in section 4.1.5 we expect
that the contrast in intereference is reduced due to our limited depth of field com-
pared to the large size of the cloud in axial direction. Indeed, as can be seen in Fig.
4.14, the application of expression 4.26 delivers results for the scaling exponent τ
which are systematically below the values obtained for a shorter expansion time
t = 0.5 ms. In general, one should reduce the fast expansion in axial direction as
show in Fig. 4.7. Here, we preliminarily introduce a prefactor D = 0.6 for expres-
sion 4.26 to account for the limited depth of field as explained in section 4.1.5. The
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Figure 4.14: Algebraic scaling exponent for different expansion times. We locally
evaluate the power spectrum p(q) in a 2D Bose with temperature T = 24 nK after short
expansion t = 1 ms on areas of specific density n = (0.8 − 2.2)/µm−2 ± 0.1 perµ2m. We
introduce a scaling factor D as described in section 4.1.5 to account for the limited depth of
field of our imaging setup and fit our results with D·p(q) as in Fig. 4.10. By choosing D ≈ 0.6
we can approximately recover the results for the algebraic scaling exponent τ obtained for
a shorter expansion time of 0.5 ms for large phase space density nλ2T . The overall scaling of
τ needs to be checked in future experiments by considering several expansion times below
0.5 ms.

prefactor is chosen in such a way that the scaling exponent τ obtaind from a longer
expansion time t = 1 ms matches the scaling exponent obtained from the shorter
expansion time t = 0.5 ms. Fig. 4.14 shows that the overall behaviour of the super-
fluid density for both expansion times matches reasonably well. Still, the overall
value of τ needs to be checked using even shorter expansion times t < 0.5 ms and
the described method in section 4.1.5 to suppress the expansion in axial direction.
Finally, a reliable determination of the scaling exponent for different expansion
times might allow us to reconstruct the time-dependent behaviour of the super-
fluid density. When the strongly confining lattice is suddenly turned off we expect
that the assumed sharp edge in the superfluid density is not maintained and the
superfluid should delocalise to larger radii.
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4.3 Summary and outlook

In the previous chapters we have described how we locally probe phase correlations
in a strongly interacting 2D Bose gas. We prepare a single two-dimensional layer
of an ultracold Fermi gas of 6Li. Using a Feshbach resonance we create a strongly
interacting Bose gas of 6Li dimers. After suddenly switching off the strongly con-
fining lattice potential phase fluctuations transform into density fluctuations. We
evaluate density-density correlations after a certain expansion time to probe the
decay of phase correlations. Since our high-resolution imaging system allows us
to resolve density fluctuations after short expansion times the cloud’s shape does
not deviate significantly from its in-situ distribution. This enables us to locally
probe phase fluctuations in areas of specific density. In the central region of the
cloud corresponding to high densities we observe evidence for the algebraic decay
of phase correlations predicted for the superfluid phase in 2D. In outer regions of
the cloud corresponding to low densities we find evidence for the phase transition
where phase correlations decay on short length scales. We extract the total crit-
ical phase space density (nλ2T )c = 11.6 ± 1.1 in the strongly interacting regime
with g̃ ≈ 2.7. We obtain the cloud’s temperature from the thermal wings which
are clearly visible in the momentum distribution. The momentum distribution is
obtained by expanding the gas for a time t = T/4 in a weak magnetic trap with
frequency ω = 2π/T . By calculating the power spectrum of density-density cor-
relations in areas of specific density n we are able to extract the algebraic scaling
exponent and the microscopic cutoff length over a wide range in phase space den-
sity nλ2T = 8− 23. The scaling exponent significantly increases for decreasing nλ2T
and reaches values consistent with 1 around the critical point.
The local evaluation of density-density correlations could be successfully tested
using test distributions with imprinted correlations. Further, we discussed limit-
ing physical factors in our analysis. While shot noise contributions can be easily
subtracted, the limited depth of field of our imaging system may be a major com-
plication for the extraction of reliable quantitative results. We could successfully
implement a laser pulse to significantly slow down the quick expansion of the cloud
in axial direction. Using this pulse in combination with several different expansion
times we are optimistic to fully reconstruct the decay of phase correlations in a
strongly interacting 2D Bose gas.
Our measurement marks an important step to test the predicted connection be-
tween the superfluid density ns and the decay of phase correlations: τ = 4/nsλ

