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Abstract
This thesis addresses the question whether Friedel oscillations are observable in ul-
tracold atomic Fermi gases based on the example of our experimental setup. The
influence of the precise potential shape as well as the temperature on Friedel oscilla-
tions that emerge from a central barrier in a one-dimensional box-shaped potential is
studied in a numerical simulation. Furthermore, a method to flatten an inhomogene-
ous potential by means of a digital micromirror device is presented which was tested
in a simulation and remains to be implemented in the experiment. In order to predict
the visibility of the Friedel oscillations a detailed analysis of the experimental signal
to noise is carried out. After all the results suggest that an observation of Friedel
oscillations is in general possible in our experiment. Yet, it will be challenging and
an average over multiple absorption images will be required for significant reduction
of the photon shot noise. Other experiments that work with heavier fermionic atoms
or with higher resolutions are found to be more suitable for this intent. Furthermore,
this work reports on experiments based on the Kapitza-Dirac effect that were used for
the characterization of the magnification of our imaging system and the calibration
of an optical lattice. The theory of this effect and the evaluation of the data are
discussed in detail. Last, a comparison between in-situ and time of flight images of a
two-dimensional non-interacting homogeneous Fermi gas is presented that allowed for
the determination of the Fermi vector and to give an upper bound on the temperature
of the system.





Zusammenfassung
Diese Arbeit diskutiert anhand des Beispiels unseres Experiments, ob Friedel Oszil-
lationen in ultra-kalten atomaren Fermi Gasen beobachtbar sind. Der Einfluss der
Form des Potentials sowie der Temperatur auf die Friedel Oszillationen, die von einer
Barriere in einem eindimensionalen kastenförmigen Potential hervorgerufen werden,
wird im Rahmen einer numerischen Simulation untersucht. Es wird ferner eine Met-
hode eingeführt, um mit Hilfe eines ’digital micromirror device’ Inhomogenitäten
eines Potentials auszugleichen. Diese Methode wurde in einer Simulation getestet,
die experimentelle Implementation steht noch aus. Um die Sichtbarkeit der Friedel
Oszillationen zu beurteilen, wird eine detaillierte Analyse des Signal zu Rausch Ver-
hältnisses durchgeführt. Unter Berücksichtigung all dieser Aspekte scheint es mög-
lich, Friedel Oszillationen in unserem Experiment zu beobachten. Voraussichtlich
wird eine solche Beobachtung eine experimentelle Herausforderung darstellen und
eine Mittelwertbildung über mehrere Absorptionsabbildungen der Dichteverteilung
erfordern. Darüber hinaus werden Experimente vorgestellt, bei denen der Kapitza-
Dirac Effekt ausgenutzt wurde, um die Vergößerung unseres Abbildungssystems zu
charakterisieren sowie ein optisches Gitter zu kalibrieren. Zuletzt werden Messungen
von der Expansion eines zweidimensionalen, nicht-wechselwirkenden und homogenen
Fermi Gases vorgestellt. Anhand eines Vergleiches von in-situ Bildern mit Flugzeit
Bildern konnten der Fermi Vektor und eine obere Grenze für die Temperatur des
Systems bestimmt werden.
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1 Introduction

In the sixties Jacques Friedel intensively investigated the electronic structure of metals
and alloys [1–3]. In particular he aimed to describe the mechanism of charge screening
on a quantum mechanical level. A side product of his research was the theoretical
prediction of an oscillatory behavior of the electronic density around an impurity
potential, the so-called Friedel oscillation. Friedel himself did not pay much regard
to this discovery because it did not provide net charge for the screening.

“More generally, for any given perturbation Vp the oscillating term [...]
will give rise to similar interference fringes, which should be computed
in the same way. This has not been done so far, but the resulting effect
should not be very important.” (Friedel, 1954 [3])

Friedels rather skeptical stance appeared to be a considerable underestimation of his
own findings. Today they are known to mediate long range interactions between
individual impurities which are responsible for adsorbative phenomena and magnetic
properties [4–6].

“Their analysis provides a direct observation of screening and of electron-
electron interaction. Moreover, these oscillations lie at the foundation of
the description of the indirect coupling between magnetic moments via
the conduction electrons in a metal with the famous Ruderman-Kittel-
Kasuya-Yosida (RKKY) interaction potential, as well as of the long-
range adsorbate interaction mediated by a two-dimensional electron gas.”
(Bena, 2016 [7])

Friedel oscillations have first been observed by Crommie et al. in 1993 on the sur-
face of copper [8]. By means of scanning tunneling microscopy (STM) they uncovered
standing wave patterns emerging from steps and point defects in the electronic local
density of states n(r, E) as shown in Figure 1.1. By relating the wavelength of the
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1 Introduction

Figure 1.1: Direct observation of Friedel oscillations via scanning tunneling microscopy, re-
printed from [8]. Friedel oscillations with a wavelength of ∼ 15Å emerge from steps or point
defects in the surface of copper.

oscillation to the electron energy the analysis of Friedel oscillations became a power-
ful tool for the determination of electronic band structures [8–11]. As the research
on Friedel oscillations proceeded anisotropic oscillations were reported [12] as well as
inelastic Friedel oscillations [13], Friedel oscillations in one-dimensional electron ga-
ses [14] or oscillations whose giant amplitude is not captured by Friedels one-particle
scattering picture, suggesting that more sophisticated many-body mechanisms are at
work which enhance the oscillations [4]. Still, new applications and implications of
Friedel oscillations are being discovered, clearly showing that their potential has not
yet been exploited to its full extent. For example, Friedel oscillations may provide
access to chiral properties of the Dirac electrons in graphene or to information about
the underlying model describing high temperature superconductivity [7]. Further the-
oretical studies investigate the impact of Friedel oscillations on the critical properties
and phase behaviors of 2D and 3D systems [15] or propose to focus Friedel oscillations
by manipulating Fermi surfaces and thereby to tailor long range interactions [16].
In this thesis, I investigate whether Friedel oscillations can be observed in ultracold

dilute atomic gases. Ultracold fermionic gases have been cooled to quantum degene-
racy for the first time at the turn of the century [17] and since then have emerged
as a novel platform to study fundamental concepts of many-body physics in highly
controllable experimental model systems. Achievements include the observation of
the superfluid to Mott insulator transition [18] and the realization of superfluids in
the crossover from Bose-Einstein condensation (BEC) to Bardeen-Cooper Schrieffer
(BCS) type superfluids [19–21]. However, Friedel oscillations have not been observed
yet in ultracold atomic gases. Neither are we aware of a theoretical study investiga-
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Figure 1.2: Numerically calculated density distribution of non-interacting fermions in a one-
dimensional box-like test potential measured in units of the Fermi energy Ef . Friedel oscillations
arise at the walls closing the box from both sides as well as at the barrier that is placed in the
center of the box.

ting whether it is feasible to observe them in this framework. Here, I study the latter
issue in the context of an experiment in the group of Prof. Moritz that seems particu-
larly well suited to the task. The experiment has already allowed the determination
of the critical velocity of a superfluid over the BEC-BCS crossover [17]. Within the
time frame of this thesis we have been able to create homogeneous two-dimensional
Fermi gases. The following route towards the observation of Friedel oscillations seems
to be promising: First, the 2D cloud is separated into an array of one-dimensional
gases, since in 1D Friedel oscillations should decay with with 1/r instead of 1/r2.
Then, a thin barrier could be imprinted at the center of each tube, giving rise to
Friedel oscillations in the density as shown in Figure 1.2. These would be observed
with absorption imaging in real space with a spatial resolution of about 1 µm.
The approach outlined above has the potential to complement the STM method,

which until today is the only method to observe Friedel oscillations. Whereas STM is
limited to the observation of low dimensional surface states of materials, absorption
imaging of ultracold gases could in principle resolve Friedel oscillations in the bulk.
Besides, using STM the interactions are always determined by the properties of the
sample. In experiments with a spin mixture of ultracold fermions, the interaction
between the spins is tuneable via Feshbach resonances [22]. This would allow to
investigate the dependence of the Friedel oscillations on the interactions systemati-
cally. Besides, the surfaces that can be examined with STM always couple to their
carrier with a finite strength, hence it remains questionable how two-dimensional
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(one-dimensional) these systems really are. Within the framework of ultracold atoms
it is possible to generate low dimensional systems with a highly suppressed coupling
to higher dimensions. Another striking difference is that absorption imaging may
allow for the dynamical study of Friedel oscillations: impurities can be added and
densities can be measured on microsecond timescales which is much faster than the
millisecond timescales of the system dynamics associated with the Fermi energy. In
contrast, dynamics in the solid state happen on femtosecond timescales exceeding
the STM time resolution which is on the order of nanoseconds. Finally, whereas the
STM measures the local density of states but not the electronic particle density as
a whole, absorption imaging of ultracold gases does the opposite. Correspondingly,
STM detects standing wave patterns in the density of electrons with a specific energy
below or equal the Fermi energy. Ultracold atoms are not suitable for energy resolved
imaging, but they could make Friedel oscillations in the strict sense amenable, i.e.
the oscillations in the total electronic density.
Transferring the problem from solid state physics to an experiment with ultracold