2
T .

The reason for the lack of quantitative studies of the BKT transition and its con-
nection to superfluidity lies in the difficult detectibility of the superfluid density.
According to Landau’s two-fluid model5 the total density n is the superposition
of a thermal and a superfluid component [98]. We cannot directly image the su-
perfluid component because absorption images only probe the total density of an

5The two-fluid model was originally proposed to describe liquid helium films, but is also accurate
for the description of strongly interacting two-dimensional quantum gases
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atomic gas. Instead, one can study excitiations as a probe of superfluidity. An
intriguing possibility to access the superfluid component lies in the excitation of
second sound, in which the superfluid and normal part of the gas oscillate out of
phase. In a recent experiment by Sidorenkov et al. [99] second sound was observed
in a strongly interacting Fermi gas and used as a probe of the superfluid density.
So far second sound could not be observed in any 2D system [100].
Another possibility to access the superfluid density in 2D can be achieved by mov-
ing an obstacle through the cloud and observe the onset of dissipation above a
critical velocity vc as predicted by the Landau criterion. Recently, Desbuquois et
al. [65] used a red-detuned laser beam as a local perturbation to probe superflu-
idity in a 2D Bose gas. Besides the striking evidence for superfluidity, they found
evidence for the superfluid jump by stirring the cloud in areas of different density.
In future experiments, we plan to probe superfluidity in a 2D Fermi gas similarly
to the experiment by Desbuquois et al. [65] and our recent experiment in 3D [15]
which is presented in chapter 5. In combination with the results of the present
chapter, we should be able to test the connection between phase correlations and
superfluid density as predicted by BKT theory.

Shortly before submitting this thesis, we conducted another set of measurements
to access the algebraic scaling exponent. Preliminary results suggest an additional
dependence on the detuning of the imaging light and the position of the imaging
objective in axial cloud direction. Further, the effect of in-situ density fluctuations
and interaction effects during expansion were not considered in this chapter. Even-
tually, a reliable determination of the scaling exponent requires a full account of
imaging artefacts and physical complications during the initial expansion. At the
moment, we are performing systematic studies of imaging effects. Additionally, we
analyse spatial density correlations after several short expansion times to under-
stand the initial evolution from phase to density fluctuations. As demonstrated in
the previous chapters, we can extract local density-density correlations with high
precision. We are therefore optimistic to provide a detailed analysis of in-situ phase
correlations in future investigations.
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5 The critical velocity in the
BEC-BCS crossover

Superfluidity is one of the most remarkable examples of collective behaviour in
quantum systems. Obstacles moving through a superfluid with a speed below a
certain critical velocity do not excite the quantum system. Here, we determine
the critical velocity in an ultracold gas of 6Li in the BEC-BCS crossover. I took
part in the measurements of the speed of sound which serves as a reference for
the critical velocity. Additionally, I contributed to the derivation of the theoretical
prediction for the speed of sound in the BEC-BCS crossover based on the T = 0
equation of state by Astrakharchik et al. [54]. Further, I took part in verification
measurements of the critical velocity. The following section was initially published
as a preprint [15] and is reprinted without modifications.
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We map out the critical velocity in the crossover from Bose-Einstein condensation (BEC) to
Bardeen-Cooper-Schrieffer superfluidity with ultracold 6Li gases. A small attractive potential is
dragged along lines of constant column density. The rate of the induced heating increases steeply
above a critical velocity vc. In the same samples, we measure the speed of sound vs by exciting
density waves and compare the results to the measured values of vc. We perform numerical simu-
lations in the BEC regime and find very good agreement, validating the approach. In the strongly
correlated regime, where theoretical predictions only exist for the speed of sound, our measurements
of vc provide a testing ground for theoretical approaches.

PACS numbers: 03.75.Kk, 03.75.Ss, 05.30.Fk, 67.85.Lm

Frictionless flow of charged or neutral particles is
one of the most striking macroscopic phenomena aris-
ing from quantum physics. Its appearance is remarkably
widespread, ranging from superconductivity in solids to
superfluidity in liquids and dilute gases with flow of either
bosonic or fermionic particles. For technological applica-
tions, stability against thermal fluctuations or external
perturbations is crucial. The corresponding quantities,
i. e. critical temperature and critical velocity, are typi-
cally highest in the strongly correlated regime, where the
interactions stabilizing the many-body state are particu-
larly strong. Attaining a full understanding of the under-
lying microscopic mechanisms in this regime is one of the
major challenges of modern physics. Ultracold atomic
gases have emerged as an excellent platform to study the
influence of microscopic physics on macroscopic observ-
ables [1–4].

Here, we explore the stability of superfluids against ex-
ternal perturbation in the crossover from Bose-Einstein
condensation (BEC) of composite bosons to Bardeen-
Cooper-Schrieffer (BCS) pairing of fermions. An obsta-
cle consisting of a small attractive potential is moved
through an oblate superfluid gas. Above a critical ve-
locity heating is observed, as shown in Fig. 1. For a
pointlike weak perturbation, the Landau criterion vc =
minp(ε(p)/p) makes the direct connection between the
critical velocity vc as a macroscopic observable and the
microscopic excitations of the system with energy ε(p)
and momentum p. One source of heating is the excitation
of phonons. For these excitations, the Landau criterion
predicts that the critical velocity equals the sound ve-
locity vs, which can be calculated within the Bogoliubov
approximation for a weakly interacting Bose gas. Conse-
quently, we measure vs as well by exciting and tracking
density modulations. The obtained results are compared
to the critical velocities.

Previously, vc has been measured in ultracold Bose and

FIG. 1: A red detuned laser beam with waist w moves
through the cloud with velocity v, where the obstacle size
is on the order of the inter-particle separation d (inset). After
stirring, the column integrated density ñ0(v) at the center of
the cloud is reduced for v > vc compared to the unperturbed
value, indicating heating. For a superfluid gas (blue circles),
the critical velocity vc can be determined from a bilinear fit
(blue line) and in a thermal cloud (red circles and line), no
critical velocity can be observed. The data is acquired at
B = 806 G, a = 13500 a0 with ñ0 = 1.11 µm−2, N = 6100 for
the superfluid.

Fermi gases. Weakly interacting three-dimensional [2]
and two-dimensional [3] BECs were probed with moving
repulsive obstacle potentials and critical velocities of 10 %
and 60 % of the Bogoliubov sound velocity were found.
It is expected that vortex excitations limited vc [5] since
the healing length was much smaller than the obstacle
size. In Fermi gases, vc was determined in the BEC-BCS
crossover by subjecting the cloud to a moving optical
lattice [6]. A comparison with theory was performed at
the universal point yielding vc ≈ 70 % vs. The precise
microscopic excitation mechanism is not fully understood
yet, but theoretical analyses [7] suggested that it is quite
different from the one relevant in our measurements. In
the crossover, vs was measured as well [8]. However, in
those experiments no comparison to vc was made.

Due to the high optical resolution and low densities
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achieved in our apparatus, it is finally possible to ma-
nipulate and probe superfluids on their intrinsic length
scales. The obstacle size is on the order of the heal-
ing length in the BEC regime, the coherence length in
the BCS regime, and the inter-particle separation in the
crossover. Our main results are shown in Fig. 2: they
consist of measurements of vc, vs, and a detailed com-
parison with theory in the entire crossover. The results
for vs are in very good agreement with the theoretical
prediction. In the BEC regime, the critical velocity is
found to be significantly smaller than vs but in excellent
agreement with numerical simulations. The simulations
take all experimental details into account and allow us to
determine the origins of the reduction. Having validated
the method in the BEC regime, our results in the strongly
correlated regime may provide valuable benchmarks for
theory. In the BCS regime, pair-breaking excitations are
expected to limit vc and our results are in qualitative
agreement.