atoms may offer new and complimentary insights into Friedel oscillations but also rai-
ses other difficulties. A crucial factor for the distinctness of Friedel oscillations and
therewith their visibility is the temperature in units of the Fermi temperature T/Tf
and here values below 0.07 have not been reliably reached with weakly interacting
Fermi gases, in contrast to solids. Regarding the temperature measured in units of
the Fermi temperature, the signal to noise ratio and the resolution the performance
of STM exceeds the one of an experiment with ultracold atoms significantly. Howe-
ver, if an observation of Friedel oscillations with ultracold atoms was possible, this
would literally invite to experiment with different combinations of periodic poten-
tials and interaction strengths as well as time dependent impurities. In particular
this approach promises new insights into the role of interactions in 1D and 2D. Since
in one-dimensional systems in the presence of interactions “no individual motion is
possible [and] any individual excitation has to become a collective one” [23], they
constitute a particularly interesting field of research. In this context predictions from
Luttinger liquid theory could be reviewed experimentally [24]. Due to the high de-
gree of control over system parameters Friedel oscillations in a gas of ultracold atoms
would remove the restriction to the study of material specific quantities and open a
straight access to the underlying fundamental physical relations. For these reasons
we decided to investigate the feasibility of an observation of Friedel oscillations in an
ultracold atomic Fermi gas.
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I found that observing Friedel oscillation with sufficient statistical significance will
be challenging in our experiment, despite the combination of high spatial resolution
and long Fermi wavelengths achieved. The fact that the Friedel oscillations exhibit a
wavelength proportional to λf/2, where λf denotes the Fermi wavelength of a system,
demands a small particle density and a high resolution. In our case the resolution
of R ' 1 µm forces us to work with very dilute samples with particle densities of
n2D ' 1/4 µm−2 resulting very low optical densities and hence in a small signal to
noise ratio. Furthermore, very low temperatures and a high degree of homogeneity
in the potential are required and it is questionable whether we can accomplish these
demands. However, for researchers that work with heavier atoms than 6Li and that
can image the fermionic density with higher resolution the chance is higher to detect
Friedel oscillations in a homogeneous cloud of ultracold fermions.
This thesis is structured as follows. I will briefly introduce our experiment, ex-

plain how we generate ultracold Fermi gases and sketch which types of potentials
we can design by means of laser light and magnetic fields. In the third chapter I
numerically simulate the expected density distribution of non-interacting fermions in
a one-dimensional test potential that we should be able to create in the experiment
using optical dipole traps. I will show how such a potential can be realized and inves-
tigate the visibility of the resulting Friedel oscillations by comparing their amplitude
to the amplitude of noise that we expect for the measurement. For this purpose an
analysis of the corresponding signal to noise ratio is carried out. In the following two
chapters two further research endeavors are documented which are partially related
to the topic of Friedel oscillations. In the fourth chapter the characterization of an
optical lattice based on the Kapitza-Dirac effect is treated. The lattice could have
been used for the generation of one-dimensional systems that are ideal for the study
of Friedel oscillation. Unfortunately it had to be disassembled for technical reasons.
Besides, the data was used to determine the magnification of our imaging system
with high accuracy. In the fifth chapter I present a method for the determination of
the Fermi vector in a two-dimensional non-interacting homogeneous Fermi gas that
could be generated within this thesis for the first time. The same method allows to
determine an upper limit on the temperature of the system.
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2 Experiments with ultracold atoms -
a description of our setup

In our experiment we cool gases of neutral atoms down to temperatures where their
physics are governed by the laws of quantum mechanics. Once these temperatures
are reached, the atomic samples are used to investigate fundamental issues in many-
body physics as for example the critical velocity in the BEC-BCS crossover [25] or
the Berezinskii-Kosterlitz-Thouless (BKT) transition in a two-dimensional Bose gas
[26]. For their manipulation we utilize laser light and magnetic fields that interact
with the atoms via the dipole force, the radiation pressure and the Zeeman effect [27].
Here, the principles of the experiment shall be briefly presented to give the reader an
impression of how we actually study ultracold gases. For a more precise description
of our machine the interested reader is referred to the PhD thesis by Wolf Weimer
[28] and by Kai Morgener [29].
Technical progress in the cooling of neutral atoms and the ability of tuning their

interactions via Feshbach resonances has allowed for the realization of specific model
systems with ultracold atomic gases at the end of the last century. Due to the high
degree of control over their parameters these systems can be used to simulate many-
body Hamilton operators that originally describe phenomena in condensed matter
physics and to examine dependencies between physical quantities in isolation [30].
Below a critical temperature bosonic atoms form a Bose-Einstein condensate (BEC),
which was first observed in 1995 [31, 32]. In our experiment we work with fermionic
6Li-atoms, which under normal circumstances cannot condense due to the Pauli ex-
clusion principle but instead form a degenerate Fermi gas. The first realization of a
degenerate Fermi gas of ultracold atoms was reported by DeMarco and Jin in 1999
[17]. 6Li was chosen for our experiment on the one hand because it exhibits a simple
level scheme associated with good cooling features. On the other hand because it
provides a broad magnetic Feshbach resonance which offers the possibility to tune
the interaction between atoms in different spin states across the BEC-BCS crossover
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2 Experiments with ultracold atoms - a description of our setup

Figure 2.1: Overview of the vacuum system used for the preparation of degenerate Fermi gases
with 6Li. The high resolution optical system is referred to as microscope in the text. Reprinted
from [28].

[28, 33].
The generation, the experimental manipulation and the observation of an ultracold

Fermi gas, all takes place within about 15 seconds. The observation via absorption
imaging destroys a sample at the end of each experimental cycle making it necessary
to continuously generate new samples. Temperatures on the nanokelvin scale can
only be achieved if the atomic gas is rigorously isolated from its environment, hence
the whole procedure takes place inside a ultra-high vacuum system with a pressure
of about 2 · 10−11mbar which is shown in Figure 2.1.
Figure 2.2 gives an overview of all the steps that constitute one experimental cycle

and that shall be individually explained in the following. A simple block of lithium
heated in an oven to temperatures around 670 K provides a jet of atoms that we cool
down to nanokelvins in a series of cooling steps. First, the collimated atomic jet passes
through a Zeeman slower where the atoms are decelerated by a counterpropagating
near resonant light beam. Each time an atom absorbs a photon its momentum
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Figure 2.2: Schematic overview over the an experimental sequence. The numbers below the
boxes indicate the approximate temperature scales which are relevant at the corresponding
steps and the approximate number of particles. Reprinted from [28].

changes by ∆p = ~k, where k denotes the wave vector of the photon pointing in the
opposite direction as the atomic motion. In the cause of their deceleration the atoms
are shifted out of resonance with the light due to the Doppler-shift. This effect is
compensated by the application of a location-dependent magnetic field shifting the
atomic energy levels, respectively. A detailed description of a Zeeman slower is given
for example by Metcalf [27]. At the end of the Zeeman slowing stage the atoms are
almost at rest and are captured in a magneto-optical trap (MOT) in the center of the
main chamber. A MOT consists of a combination of a spatially varying magnetic field
and six pairwise counterpropagating red-detuned laser beams whose common crossing
point is located at the local minimum of the magnetic field. This setup induces an
effective position and velocity dependent force on the atoms that results in further
cooling as well as trapping of the atoms. MOT trapping has first been demonstrated
in 1987 [34] and has continued to be the first major cooling step in a sequence for the
preparation of ultracold atoms. However, its cooling capacity is ultimately limited
by photon recoils. From the MOT the atoms are loaded into a red-detuned dipole
trap consisting of two counterpropagating beams in an optical resonator that form a
standing wave. This trap is used to perform a first evaporative cooling step and is
correspondingly called cooling resonator.
Evaporative cooling is based on the loss of the hottest atoms of an ensemble [35].

By continuously reducing the trap depth atoms with highest energy are released
from the trap. Efficient cooling requires that the remaining atoms rethermalize to
a lower temperature equilibrium state. After the evaporation we transfer the atoms
into a transport dipole trap which is a cigar shaped trap generated by a gaussian
red-detuned laser beam. We call this trap the FORT trap, since the used laser
light is far off-resonant. We shift the beam focus and thereby the center of the
trap along the propagation direction of the beam by moving a corresponding lens
which is mounted on an air bearing stage. This motion is slow enough for the atoms

9



2 Experiments with ultracold atoms - a description of our setup

Figure 2.3: Schematic representation of the trap configuration in the science cell. From left
to right: Cigar shaped red-detuned FORT trap (light red) with an cloud of trapped atoms
(dark red). Pancake red-detuned shaped squeeze trap. 2D-lattice (dark green, except central
ellipse), generated by the interference pattern of two crossed blue-detuned beams (light green)
with atoms occupying a single layer (darkest and central ellipse). The figure is adapted from
[36].

to follow the potential adiabatically. The final position is located in the so-called
science cell, where we have good optical access and precise control over magnetic
fields. There another evaporative cooling step is performed and subsequently the
atoms are loaded into a pancake shaped optical trap that is provided by a highly
elliptical beam characterized by its waists of wy = 370 µm and wz = 10 µm. Since
this trap squeezes the atomic cloud along the z-direction we call it the squeeze trap.
The atomic pancake is orientated in the x-y-plane, i.e. parallel to the optical table
and has only a small extent in the z-direction which is the imaging axis in our setup.
Figure 2.3 schematically shows the configuration of the FORT, the squeeze and the
2D-lattice, which is introduced below.
From this point to the imaging process at the end of each cycle the sequence is

determined by the individual experiment. After the manipulation of the atoms that
constitutes the physical experiment we measure the two-dimensional column density
via absorption imaging. For this purpose we apply a collimated resonant laser beam to
the atoms that propagates along the z-axis. The atoms scatter photons from the beam
and therefore cast a shadow. The imaging light propagates through a microscope
resulting in 37.6 fold magnification. The resolution of the microscope is about R =
1 µm. Finally the light is captured by a charge coupled device (CCD) camera. By
comparing the recorded intensity from an image where atoms were present to an image
where no atoms were present we can derive the two-dimensional column density, i.e.
the three-dimensional density integrated along the propagation axis of the imaging
beam.
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Figure 2.4: Intensity distribution of the ring beam along the section shown in the inset. The
inset shows an image of the intensity distribution of the ring beam in the plane of the atoms.
The camera was 200 times saturated at the position of maximum intensity. The effective pixel
size is approximately 0.4 µm.