We prepare 6Li atoms with mass m in a balanced mix-
ture of the two lowest hyperfine states with a similar
procedure as described in Ref. [9]. Ultimately, the atoms
are trapped in a highly elliptical optical dipole trap with
a beam waist of 10 µm × 370 µm and a wavelength of
1064 nm. Typical trap frequencies are ωz ≈ 2π · 550 Hz
and ωr ≈ 2π · 30 Hz in the vertical and radial direction.
The radial confinement is mainly caused by the curva-
ture of a radially symmetric magnetic field. We adjust
the final evaporation to obtain a constant line of sight
integrated central density of ñ0 = (1.15 ± 0.05) µm−2

per spin state. Depending on the interaction strength,
this corresponds to a total atom number N of 2500
to 14000 per spin state. We estimate the systematic
errors on atom numbers and densities to be approxi-
mately ± 20 %. Although the vertical confinement dom-
inates, effects caused by reduced dimensionality are neg-
ligible since EF /~ωz > 4.2 in all measurements, where
the Fermi energy EF and wavevector kF are defined
as EF = ~2k2F /2m = ~(ω2

rωz · 6N)1/3. A measure for
the temperature T is provided by the observed conden-
sate fractions in the BEC regime of approximately 80 %.
Since we observe no significant heating during magnetic
field ramps, we use the theory in Ref. [10] to estimate
the temperature in the BCS regime, yielding values of
T/TF ≈ 7 %.

In the actual stirring experiment, a red-detuned laser
beam forms an attractive potential. This obstacle traces
out a circular trajectory with speed v and radius r =
10 µm along lines of constant column density ñ(r) ≈ ñ0
within the superfluid core. The beam has a wavelength of
780 nm and is focused to a waist w of 2.4 µm× 1.9 µm, a
size comparable to the interparticle distance d = n−1/3 ≈
1.5 µm at unitarity. The relative column integrated den-
sity increase in the focus is approximately 85 %. The
corresponding beam powers were adjusted depending on
the interaction strength.

FIG. 2: (a) Critical velocity vc (green filled circles) and speed
of sound vs (red open circles) in units of the Fermi velocity
vF throughout the BEC-BCS crossover. The error bars cor-
respond to the fit errors. A statistical error for vc (black open
square) was determined from five measurements. The sim-
ulated critical velocities are marked with crosses. The solid
(dot-dashed) curve is the theory prediction for vs assuming
that the maximum (column averaged) density is relevant for
sound propagation, see main text. The pair breaking velocity
vpb providing an upper bound for vc in the BCS regime is
plotted with a dashed line. (b) Dispersion relations for the
BEC and the BCS limiting cases (red) and the tangent to this
curve from the origin to visualize the Landau criterion (grey).

The stirring sequence proceeds as follows: first, the
scattering length a is set to the desired value by ramping
the magnetic field to a value between 750 G and 890 G
close to a broad Feshbach resonance, followed by 50 ms
thermalization time. Next, the power of the moving
obstacle beam is linearly ramped up within 10 ms and
the gas is stirred for 200 ms before the power is linearly
ramped down in 5 ms. After 100 ms thermalization time
the magnetic field is ramped to 680 G in 100 ms and an
in-situ absorption image of the atoms is acquired. We
repeat this sequence typically ten times for each speed v
and extract the radially averaged and line of sight inte-
grated density distribution ñ(r) from the mean of those
datasets, accounting for optical saturation effects [11].
Since the gas is well in the BEC regime at the time of
imaging, we determine the central column density ñ0(v)
as well as the condensate fraction from a bimodal fit.
Heating is indicated by a reduction in either, yet ñ0(v) is
the more robust measure since evaporation upon heating
can occur in our trap of finite depth.

We observe a significant reduction in ñ0(v) and hence
heating only above a threshold velocity which we identify
with the critical velocity as shown in Fig. 1. The exact
value is obtained from a fit with a continuous bilinear



3

function [6]. It has a constant value of ñ0 below vc and
decreases linearly above, see blue line in Fig. 1. The
figure also shows that stirring within the thermal region
of the cloud leads to heating for all obstacle speeds.