Regarding the part of the cycle which constitutes the actual experiment, our ma-
chine offers a broad range of tools. To give the reader an impression of the manifold
options we have to manipulate the atoms we introduce the main features of our se-
tup in the following. For example we can load the atomic gas into a single layer
of a blue-detuned one-dimensional optical lattice. The energy spacing between the
ground state and the first excited state exceeds all relevant energy scales making
the sample quasi-2D. Since this lattice is used for the creation of a two-dimensional
quantum system it is called 2D-lattice in our group. It is described in more detail
in the master thesis by Klaus Hueck [36]. Two-dimensional systems have already
been studied since 2001 [37–39], but still there remains a lot of physics to explore in
two dimensions. The setup included a further red-detuned laser beam, the so called
+x-y-lattice beam where +x-y indicates the direction of the beam propagation. It
was retro reflected to create a second optical lattice perpendicular to the 2D-lattice.
Combining the two lattices we can reduce dimensionality even further. The resulting
potential consists of 1D tubes of low potential energy where the atoms accumulate.
Also one-dimensional systems have been generated before for example by Goerlitz
et al. and Moritz et al. [37, 40, 41]. Nonetheless, 1D systems offer a vast field of
research possibilities.
The newest tools added to our experiment are a ring shaped trap and a digital

micromirror device (DMD). The ring trap is realized by a blue-detuned laser beam
propagating along the z-direction whose intensity profile has the shape of a ring in the
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2 Experiments with ultracold atoms - a description of our setup

x-y-plane. This unique intensity distribution displayed in Figure 2.4 is achieved with
the means of three axicons that split a gaussian beam in its center. The radius of
the ring is adjustable from roughly R ' 30 µm to R ' 250 µm and its width is of the
range of 20 µm depending the radius and on the power of the ring beam. By loading
the atoms into the combined potential provided by the ring trap and the 2D-lattice
we can create a homogeneous Fermi gas, a system that had not been generated with
ultracold atoms before. The DMD is a surface consisting of 1920×1080 mirrors. Each
mirror has a linear size of 7.56 µm and can individually be activated or deactivated.
We illuminate the DMD with a gaussian beam of blue-detuned laser light and focus
the reflected beam onto the position of the atoms. The beam enters the science
cell from above, hence it propagates along the z-axis. This tool allows us to design
arbitrary potential landscapes in the horizontal plane, limited only by the resolution
of the DMD optics and the effective pixel size of a DMD pixel at the position of the
atoms. No matter what optical trap configuration we chose for an experiment, we can
always control the interactions between the 6Li-atoms of different spin by applying
suitable magnetic fields. This survey over our experimental toolkit is not complete
and further tools will be added in the future.
During my time as a master student in the group the maintenance and the im-

provement of the machine required significant effort, which allowed us to generate
homogeneous non-interacting Fermi gases for the first time. I investigated in the idea
to disturb such a homogeneous Fermi gas by introducing an impurity potential with
the DMD and thereby to observe the so-called Friedel oscillations. Furthermore, the
Fermi vector of the homogeneous and non-interacting Fermi gas could be approxima-
tely determined and measurements with the +x-y-lattice based on the Kapitza-Dirac
effect in order to calibrate the lattice and to characterize the magnification of the
imaging system were performed.

12



3 Observation of Friedel oscillations
in ultracold Fermi gases - a
feasibility study

Consider a system with a homogeneous potential. The particle density in such a
system must reflect the form of the potential and therefore be homogeneous as well.
But what happens if an impurity is introduced into the system? For example think of
a homogeneous electrolyte containing positive and negative ions, where the positive
ions are assumed to be much heavier and almost immobile, such that the negative ions
move in the present of an almost homogeneous background potential. Now a further
ion - an impurity - carrying the positive charge Qimpurity is added inducing a change
δn in the density distribution of the negative ions with respect to the undisturbed
density. Even though the coulomb interaction is long-ranged we expect the effect of
the impurity to be of local character, hence its associated effective potential must
be restricted to an area of finite size. This effect is called screening and originates
from an accumulation of carriers of opposite charge with respect to the additional
ion. It is treated in standard textbooks as the ones by Kittel [42] or Ashcroft and
Mermin [43]. The change δn in the density corresponds to a change of the charge
δQ which is located within a finite area around the impurity. To guarantee screening
of the impurity the total charge inside this area must be close to zero, such that
the net electric field outside this area is almost zero as well. Hence, the screening
demands δQ ' −Qimpurity, i.e. the change of the local charge has to compensate
the charge of the impurity. At large enough distance from an impurity the system
obviously recovers its undisturbed density n0. But what happens in the vicinity of
the impurity and on which length scale is the perturbation of the system? In the
framework of classical electrodynamics an answer to this question has been given by
Debye and Hueckel for the case that the screening charges are carried by a classical
fluid as in the case of the electrolyte [44]. Their findings revealed a decay of the
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3 Observation of Friedel oscillations in ultracold Fermi gases - a feasibility study

perturbation in the screening charge density of the form δn ∝ exp(−κr)/r , where r
is the distance to the impurity and 1/κ ∝

√
T defines a length scale for the damping

of the perturbation depending on the temperature T .
However, for quantum mechanical systems this explanation fails and it was left to

Friedel to give an appropriate explanation for the distribution of the electrons scree-
ning an impurity inside a metal [3]. Friedel’s main concern was to find a mechanism
that explained the existence of localized supplementary charge that was supposed to
screen the impurity charge quantum mechanically. Friedel related the phase shifts
between unperturbed waves and waves scattered from an attractive impurity poten-
tial to the number of bound states existing in the vicinity the impurity and providing
the required screening charge [1]. His solution included quasi as a side product an
oscillating term in the perturbation of the electronic density

δn ∝ cos(2kfr)/r3, (3.1)

where kf denotes the Fermi vector of the system of electrons. We will call the wa-
velength of this oscillation the Friedel wavelength λFO = π/kf .1 As this oscillatory
term is zero on average, it cannot account for a net screening charge but still this
oscillations is part of the screening mechanism. In contrast to the classical theory of
screening equation (3.1) constitutes a long-range oscillatory modification of the per-
turbed density. What Friedel predicted to be not very important is nowadays called
Friedel oscillation and was the starting point for quite a number of both, theoretical
and experimental investigations.
Friedel found the oscillations within a scattering approach. Usually, already basic

courses on quantum mechanics equip their participants with the necessary tools to
derive Friedel oscillations in the framework of scattering theory for one special exam-
ple, namely the backscattering of a plane from a one dimensional potential barrier.
Consider a barrier of the form

V (x) = Θ(a− |x|), (3.2)

Θ being the Heaviside function. An incoming plane wave exp(±ikx) from the left
or the right is partially reflected and partially transmitted. The interference of the
incoming wave with the reflected part of the wave forms a standing wave of which the

1Within this work the subscript f stands for Fermi, whereas a capitol FO represents Friedel.
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modulus squared oscillates with a spatial frequency of 2k giving rise to a wavelength
of λ = π/k. In a fermionic many-body system the particle density reads

〈n̂(x)〉 =
N∑
j=1
|φj(x)|2, (3.3)

as shown later, where φj denote one-particle orbitals. Hence, all the standing waves
from different wave vectors up to the Fermi edge add up. Since they oscillate in
phase close to the barrier they interfere constructively, but the farther away from the
barrier the more the standing waves dephase leading to destructive interference. The
result is an oscillation whose wave vectors equals the largest wave vector involved
and which decays with 1/|x|. Whereas we discussed the screening of an attractive
potential above, we now argued with a barrier representing a repulsive impurity. This
is not problematic as a potential V (x) = −Θ(a−|x|) would also partially backscatter
incoming plane waves, thus Friedel oscillations arise no matter whether the impurity
potential is attractive or repulsive.

Remarkably, Friedel derived his theory in the approximation of quasi free elec-
trons, i.e. without taking into account the interelectronic repulsion, which is actually
required for the screening mechanism. Essentially he computed the interference of
incoming plane waves with the corresponding scattered wave emerging from the in-
teraction with an impurity, which is nothing but the three dimensional analogue to
the derivation carried out above for one-dimensional backscattering. Today plenty
of theory on Friedel oscillations is available incorporating the lattice structure of
the crystal hosting the electrons as well as Coulomb interactions between electrons
which had both been ignored by Friedel. Villain et al. give an overview about the
different theoretical approaches for the description of Friedel oscillations [45] of non-
interacting electrons in periodic potentials which can be found in more detail for
example in common textbooks [46, 47]. The original scattering approach has been
replaced by a linear response framework. In the non-interacting case the oscillatory
part of the density perturbation caused by any well-behaved impurity potential can
be compactly formulated as

δn(r) = sin(2kfr + ηd)
rd

, (3.4)

where d = 1, 2, 3 is the dimensionality of the system, r the distance from the radially
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3 Observation of Friedel oscillations in ultracold Fermi gases - a feasibility study

symmetric impurity potential and ηd is a dimensionality-dependent phase shift [48].2

Regarding the interactions between electrons more profound theory is presented by
Simion et al. or Egger and Grabert [48, 49]. Interactions between the electrons
can be taken into account by describing them as a Fermi liquid in two and three
dimensions. However, fermions in one dimension can rather be treated as a Luttinger
liquid leading to nontrivial modifications of the Friedel oscillations [48]. For this case
Egger and Grabert report a slower decay of the Friedel oscillations proportional to
r−g where g < 1 represents the Luttinger liquid interaction constant [24].
Answering the initial question we summarize that the fermionic particle density in

the vicinity of an impurity exhibits oscillations with a spatial frequency of 2kf due to
quantum mechanical scattering. The amplitude of this oscillation decays with 1/rd

where d is the dimensionality of the system. Hence, there is no characteristic length
scale on which the system recovers its undisturbed density and the perturbation is
long-ranged. The precise shape of Friedel oscillations is influenced by interactions as
well as by the temperature, but the characteristic sinusoidal behavior remains.
The theoretical prediction of Friedel oscillations could be verified experimentally in

1993 by Crommie et al. [8] by the observation of standing waves in the electronic local
density of states (LDOS) n(E, r) emerging from steps and point defects in the surface
of Cu via scanning tunneling microscopy (STM).3 This publication was followed by
a number of articles reporting on Friedel oscillations in different materials all using
STM [4, 9, 10, 14]. In scanning tunneling microscopy a conducting tip is brought
close to a surface of a probe and a bias voltage between the tip and the probe is
applied [50]. Even though there is no direct contact electrons can tunnel from the
probe into the tip or vice versa. By scanning the surface with the tip and measuring
the tunnel current information about the topographic and electronic structure of the
surface can be obtained. The quantity dI/dV has been shown to be closely related
with the LDOS, such that standing waves in the electronic density can be observed
in an energy resolved fashion [51]. Figure 3.1 shows concentric oscillations in the
LDOS around a point scatterer on the surface of InAs constituting energy resolved
Friedel oscillations. Relating the electron energy ε which is determined by the bias
voltage to the wavelength of the LDOS standing waves λ = π/k, where k denotes

2This formula holds only asymptotically for the vicinity of the impurity. Very close to the impurity
the actual screening charge is localized and the precise form of δn deviates from equation (3.4)
for r → 0.

3The local density of states is defined as n(E, r) =
∑
k |ψk(r)|2δ(ε− εk) [45].
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Figure 3.1: Oscillations of the LDOS in a 2D electron gas emerging from a point defect
measured via scanning tunneling microscopy, reprinted from [10]. The three images correspond
to three different bias voltages and therefore display n(E, r) at three different energies E.

the wave vector of the scattered electronic wave function, opens up a straight access
to the dispersion relation ε(k).4 The experiments rely on the existence of so-called
surface states, i.e. states which are localized at the surface of a probe [52]. Since these
states constitute low dimensional systems the reported Friedel oscillations correspond
mainly to 2D systems [4, 8–10]and rarely to 1D [14] systems. Three dimensional bulk
states are not amenable with STM. The technique suffers from the fact that a finite
interaction of the surface electrons with electrons in the bulk deforms the 2D band
structure and therefore hinders the observation of effects caused by truly diminished
dimensionality. Furthermore, the electronic density n(r) remains undetectable for
the scanning tunneling microscope and only the LDOS n(E, r) can be measured in
relative units.
This is where ultracold atoms come into play. Ultracold atomic gases nowadays

offer the possibility to create generic fermionic systems with tunable interaction
strengths, densities and dimensionalities [53]. New technologies provide options to
design arbitrary potential landscapes with laser light [54]. An ultracold atom experi-
ment is therefore the perfect instrument to extend the exploration of Friedel oscilla-
tions since the theory originally developed for electrons in metal applies as well for a
homogeneous system of ultracold fermionic atoms disturbed by an impurity potential.
Observations of Friedel oscillations in ultra cold atoms could provide a new access
to the scattering properties of interacting fermionic system of desired dimensionality

4For the sake of clarity: the wavelength of the LDOS standing waves half the wavelength of the
corresponding electronic wave function.
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3 Observation of Friedel oscillations in ultracold Fermi gases - a feasibility study

Figure 3.2: Preparation of 1D tubes. In the background the particle density of a homogeneous
two- dimensional fermi gas is shown. The red lines schematically represent a red detuned optical
lattice, that shall slice the atomic cloud into one-dimensional systems. The green line depicts
a potential barrier created by blue detuned laser light.

and interaction strength. Furthermore, the emergence of Friedel oscillations could
be studied in a time resolved manner in these systems. The effect of anisotropies
on Friedel oscillations and regimes where wave vectors other than the Fermi vector
contribute significantly to the Friedel oscillations [5] could be explored .

3.1 Experimental idea

Our experiment fulfills all the requirements to generate a homogeneous fermionic
system either in one or two dimensions. With a DMD we can create small scale
(few µm) disturbing repulsive potentials and we can tune the interactions between
fermions of different spin over a broad range via a magnetic Feshbach resonance. It
is tempting to try to observe Friedel oscillations that emerge from such an impurity.
This work examines the feasibility of such an observation in one-dimensional systems.
Since according to equation (3.4) the damping of the oscillations is the weakest in
1D, their visibility should enhanced compared to higher dimensional cases.
The basic idea is to slice a homogeneous 2D Fermi gas trapped in the ring trap and

a single layer of the 2D-lattice into 1D tubes and then to create a sharp potential
barrier in the center of the tubes (see Figure 3.2). An adequate tool to slice the 2D
system into 1D tubes is an optical lattice. For the generation of such a lattice our
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3.1 Experimental idea

experiment provides various options. We can either retro-reflect the squeeze beam or
the +x-y-lattice beam resulting in a red detuned lattice, or we can imprint a lattice
with the DMD, which would deliver a blue detuned lattice. It remains to be tested
in the experiment which of these possibilities is most suitable. For convenience we
choose the direction of the tubes to be the x-direction and the direction perpendicular
to it inside the 2D plane to be the y-direction in the following. Hence, the z-direction
constituting the imaging axis of our experiment is perpendicular to the 2D plane
of the atoms.5 In the y-direction the lattice essentially creates a potential of the
form V (y) = Vl cos2(kly), concentrating the atoms in the individual lattice wells.
For high enough lattice power tunneling of atoms between the wells is suppressed
to negligible rates and in y direction only the ground state of a well is populated.
In this case it is justified to speak of a 1D system. The potential we finally hope
to generate with this setup along the x-axis is schematically shown in figure (3.3)
together with the corresponding density distribution of non-interacting fermions that
exhibits oscillations at the center and at the walls closing the boxlike potential. Why
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Figure 3.3: Qualitative plot of a one-dimensional potential proposed for the observation of
Friedel oscillations together with the corresponding density distribution of non-interacting spin-
less fermions. Friedel oscillations emerge at the central barrier as well as at the walls closing
the box from both sides.

is such a potential promising on the search for Friedel oscillations? Let us recall the
eigenfunctions of a box with the radius a with infinitely high walls centered around

5The x and y direction might not coincide with the coordinate system of the laboratory introduced
in Chapter 2 depending on the beam being used for the lattice.
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the origin:

φi(x) =

sin(ki[x+ a]) for |x| < a

0 for |x| > a
, (3.5)

where the k-vector is given by

ki = i
π

L
, with L = 2a and i ∈ N. (3.6)

Obviously, inside the box each eigenfunction is characterised by a single momentum.
For the infinitely high box the Fermi vector is simply given by

kf = N

L
π = n1Dπ, (3.7)

where N denotes the total number of particles in the box and n1D is the one-
dimensional particle density for a single spin component system. Inserting kf into
equation (3.4), we find for the wavelength of possible Friedel oscillations in such a
1D system:

λFO = 2π
2kf

= 1
n1D

. (3.8)

As before, the Friedel wavelength originates from the shortest wavelength of the one-
particle standing waves present in the system, namely |φf |2. It is logical to expect
this wavelength to dominate the density profile close to an impurity potential, as it
is the only characteristic wavelength in the system. This assumption is confirmed
by the theory and by the experiment. Turning from a box potential with infinitely
high walls towards our box-like potential the eigenfunctions maintain qualitatively
their form, but the admixture of other momenta to the individual orbitals increases.
Even though in the case of finite and smeared out walls the oscillation of |φf (x)|2 is
not determined by a single wave vector anymore, its central wavelength remains to
be 1/n1D. The contribution of higher momenta to the occupied eigenfunctions will
probably alter the form of Friedel oscillations, but as long as the walls of the 1D
tubes are of the height of several Fermi energies, the general structure of the wave
functions as well as the Friedel oscillations remains the same as in the infinitely high
box. Hence, it is reasonable to assume that Friedel oscillations with λFO = 1/n1D

should be present in the potential introduced above.