We determine the critical velocities for different in-
teraction strengths −1/kFa throughout the whole BEC-
BCS crossover and far into the BEC regime and plot
them in units of the Fermi velocity vF in Fig. 2(a).
Qualitatively, the data shows a maximum of vc close to
1/kFa = 0 and a decrease towards the BEC and the BCS
side of the resonance, in agreement with Ref. [6]. The ab-
solute values range between 1.7 mm/s ≤ vc ≤ 6.3 mm/s.
For comparison we also measure the speed of sound vs by
creating a small density excess in the center of the gas,
releasing it and tracking the maximum of the outgoing
circular density wave. Here, the stirrer beam is placed at
the center of the gas, its power is adiabatically raised to
values between 7 µW and 40 µW in 100 ms and suddenly
switched off.

To compare the experimental results with theoretical
predictions, it is convenient to consider three regimes,
the BEC, the strongly correlated regime, and the BCS
regime. In the latter (−1/kFa > 1), superfluids are
formed from loosely bound Cooper pairs. The excita-
tion spectrum is sketched in the r. h. s. of Fig. 2(b).
Pair breaking excitations limit the critical velocity to

mv2pb =
(
∆2 + µ2

)1/2 − µ [12]. The pair breaking veloc-
ity vpb is plotted as the dashed line in Fig. 2(a), where
we determined the gap ∆ and the chemical potential µ
at T = 0 by solving the mean field gap the number equa-
tions numerically [13, 14]. The curve can be extended
into the strongly correlated regime, where no simple the-
oretical description exists. Here, the mean field approach
can at least provide a rough estimate for vc and our data
appears to be in qualitative agreement. We expect tem-
perature effects to be small since T/Tc < 0.5 [15].

Before discussing the strongly correlated regime in
depth, which is theoretically largely inaccessible and
hence particularly interesting, we benchmark our experi-
ment against theory. In the BEC regime (−1/kFa < −1),
the gas forms a molecular BEC of tightly bound dimers.
Within Bogoliubov theory the dispersion relation is lin-
ear at low momenta with a slope vs, see l. h. s. of Fig.
2(b), and vc should equal vs. The measured sound veloc-
ities are in very good agreement with the two theoretical
predictions shown in Fig. 2(a). When the sound wave-
length is large compared to the vertical extent of the
cloud, the wave effectively probes the column averaged
density (dot-dashed line), provided the gas is fully hydro-
dynamic [16]. Otherwise, the wavefront observed should
be the one travelling with the speed determined by the
maximum density along the z-direction (solid line). Since
the gas is only partially hydrodynamic in the vertical di-
rection, we expect the experimental data to lie between
the two curves. We note that the measurements of vs

FIG. 3: The simulated heating rates normalized by the stir-
rer depth U2. The complexity is gradually increased: blue
squares depict the idealized case of a very cold homogeneous
sample stirred with linear pattern. The relative density excess
η in the weak stirrer potential U = kB · 2 nK is only 3 %. For
all datasets, the Bogoliubov result for vs is 4.4 mm/s. The
red open circles depict a simulation of the experimental case:
a trapped sample is stirred circularly with a stirrer of realistic
depth. A lower temperature is chosen for technical reasons.
Here, the y-axis scaling factor is one. In the inset, the results
for the heating observed in the central column density ñ0(v)
are compared. We find very good agreement between the ex-
perimental (blue filled circles) and the simulated results (red
open circles). The bilinear fits to extract vc are shown with
solid lines. In the inset U = kB · 35 nK.

presented here probe a new regime since all previous ex-
periments determining vs were performed in prolate gas
clouds [8] described by effectively one-dimensional hydro-
dynamics [16]. The theory curves for vs are obtained by
taking thermodynamic derivatives [17] of the equation of
state calculated in numerically exact zero-temperature
quantum Monte Carlo simulations [18]. The homoge-
neous theory is applied using the local density approxi-
mation: the density distribution in the trap, given by the
equation of state, is used to calculate kF and vF of the
corresponding trapped clouds [19]. Temperature effects
should be small since the temperatures in the experiment
are smaller than the mean field energy in the BEC regime
and the Fermi temperature in the BCS regime [20].