These considerations show that our setup is in general suitable to provoke Friedel
oscillations, yet nothing has been said so far regarding their visibility. Equation (3.8)

20



3.1 Experimental idea

reveals two inherent opposing effects: On the one hand in order to image Friedel
oscillations it is mandatory that the Friedel wavelength exceeds the resolution of our
imaging system which makes a low density desirable. On the other hand a higher
density leads to an improved signal to noise ratio in the absorption imaging required
for a clear signal. As the resolution of our imaging system is given by R ' 1 µm
the Friedel wavelength should at least be λFriedel ' 4 µm, which requires a density of
ρ1D ' 0.25 µm−1. This guarantees that two zero-crossings of the Friedel oscillation
are separated by about twice the resolution.

Let me now give a rough estimate on the signal to noise ratio that is achievable
within this upper bound for the 1D density. A detailed discussion of the signal to
noise ratio will be presented in Section 3.5. A calculation of the signal to noise ratio
relies on a two-dimensional density, therefore it is required to relate the 2D density
to the 1D density in the tubes. The lattice that shall slice the 2D system into 1D
tubes would most likely be generated by retro-reflection of a laser with a wavelength
of λ = 1064 nm resulting in a spacing between the tubes of 532 nm. Correspondingly,
in the 2D treatment the particles from one tube are located within a stripe with a
width of roughly 0.5 µm, such that the 2D density reads

n2D ' n1D/0.5 µm = 0.5 µm−2. (3.9)

In the simplest case ignoring saturation effects the absorption of photons is described
by Beers law [55], giving rise to the following expression for the two-dimensional
density:

n2D = 1
σabs

ln
(
Nin

Nout

)
, (3.10)

where Nin/out is the number of incident/outcoming photons of an imaging beam that
propagates through a cloud of atoms and σabs = 3λ2/2π is the absorption cross-
section. Under the assumption that the only noise source is the photon shot noise on
Nin and Nout, given by σNout ≈ σNin

=
√
Nin, due to error propagation the noise on

n2D then reads:

σn2D
=
√

2
σ2
absNin

, (3.11)

leading to a signal to noise ratio of

SNR = n2D

σn2D

= n2D σabs

√
Nin

2 . (3.12)
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Typical for our setup are an imaging pulse of a duration of τ = 5 µs and an intensity
of I = Isat = π

3
hcΓ
λ3 [55]. The number of photons hitting a single pixel is given by

multiplying the intensity with the pulse duration and the effective pixel size Ω =
0.18 µm2 and dividing by the energy of a single photon Eph = hν.6 For such an
imaging pulse we find the number of incident photons to be Nin ' 25 per camera
pixel. For a density of n2D = 0.5 µm−2 the signal to noise ratio is SNR = 0.38.
Averaging over k density images improves the SNR by a factor of

√
k. Hence, taking

1000 images would result in SNR ' 12. The word signal in this context refers
to the entire particle density, but the signal we are really looking for is a density
modulation. If the Friedel oscillations modulated the density by an amount of 10%
of the average density which is shown to be realistic in Section 3.3 their amplitude
would roughly equal the amplitude of the noise. Including technical noise and noise
from leak light will affect the signal to noise ratio negatively, whereas on the positive
side, our experimental setup allows for averaging the density distribution on the
central tubes. If the density profile at the central barrier was exactly the same for
each tube an average over 100 tubes would increase the signal to noise ratio by a
factor of 10. However, in Section 3.4 we explain in detail how the homogeneous 1D
tubes can be generated and show that fluctuations in the potential will differ from
tube to tube. As a result the density profiles will slightly differ from one another
as well and the enhancement of the signal to noise ratio by the average will be less
efficient. Since this type of average is more sophisticated to quantify, the signal to
noise ratio of 12 shall serve as an orientation for the moment. The tube average will
be taken up again in Section 3.4.

From these considerations one can already conclude that a density of n2D =
0.5 µm−2 is borderline regarding the signal to noise ratio. The density is not the
only crucial parameter. We will show later that also the temperature and the quality
of our potential have to fulfill very strict requirements for the observation of Friedel
oscillations as well.

6The effective pixel size is the area in the plane of the atoms that corresponds to the area of a
single pixel in the camera plane. Since the linear pixel size of the camera is 16 µm and the
magnification of the imaging system is 37.6 the effective linear pixel size is 0.43 µm yielding an
area of Ω = 0.18 µm2.
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3.2 Numerical simulation of Friedel oscillations in a 1D test potential

3.2 Numerical simulation of Friedel oscillations in a
1D test potential

In the previous section very elementary considerations revealed that the 2D density
in our setup must be around n2D ' 0.5 µm−2 in order to observe Friedel oscillations
in a one-dimensional potential. Besides, it became clear that the their visibility is not
certain due to the corresponding signal to noise ratio. To understand this issue better
before putting effort into the experimental realization, a simulation of the system was
performed that predicted the amplitudes of the expected Friedel oscillations.
To attribute the density oscillations to the mechanism of Friedel oscillations we

rely on the detection of at least two oscillations, since close to a potential barrier
also other effects may cause an apparent density oscillation. For example, diffraction
of the imaging light from sharp edges in the optical density can occur. As will be
presented in Section 3.3 the simulation yielded Friedel oscillations emerging from a
central barrier in 1D test potential with amplitudes of Θ1 = 28 % and Θ2 = 9 %
for the first and second oscillation, respectively. Thereby, Θ2 is comparable to the
amplitude of the noise estimated for a 1000 image average disregarding a possible
average over the 1D tubes.
From these findings I proceed with the analysis in Section 3.4 by incorporating

imperfections in the potential and estimating the efficiency of averaging over tubes
that provide each an individual density profile. Given that the deviations of the
potentials are small compared to the Fermi energy the average significantly improves
the signal to noise ratio yielding rather promising results. All together it can be stated
that meaningful Friedel oscillations should be observable for the following parameters:

• density of around 0.25 µm−1=̂0.5 µm−2

• temperature of less than T = 0.1Tf

• a flat potential with δV << Ef .

Since interactions are supposed to enhance Friedel oscillations, it might be easier to
detect them in an interacting Fermi gas [4, 24].
In this section I present the numerical approach used to predict the density dis-

tribution in the 1D test potential introduced in Section 3.1. I will show that the
many-body density of a system containing N non-interacting fermions at T = 0
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reads
〈n̂(x)〉 =

N∑
k=1
|φk(x)|2, (3.13)

where the φk denote the eigenfunctions, also-called orbitals, of the one-particle Ha-
miltonian in ascending order in energy. For a finite temperature the sum has to be
expanded over all eigenfunctions φk and weighted with the Fermi distribution f(εk),
where εk denotes the corresponding energy of φk:

〈n̂(x, T, µ)〉 =
∞∑
k=1

f(T, µ, εk)|φk(x)|2. (3.14)

In both cases the one-particle densities add up independently. Subsequently the
calculation of the one-particle orbitals is presented. For this intent I discretize the
one-particle Schroedinger equation and solve it numerically for a finite grid on which
we define a test potential. Once the eigenfunctions are known, the sums above can
easily be carried out. Finally I will discuss the precise form of the test potential. The
results of the simulations are presented in the subsequent section.

3.2.1 Derivation of the fermionic many-body density

Consider a one-dimensional system of N fermions without spin and without interpar-
ticle interactions. The theoretical description of such a system is straight forward,
yet the derivation of the equations (3.13) and (3.14) require a lengthy calculation
that is presented in detail here. We start with the Hamiltonian of the system given
by

ĤN =
N∑
i=1
− ~2

2m
∂2

∂x2
i

+ V (xi), (3.15)

where xi is the coordinate of the i-th particle and V is a one-particle potential, which
is equal for all particles. Throughout this section the superscript N is used when it
is necessary to stress that a quantity or an operator refers to an N-body-system for
the sake of clarity. Let the set {φi} be the solutions of the eigenvalue problem given
by the time independent Schroedinger equation for the one-particle problem:

εiφi(x) = Ĥ1(x)φi(x) =
(
− ~2

2m
∂2

∂x2 + V (x)
)
φi(x). (3.16)
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Then the N-particle wave function of a pure quantum state to a given many-body
energy E can be constructed via the Slater determinant:

ψ(x1, x2..., xN) = 1√
N !

∣∣∣∣∣∣∣∣∣∣∣∣

φW (1)(x1) φW (2)(x1) . . . φW (N)(x1)
φW (1)(x2) φW (2)(x2) . . . φW (N)(x2)

... . . . . . . ...
φW (1)(xN) φW (2)(xN) . . . φW (N)(xN)

∣∣∣∣∣∣∣∣∣∣∣∣
, (3.17)

where W maps the set {1, 2, . . . , N} onto a set of pairwise different integers determi-
ning the set of one-particle eigenfunctions being occupied in the many-body quantum
state. The map W has to obey the condition

E =
N∑
i=1

εW (i). (3.18)

Now that the many-body eigenstates are found one can evaluate the many-body
particle density operator

n̂(x) =
N∑
i

δ(x− xi). (3.19)

First I will focus on the case T = 0 and later I will introduce a finite temperature. At
zero temperature N fermions would simply occupy the N lowest energy eigenstates of
the one-particle Hamiltonian. This configuration is the fermionic N-particle ground
state |ψ0

N〉. The expectation value of the density operator is given by:

〈n̂(x)〉 = 〈ψ0
N |n̂(x)|ψ0

N〉 =
∫ ∞
−∞

dx1

∫ ∞
−∞

dx2· · ·
∫ ∞
−∞

dxN

1√
N !

∑
S

σ(S)
N∏
i=1

φ∗S(i)(xi)
N∑
k=1

δ(xk − x) 1√
N !

∑
S′
σ(S ′)

N∏
j=1

φS′(j)(xj). (3.20)

S denotes a permutation of the set {1, 2, ...N} and σ(S) is the corresponding parity
of the permutation. The sum runs over all possible permutations of this kind. Here,
the sums and the integrals interchange. Besides, in the product of wave functions
the indices i and j both take all values from 1 to N , such that one of them can be
eliminated. The equation can be rewritten as follows:

〈n̂(x)〉 =
∑
S,S′

N∑
k=1

∫ ∞
−∞

N∏
i=1

dxi
1
N !σ(S)σ(S ′)φ∗S(i)(xi)φS′(i)(xi)δ(xk − x). (3.21)
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For any S 6= S ′ the integral contains at least one dimension xp 6= xk with S(p) 6= S ′(p),
such that ∫ ∞

−∞
dxpφ

∗
S(p)(xp)φS′(p)(xp) = 0, (3.22)

The integral vanishes due to the orthogonality of φS(p)(xp) and φS′(p)(xp). So, one
finds for the density of the Fermi gas:

〈n̂(x)〉 =
∑
S

N∑
k=1

∫ ∞
−∞

N∏
i=1

dxi
1
N ! σ(S)σ(S)︸ ︷︷ ︸

=1

φ∗S(i)(xi)φS(i)(xi)δ(xk − x). (3.23)

Integrating over all dimensions dxi 6= dxk leads to

〈n̂(x)〉 =
∑
S

N∑
k=1

∫ ∞
−∞

dxk
1
N ! |φS(k)(xk)|2δ(xk − x). (3.24)

The sum over k contains the same set of N orbitals independently from the permu-
tation S. And as there exist precisely N ! permutations the particle density finally
reads

〈n̂(x)〉 =
N∑
k=1
|φk(x)|2. (3.25)

Therefore the many-body density at position x equals the sum of the one-body den-
sities of all occupied wave functions at position x. Giving up the restriction to the
ground state and including higher energy but pure quantum states one finds:

〈n̂(x)〉 =
N∑
k=1
|φW (k)(x)|2, (3.26)

where again equation (3.18) holds.
In the experiment one deals with a grand canonical ensemble of atoms, so a finite

temperature T has to be introduced as well as a finite chemical potential µ. Such a
mixed state is appropriately described by the grand canonical density operator

ρ̂ = 1
Z

exp(−β[Ĥ − µN̂ ]), (3.27)

where β = (kBT )−1, kB denoting the Boltzmann constant. N̂ is the number operator
that counts the number of particles in the system and Z is the grand canonical
partition function

Z = Tr{exp(−β[Ĥ − µN̂ ])}. (3.28)
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The density profile of such a system with a given temperature and a given chemical
potential has to be calculated by taking the trace over the product of the statistical
density operator ρ̂ times the real space particle density operator n̂(x).7

〈n̂(x)〉 = Tr{ρ̂ n̂(x)} =
∞∑

r,N=1
〈ψNr |

1
Z

exp(−β[ĤN − µN̂ ])n̂N(x)|ψNr 〉 (3.29)

In this notion I made an implicit choice for the basis of the Hilbert space. Namely,
the set of basis vectors contains all |ψNr 〉, which denote the N-particle eigenfunctions
to the N-particle Hamiltonian with the energy EN

r |ψNr 〉 = ĤN |ψNr 〉. They are of the
form described by equation (3.17). As the |ψNr 〉 are eigenfunctions of the number
operator N̂ as well one finds:

〈n̂(x)〉 =
∞∑

r,N=1

1
Z

exp(−β[EN
r − µN ])〈ψNr |n̂N(x)|ψNr 〉, (3.30)

such that equation (3.26) can be inserted for each N :

〈n̂(x)〉 =
∞∑

r,N=1

1
Z

exp(−β[EN
r − µN ])

N∑
j=1
|φWr(j)(x)|2. (3.31)

Instead of summing over the index of the N-particle eigenenergies r one can equiva-
lently sum over all possible sets of occupation numbers {nj}N with ∑i ni = N that
denote which orbitals are occupied in the N-particle state.

〈n̂(x)〉 =
∞∑
N=1

∑
{ni}N

{
1
Z

exp(−β
∑
i

ni[εi − µ])
∑
j

nj|φj(x)|2
}

(3.32)

The sum in the exponent can be transformed into a product of exponential functions:

〈n̂(x)〉 =
∞∑
N=1

∑
{ni}N

{
1
Z

∞∏
i=1

exp(−βni[εi − µ])
∑
j

nj|φj(x)|2
}
. (3.33)

7Do not be confused by the names of the operators. The statistical density operator describes
the probability to find the whole system in a certain pure quantum state, whereas the particle
density operator evaluates the particle density of such a pure state in real space.
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Rewriting the sum ∑∞
N=1

∑
{ni}N =̂∑1

n1=0
∑1
n2=0 . . . leads to the form:

〈n̂(x)〉 = 1
Z

1∑
n1=0

e−βn1(ε1−µ)
1∑

n2=0
e−βn2(ε2−µ) . . .

(
n1|φ1(x)|2 + n2|φ2(x)|2 . . .

)

= 1
Z

1∑
n1=0

e−βn1(ε1−µ)n1|φ1(x)|2
∏
j 6=1

1∑
nj=0

e−βnj(εj−µ)

+ 1
Z

1∑
n2=0

e−βn2(ε2−µ)n2|φ2(x)|2
∏
j 6=2

1∑
nj=0

e−βnj(εj−µ) . . .

= 1
Z

∞∑
k=1

1∑
nk=0

e−βnk(εk−µ)nk|φk(x)|2
∏
j 6=k

1∑
nj=0

e−βnj(εj−µ)

(3.34)

executing the sum ∑1
nj=0 e

−βnj(εj−µ) = 1 + e−β(εj−µ) and using the expression for the

grand canonical partition function Z = ∏
l

(
1 + e−β(εl−µ)

)
the density reads

〈n̂(x)〉 =
∞∑
k=1

e−β(εk−µ)|φk(x)|2
∏
j 6=k

(
1 + e−β(εj−µ)

)
∏
l

(
1 + e−β(εl−µ)

)

=
∞∑
k=1

e−β(εk−µ)

1 + e−β(εk−µ) |φk(x)|2

=
∞∑
k=1

f(εk)|φk(x)|2

(3.35)

where f(εk) denotes the Fermi distribution function.

3.2.2 Numerical method for the calculation of the fermionic
density in a 1D potential

The results from the previous section show that knowing the one-particle wave functi-
ons and its energies for a given 1D potential enables to calculate many-particle density
profiles for zero or finite temperature. Still, the orbitals φi and their corresponding
energies εi need to be found. Here, I present how the orbitals can be calculated
numerically. The starting point is the one-particle stationary Schroedinger equation:

εiφi = Ĥφi =
(
− ~2

2m
∂2

∂x2 + V (x)
)
φi. (3.36)
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3.2 Numerical simulation of Friedel oscillations in a 1D test potential

The index i denotes the index of the different solutions to this equation in ascending
order in energy. In order to solve the eigenvalueproblem of the stationary Schroedin-
ger equation numerically, one has to discretize the system. I restrict the system size
to the finite length L and introduce a finite grid with a grid point spacing of ∆x.
Hence the number of grid points is given by l = L/∆x. Any continuous function f(x)
can be converted into its discrete counterpart f(k) := f(k∆x)|k ∈ Z.8 The derivative
is then expressed by

∂f(x)
∂x

→ f(k + 1)− f(k)
∆x . (3.37)

The second derivative has to be performed symmetrically around the point of interest.