In order to understand the critical velocity in the BEC
regime, we perform simulations and identify the factors
reducing vc. These are the finite temperature, the in-
homogeneous density profile along the strongly confined
direction, the circular instead of linear motion of the stir-
rer, and to a lesser degree the finite depth of the obsta-
cle potential. We use a classical field method, which is
the limiting case of the truncated Wigner method used
in Ref. [21]. The time evolution of an ensemble of
complex-valued fields is calculated using classical equa-
tions of motion. The initial states are generated from a
grand canonical ensemble via a classical Metropolis al-
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gorithm. We employ a real-space representation on a
lattice with 60 × 60 × 3 (140 × 140 × 11) sites for the
simulation of homogeneous (trapped) systems. The dis-
cretization length is 1 µm. All simulations are performed
with the same stirring time, stirrer beam size, dimer-
dimer scattering length aDD = 0.6×3634 a0, and density
n3D = 0.486 µm−3 (and column density in the trapped
case) as the experimental data point at −1/kFa ≈ −3.5.
When choosing all remaining parameters, i. e. temper-
ature, confining potential, stirrer depth, and motion in
accordance with the experiment, we reproduce the exper-
imentally measured vc. To disentangle the various fea-
tures of the system that influence these measurements,
it is instructive to start with an idealized case: a homo-
geneous gas at a low temperature of 1 nK, stirred along
a linear path. In this case, the heating rate increases
steeply at a critical velocity which is approximately vs
as shown in Fig. 3. To determine vc, the fit function

A ·
(
v2 − v2c

)2
/v+B is used for v > vc [22], with the free

parameters A, B and vc. The simulated heating rates
are in good agreement with the second order perturba-
tion theory that predicts a scaling with U2. Moreover,
by increasing the stirrer depth U , we observe that the
extracted vc is slightly reduced. These results demon-
strate that we work with relatively weak perturbations
and that vortex excitations do not limit vc [5], in con-
trast to previous experiments in 3D [2] and 2D atomic
BECs [3]. The simulations also show that attractive stir-
rer potentials are preferable to realize a stirrer. For larger
repulsive potentials [2, 3] the inherent density reduction
strongly reduces the observed critical velocity as shown
in Fig. 3.

Next, the effects of the finite experimental tempera-
ture and of the circular motion of the stirrer are investi-
gated. The simulations show that both features reduce
vc by approximately 15 %. Having both present simul-
taneously causes a small further reduction of vc. The
reduction at finite temperature might be due to vortex-
antivortex excitations, or rotonic precursors of them. As
the temperature is increased above the mean field energy,
density fluctuations increase and vortices can nucleate at
points of minimal density. That the circular motion can
reduce vc can be seen in perturbation theory performed
in momentum space: here, the motion of the perturba-
tion consists of a distribution of velocities rather than a
single velocity.

Finally, we perform a simulation of an inhomogeneous
system in a trap, with a realistic temperature and a cir-
cular stirring motion. The simulated critical velocity of
1.6(1) mm/s agrees excellently with the experimentally
measured value of 1.7(3) mm/s, see Fig. 2. We believe
that the additional reduction of 39 % with respect to the
homogeneous simulation result is mainly due to probing
lower density regions along the stirrer axis. The results
for the central column densities are in good agreement
as well, see inset of Fig. 3, considering the experimental

signal to noise.

We now turn to the strongly correlated regime. Due to
the lack of a small parameter, perturbation theories are
inaccurate and the quasiparticle description breaks down.
Hence, the velocities vs and vpb associated with phonon
creation and Cooper pair breaking excitations can only
provide upper limits for vc. We are not aware of a predic-
tion for vc, even at the universal point where |a| → ∞.
The largest value for vc we observe is vc = 0.31(2) vF ,
close to the universal point, see Fig. 2. Reference [6]
found a value of vc = 0.31 vF using a different excitation
mechanism. These values are considerably smaller than
the corresponding vs ≈ 0.40(1) vF we measure and the

theory prediction vs = ξ
1/4
B /
√

3 vF = 0.45 vF [14, 23] em-
ploying the local density approximation. Very recently, a
critical velocity of vc = 0.42+0.05

−0.11 vF was observed in an
elongated 6Li gas oscillating with respect to a 7Li BEC
[25]. Here, the onset of heating is predicted to occur for
a relative velocity that equals the sum of the individual
sound velocities [26].