∂2f(x)
∂x2 → f(k + 1)− 2f(k) + f(k − 1)

(∆x)2 (3.38)

Correspondingly, the discretized Schroedinger equation reads

εiφi(k) = − ~2

2m
φi(k + 1)− 2φi(k) + φi(k − 1)

∆x2 + V (k)φi(k). (3.39)

To write this in a more compact form I introduce the constant α = ~2/(2m · ∆x2),
such that the Schroedinger equation can be written as

ε̄iφi(k) = −φi(k + 1) + 2φi(k)− φi(k − 1) + V̄ (k)φi(k), (3.40)

where ε̄i = εi
α
and V̄ (k) = V (k)

α
. Correspondingly, the normalized Hamilton operator

is defined as:
H̄ = Ĥ

α
. (3.41)

As a basis of the Hilbert space a set of step functions {ϕi(k)} is chosen being equal
to 1 at precisely one gridpoint and zero everywhere else:

ϕi(k) =

1 for k = i

0 else
. (3.42)

The finite number of grid points therefore truncates the Hilbert space which is actually
of infinite dimensionality, as at least the unbound spectrum of the Hamilton operator

8Commonly the argument of a discrete function is written as an index fk, but as the index is
needed to indicate the energy level, I put the argument in brackets f(k). Just keep in mind,
that k is not a continuous variable.
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contains an infinite number of eigenfunctions. As only the low energy bound sates
are of interest this truncation is reasonable. The general formula for the matrix
formulation of the Hamilton operator

H̄ij = 〈ϕi|H̄|ϕj〉 (3.43)

leads to the following Hamilton matrix:

H̄ =



2 + V̄ (1) −1 0 . . . 0
−1 2 + V̄ (2) −1 0
0 −1 2 + V̄ (3) −1 ...
... . . . . . . . . . 0

−1
0 . . . 0 −1 2 + V̄ (l)


. (3.44)

The eigenvectors of this matrix are the discretized eigenfunctions φj(k) of the Hamil-
ton operator and the eigenvalues are the corresponding eigenenergies εj. Due to the
choice of the basis, the k-th entry in the j-th eigenvector equals the value of the j-th
orbital at the grid point k. There are many ways to diagonalize a matrix numerically.
I used the program Matlab that provides the command [phi,e]=eig(H) for this
purpose. e returns the diagonalized matrix and phi is a matrix whose i-th column
contains the normalized eigenvector to the i-th eigenvalue of H̄, that is, to the entry
e(i,i). Hence, the energies and their corresponding wave functions are given by

εi = αe(i,i) (3.45)
φi = phi(:,i). (3.46)

Once the eigenfunctions φi are found, one can directly evaluate the expression for the
density of the N particle fermionic system either for zero or for finite temperature.

〈n̂(k)〉 =


∑N
i=1 |φi(k)|2 for T = 0∑∞
i=1 f(εi)|φi(k)|2 for T 6= 0

(3.47)

For the finite temperature case the chemical potential µ still needs to be quantified.
In the experiment the total number of atoms in the grand canonical ensemble can be
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3.2 Numerical simulation of Friedel oscillations in a 1D test potential

controlled which is determined by the chemical potential via the following equation:

〈N̂〉 = Tr{ρ̂N̂} =
∞∑
i=1

1
exp(β[εi − µ]) + 1 →

∫ ∞
0

f(ε)g(ε)dε (3.48)

Here g(ε) denotes the density of states. For zero temperature the number of atoms
defines the Fermi energy which is at the same time the chemical potential. For low
temperatures the equation

〈N〉 ' N (3.49)

holds, as one uses the Fermi energy of a corresponding N particle system at T = 0
for the chemical potential of the thermal system:

µ = εN . (3.50)

Since only small temperatures shall be investigated, this is an adequate choice for the
chemical potential.

3.2.3 Specification of the 1D test potential

For the numerical treatment of the system an adequate description of the potential is
required. In this section I quantify the test potential with respect to the conditions
in our experimental setup. Experimentally the generation of homogeneous 1D tubes
is challenging because a red detuned optical lattice as proposed for this purpose in
Section 3.1 exhibits a confining potential along the tube axis due to the intensity dis-
tribution of the gaussian beam. Regarding our setup effects like the anti-confinement
of the blue detuned 2D-lattice or a magnetic field gradient in the plane of the atoms
could also affect the precise shape of the density profile. Yet, to get a first impression
of how Friedel oscillations could look like in our setup, I neglect these experimental
difficulties in a first step and assume that we can create a perfectly flat potential in
each tube. In Section 3.4 I will incorporate the confining effect of a red lattice and
present a method to recover a homogeneous potential. Starting from the 2D homo-
geneous Fermi gas in the ring trap it is clear that the tubes generated by a lattice
will be of different size. I will concentrate on the central tubes with roughly the same
lengths because the density in shorter tubes is more sensitive to fluctuations of the
particle number. Consider a tube of the length L = 120 µm, which corresponds to
a possible diameter of the ring D0. It is reasonable to model the walls limiting the
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tube from the left and from the right with two gaussian functions,

Vring(x) = V0

[
exp

(
−2(x−R0)2

s2

)
+ exp

(
−2(x+R0)2

s2

)]
. (3.51)

V0 defines the height of the walls and s determines their width. R0 = 60 µm is the
radius of the ring trap and therefore half the length of the tube. From images we
estimate the width of the ring beam to be s ' 5 µm. In the experiment the walls
surrounding the tubes are of course of finite width. However, a short estimate shows
that tunneling out of the tubes is suppressed to a negligible rate and hence we can
restrict the test system to the finite size of 120 µm between the maxima of the left
and the right wall. For a laser power of P0 = 200 mW one finds a tunneling rate
through a wall for a plane wave at Fermi energy to be

T = exp
i ∫ x2

x1
dx

√
2m(Ef − V (x))

~2

 = exp(−125.8) ' 0. (3.52)

In this calculation x1 and x2 were chosen to be the borders of the interval I on which
Ef < V (x) because this is the region where the wave function gets heavily suppressed
in amplitude. The Fermi energy of Ef = ~2k2

f/2m = ~2(n1Dπ)2/2m = 518 Hz follows
from the assumed 1D density n1D = 1/4 µm−1. 9

The potential barrier Vbarrier that shall be imprinted at the center of the tubes is
modeled by a gaussian potential barrier:

Vbarrier(x) = A exp
(
−2x2

σ2

)
. (3.53)

A describes the amplitude of the barrier and its width is given by σ. I estimated
that we are able to create barriers with an amplitude of A ' 5 kHz and a width of
σ ' 2 µm.10 These numbers shall only serve as an orientation. By adjusting the
laser power and the pixel pattern on the DMD we can tune the shape of the barrier.
For convenience I will call the potential in the center of the tube barrier and the
potentials closing the tube from the left and the right will be referred to as walls in

9equation (3.52) was solved in a numerical calculation where the potential of the ring was calculated
for the whole 2D plane of the atoms.

10These numbers come from a simulation where the DMD is modeled to be illuminated by a gaussian
beam with a power of 0.1 W and a waist of 75 µm in the plane of the atoms. The barrier is created
by a line with a width of 10 DMD pixels. The image of the DMD is smoothed with a gaussian
filter with a waist of 1 µm to incorporate the finite resolution of the DMD optics.

32



3.3 Results

-60 -40 -20 0 20 40 60
x [µm]

0

10

20

30
V
(x
)
[k
H
z]

V0 = 25000 Hz
s = 5 µm
A = 5000 Hz
σ = 2 µm

Figure 3.4: One-dimensional test potential Vring+Vbarrier for the parameter listed in the box.

the following. The sum of the two potential Vring and Vbarrier constitutes the test
potential shown in Figure 3.4 which was used for the simulation:

V (x) = V0

[
exp

(
−2(x−R0)2

s2

)
+ exp

(
−2(x+R0)2

s2

)]
+ A exp

(
−2x2

σ2

)
. (3.54)

This test potential provides smoothness and flatness that can certainly not be achie-
ved in the experiment. Nevertheless it can be explored to gain some principle under-
standing of how its precise form influences the Friedel oscillations. The results of the
simulation based on this test potential are presented in the following section.

3.3 Results

What has been achieved so far is a method to numerically calculate the density
distribution of a (thermal) non-interacting many-body fermionic system in a one-
dimensional test potential. First the one-particle orbitals and their corresponding
energies are obtained from solving the discretized Schroedinger equation by the di-
agonalization of the corresponding Hamilton matrix. The chemical potential is set
to µ = εN defining the Fermi distribution function together with the temperature
T . Finally the density can be found by executing the sum in either equation (3.13)
or equation (3.14). I realized this simulation in Matlab and varied the system para-
meters to study their impact on the Friedel oscillations. In this section the results
of theses calculations shall be discussed in detail. For reasonable parameters and
zero temperature we can report Friedel oscillations with amplitudes of Θ1 = 32 %
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parameter variable
steepness of the walls s
height of the walls V0
amplitude of the barrier A
width of the barrier σ
number of particles N
temperature T

Table 3.1: Tunable parameters in the study of Friedel oscillations in a flat box. For T 6= 0 the
average number of particles almost equals N .

and Θ2 = 15 % for the first and the oscillation, respectively. At a temperature of
T/Tf = 0.1 the amplitudes reduce to Θ1 = 28 % and Θ2 = 9 %. The central finding
from the evaluation of this chapter is that the more abrupt and the more pronounced
the change in the potential, the larger will be the amplitudes of the Friedel oscilla-
tions. However, under realistic assumption the simulation predicts that the second
oscillation will not stand out from the noise.