In conclusion, we have demonstrated the breakdown
of superfluidity due to moving obstacle across the BEC-
BCS transition, for the first time in close analogy to Lan-
dau’s Gedankenexperiment. We compare the results with
theoretical predictions throughout and achieve quanti-
tative understanding in the BEC regime by performing
numerical simulations. Pointlike defects also play a role
in strongly correlated high temperature superconductors.
The experiment presented here provides the opportunity
to isolate relevant effects in a very clean and controllable
environment. Of particular interest for future studies are
strongly correlated two-dimensional superfluids.
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6 The speed of sound in a
strongly-interacting 2D Fermi gas

The propagation of sound is a manifestation of collective behaviour in quantum
systems. We measure the speed of sound in a 2D ultracold gas of 6Li in the BEC-
BCS crossover and compare our results to values obtained from the equation of
state (EOS) which we determine from in-situ density distributions. Similarly to
our measurements in 3D [15], the speed of sound may serve as a reference for
future studies of the critical velocity in a 2D Fermi gas. A detailed description of
our measurements and results will appear in the PhD thesis by Kai Morgener [19].
In the following, I will present a short summary of his work. I contributed to the
planning, performing and evaluation of our measurements of the speed of sound. I
also contributed to the theoretical prediction based on the T = 0 equation of state
by Bertaina et al. [95].

Probing thermodynamical behaviour in two-dimensional quantum gases

Thermodynamical properties of a system are fully characterised by an EOS which
links macroscopic state variables like pressure P , density n and temperature T .
While the EOS itself encodes static properties of a system, derivatives of the EOS
capture the dynamic response to small changes in state variables. In principle, the
EOS can be obtained from a full microscopic description of the system. In the case
of strongly interacting quantum systems in 2D a full theoretical unterstanding is
often lacking, making a derivation of the EOS difficult. Experiments with ultracold
quantum gases enable probing of the EOS of strongly interacting 2D systems by
studying its static and dynamic properties.
Experimental studies of the static density distribution1 in weakly interacting 2D
Bose gases by Hung et al. [58] and Yefsah et al. [59] revealed the scale-invariant
density EOS n = n(µ/T ). Recent experiments probed the equation of state in
strongly interacting 2D Bose gases [60] and the ground-state pressure EOS in the
BEC-BCS crossover [62]. So far there are no experimental studies of the EOS in
the BEC-BCS crossover which include the effect of temperature.
Dynamical properties of 2D Fermi gases in the BEC-BCS crossover were studied
in the damping of breathing modes [16] and spin transport [17]. Both experiments
delivered results which are not theoretically understood, illustrating the need for

1The presence of a trapping potential V (r) can be described by a local chemical potential
µ(r) = µ0 − V (r). Therefore, the in-situ density distribution n(r) of an atomic cloud with
temperature T directly gives the density equation of state n = n(µ, T ).
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t = 0.0 ms t = 0.2 ms t = 0.4 ms t = 0.6 ms

Figure 6.1: Sound propagation in a strongly interacting 2D Fermi gas. We excite
sound by creating a density perturbation with a tightly focused red-detuned dipole trap in the
center of a strongly interacting 2D Fermi gas with particle number N = 35000 and interaction
parameter ln(kFa2D) = 0.8. The propagation of the density is tracked for increasing times t
to determine the speed of sound.

further studies of dynamical properties in strongly interacting 2D Fermi gases [101–
103]. While the breathing mode is only sensitive to the polytropic exponent γ in an
EOS µ ∝ nγ, the speed of sound vs =

√
n/m · ∂µ/∂n captures more information

about the chemical potential µ and allows for a more direct comparison with recent
predictions of the equation of state [95]. Further, the speed of sound in 2D might
reveal the jump in superfluid density as pointed out by Oszawa et al. [100].
Here, we measure the speed of sound in a 2D Fermi gas in the BEC-BCS crossover.
For each covered interaction parameter, we determine the EOS from in-situ images
as an alternative way to extract the speed of sound. We find excellent agreement
between the two approaches to determine the speed of sound. Our measurements
connect the static and dynamic behaviour of a 2D Fermi in the BEC-BCS crossover
and may provide new insights to understand the controversially discussed topic of
strong interactions in 2D quantum gases [101].

Preview: measurements of the speed of sound in 2D

We prepare a single layer of a 2D Fermi gas of 6Li as described in chapter 2.3. We
excite sound by a density perturbation in a highly-oblate 2D geometry similar to
our recent work in 3D [15]. The density perturbation is created in the cloud’s center
with a tightly-focused red-detuned 780 nm dipole trap. The beam power is ramped
up linearly to its final value and suddenly switched off. We track the outward
moving density perturbation and measure the distance between peak position of
the density excess and cloud center after various delay times to obtain the speed
of sound as shown in Fig. 6.1. We measure the speed of sound in clouds with fixed
total atom number per spin state N = 25000 and various interaction strengths
as shown in Fig. 6.2. We tune the interaction parameter ln(kFa2D) ≈−1.5 to
1.5 across the BEC-BCS crossover by exposing the cloud to magnetic fields B =
730 G− 890 G, facilitating the broad Feshbach resonance of 6Li. We compare our
results to the speed of sound obtained from the pressure EOS v2s = 1/m · ∂P/∂n.
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Figure 6.2: The speed of sound in the 2D BEC-BCS crossover. We create a local
density perturbation in the center of a 2D Fermi gas and track the propagation of the
density maximum (s. Fig. 6.1) to obtain the speed of sound for different values of the
interaction parameter ln(kFa2D) (blue dots). Analysing the density profile n(r) of the sound
propagation medium, we obtain the pressure EOS P (n) to calculate the speed of sound as
vs =

√
1/m · ∂P/∂n (blue dots). Our results are compared to the recent zero-temperature

QMC EOS by Bertaina et al. [95] (black line).

We obtain P (n) by analysing the in-situ density distribution n(r) of the trapped
2D Bose gas. We determine the spatial form of the trapping potential V (r) to
obtain the pressure P =

∫
n(V )dV . As shown in Fig. 6.2, we observe excellent

agreement between the two approaches to determine the speed of sound. Therefore,
our results provide a reliable testing ground for theoretical predictions of the EOS.
Recent zero-temperature QMC calculations by Bertaina et al. [95] are in good
agreement with our experimental results.
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in two-dimensional Fermi gases , Nat. Phys. 9, 405 (2013).

[18] W. Weimer, Probing superfluid properties in strongly correlated Fermi gases
with high spatial resolution, Ph.D. thesis, Universität Hamburg (2014).

[19] K. Morgener, tba, Ph.D. thesis, Universität Hamburg (2014).

[20] I. Bloch, J. Dalibard, and W. Zwerger, Many-body physics with ultracold
gases , Rev. Mod. Phys. 80, 885 (2008).

[21] D. Bishop and J. Reppy, Study of the Superfluid Transition in Two-
Dimensional He 4 Films , Phys. Rev. Lett. 40, 1727 (1978).

[22] K. Novoselov, A. Geim, S. Morozov, D. Jiang, M. Katsnelson, I. Grigorieva,
S. Dubonos, and A. Firsov, Two-dimensional gas of massless Dirac fermions
in graphene, Nature 438, 197 (2005).

[23] I. Bloch, Ultracold quantum gases in optical lattices , Nat. Phys. 1 (2005).

[24] J. Dalibard, F. Gerbier, G. Juzeliunas, and P. Öhberg, Colloquium: Artificial
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Bose-Einstein condensate in an optical surface trap, Phys. Rev. Lett. 92,
173003 (2004).

[44] G. Modugno, F. Ferlaino, R. Heidemann, G. Roati, and M. Inguscio, Produc-
tion of a Fermi gas of atoms in an optical lattice, Phys. Rev. A 68, 011601
(2003).
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wurde und ich keine anderen als die angegebenen Hilfsmittel – insbesondere keine
im Quellenverzeichnis nicht benannten Internet-Quellen – benutzt habe und die Ar-
beit von mir vorher nicht einem anderen Prüfungsverfahren eingereicht wurde. Die
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