3.3.1 Friedel oscillations in a 1D test potential at zero
temperature

In order to get an insight into the characteristics of Friedel oscillation, as a first step
the simulation was performed using the test potential defined in equation (3.54). The
system is determined by various tunable parameters which are shown in table 3.1.
The simplest case is to assume zero temperature T = 0. Figure 3.5 shows the density
distribution for this case with N = 25 atoms. Friedel oscillations at the central barrier
and at the walls of the 1D system are clearly visible. As mentioned previously, in
our experimental setup all tubes will be of different length and thus the density
modulations at the walls in different tubes will be displaced along the x-axis with
respect to each other, such that averaging over many tubes will cancel their signal.
Hence, we concentrate on the oscillations at the central barrier, because their position
on the x-axis is the same for all tubes and an average over the y-dimension can be
carried out. The Friedel wavelength of these oscillations is found to be λFO = 4 µm,
as expected. The relative amplitude of the first oscillation is Θ1 = 32 % with respect
to an average density of n1D ' 0.25 µm−1 as shown in Figure 3.6. For the second
oscillation the amplitude has dropped down to Θ2 = 15 %. The average density is
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Figure 3.5: Resulting density distribution for 25 fermions in the test potential, yielding a
Friedel wavelength of λFO = 4 µm and relative amplitudes of Θ1 = 32 % and Θ2 = 15 % for the
first and second oscillation respectively.

defined as
n1D = N

Ω ; Ω = {x|V (x) < Ef}, (3.55)

since Ω approximately constitutes the area where the particles are located. In order
to examine the influence of the potential on the form of the Friedel oscillations, we
kept the temperature T = 0 K as well as the particle number N = 25 constant and
varied all the parameters defining the potential. For each point in the parameter
space the Friedel wavelength λFO and the amplitudes of the first two oscillations
have been analyzed according to the way shown in Figure 3.6. All results refer to the
Friedel oscillations that appear at the central barrier for the reason given above. We
found the parameters of the walls V0 and s to be basically of no relevance, as long
as they do not significantly influence the local density in the vicinity of the barrier.
Given that the tubes are long compared to the width of the walls, this condition can
easily be fulfilled in the experiment. Hence, the discussion focuses on the parameters
A and σ. Figure (3.7) displays the behavior of the first two amplitudes and the
wavelength of the Friedel oscillations within the parameter space spanned by σ and
A. For these calculations the wall parameters were set to V0 = 25 kHz and s = 5 µm.
The Friedel wavelength remains almost constant with changing the barrier height,
whereas it is affected in an apparent linear fashion by a variation of σ. This behavior
can be attributed to the change in the average density provoked by the broadening
of the barrier. The area Ω which defines roughly the spatial extend of all occupied
one-particle orbitals can be shown to decrease approximately linearly with an increase

35



3 Observation of Friedel oscillations in ultracold Fermi gases - a feasibility study

0 5 10 15

x [µm]

0

5

10

V
(x
)
[E

f
]

λ
=
4
µ
m

0 5 10 15

x[µm]

0.1

0.15

0.2

0.25

0.3

n
1
D
[µ
m

−
1
]

Θ = 32.31%

Figure 3.6: A zoom to the vicinity of the central barrier, where Friedel oscillations are located.
The red dashed lines mark the beginning and the end of the first oscillation in the left plot and
its amplitude in the right plot.

of σ. For the average density this implies a −1/σ dependence which results in the
relation

λFO ∝ −σ. (3.56)

The same effect exists as well for the height of the barrier, but it is much less pro-
nounced.

The amplitudes are significantly affected by the two parameters. The results reach
from [Θ1 = 34 %,Θ2 = 15 %] for σ = 1µm and A = 6000Hz to the absence of
significant Friedel oscillations for A . 800 Hz and σ & 3 µm. This can be explained
by the fact that the lower and the broader the barrier the more displaced are the points
pi where V (pi) = εi with respect to each other. These points roughly define where
the one-particle orbital φi(x) begins since |φi(x)| is close to zero for V (x) > εi. If the
starting points of the one-particle orbitals are displaced with respect to each other,
their oscillations are out of phase and therefore rather destructive than constructive
interference occurs and the amplitude of the Friedel oscillation are small. If the barrier
was infinitely steep, all orbitals would have the same starting point and therefore
their oscillations would be in phase in the vicinity of the barrier and thus, they would
constructively interfere resulting in very distinct Friedel oscillations. It can be stated
that the more abrupt and the more pronounced the change in the potential, the
more distinct Friedel oscillations are. The most relevant feature of the barrier is the
distance on which the potential drops from a value V & Ef to V ' 0, because the
starting points of all orbitals lie within this area. By enhancing the barrier height
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Figure 3.7: Friedel oscillations emerge from a central Barrier in a one-dimensional test po-
tential. A) and B) show the dependence of the relative amplitudes of the first and second
oscillation Θ1 and Θ2 on the parameters A and σ defining the height and the width of the bar-
rier, respectively. The larger σ and the smaller A the smaller the amplitudes of the oscillation,
except for σ < 1. C) displays the Friedel wavelength plotted against the same parameters.
Wheres λFO is robust against a change of A it is inversely proportional to σ. For A . 800 Hz
and σ & 3 µm there are points for which the oscillation was too weak to be detected by the
evaluation code resulting in λFO = 0 µm. D) shows profiles of λFO along three different vertical
sections through plot C) that confirm the described behavior. The other system parameters
have been set to V0 = 25 kHz and s = 5 µm for these calculations.
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parameter variable value
steepness of the walls s 5µm
height of the walls V0 25 kHz
amplitude of the barrier A 5 kHz
width of the barrier σ 2µm
number of particles N 25

Table 3.2: System parameters chosen for further investigations at finite temperature.

we reduce this distance and effectively steepen the barrier. As already mentioned
the effect on the average density is small, thus a maximal height of the barrier is
desirable.

3.3.2 Friedel oscillations in a 1D test potential at finite
temperature

From the study at zero temperature first quantitative results for the Friedel oscilla-
tions have been achieved. Now the finite temperature shall be incorporated. Since
the whole procedure from the zero temperature study shall not be repeated here,
I restricted the investigation of the influence of the temperature to the parameters
listed in table 3.2 since they fulfill two criteria:

1. The simulation provides promising results for these values at T = 0 K, namely
λFO = 4 µm and Θ1 = 32 % and Θ2 = 15 %. Recalling the signal to noise ratio
of 12 for n1D ' 0.25 µm−2 for a 1000 image average one finds Θ2 to be twice the
amplitude of the noise which is 8 %. It is reasonable to expect that the second
oscillation could be detected.

2. Estimations confirm that we can realize a 1D potential in the experiment that
corresponds to these parameters.

A finite temperature implies a loss of coherence. The less coherent the system is, the
less pronounced its quantum features are and accordingly one would expect Friedel
oscillations to be less visible at higher temperatures. Let me recall the example of the
box with infinitely high walls from Section 3.1, whose eigenfunctions are characterized
by single individual momenta. At T = 0 the occupation of momenta is given by
a Heaviside function, but for any finite temperature the sharp edge at the Fermi
energy washes out and higher momenta enter the system. It seems reasonable that
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this causes the spatial frequency given by kf to be less pronounced, i.e. one would
expect smaller amplitudes for Friedel oscillations. For low temperatures the Friedel
wavelength should not be altered significantly since the occupation of higher momenta
is weak and kf remains to be the characteristic length scale in the system. As
our test potential provides high similarity to the infinite potential box we expect
the given arguments to hold for our case as well. The temperature is measured in
units of the Fermi temperature Tf = Ef/kB. Indeed, the results of the simulation
confirm these considerations. Figure 3.8 displays how the amplitudes of the Friedel
oscillations decrease with increasing temperature. It can be reported that even for
low temperatures the oscillations vanish completely for far enough distances from the
barrier. However, the Friedel wavelength of λFO = 4 µm remains almost unchanged.
At a temperature of T/Tf = 0.1 the simulation yields amplitudes of Θ1 = 28 % and
Θ2 = 9 %. For T > 0.11 Tf we find the second amplitude to be smaller than the
noise floor of 8 % corresponding to a signal to noise ratio of 12 that was introduced
in Section 3.1. Even for more favorable barrier parameters, namely A = 10 kHz and
σ = 2 µm Θ2 is still only 9 % for T/Tf = 0.1. Apparently, we cannot compensate
for high temperature by optimizing the barrier, hence the temperature depicts a
crucial parameter for the experiment. From these numbers we can conclude that
temperatures below 0.1 Tf are mandatory for the observation of Friedel oscillations.
However, at present we do not have a quantitative measure on the temperature
but it is highly questionable whether we can create sample significantly cooler than
T/Tf = 0.1.

3.4 1D Friedel oscillations in homogeneous potentials
generated with the makeflat-algorithm

Analyzing the many-body density distribution in a smooth and homogeneous 1D test
potential revealed Friedel oscillations emerging from a central barrier. Even at low
temperatures of T/Tf < 0.1 the second oscillation tends to be obscured by noise.
However, nor the fact that the experimental setup proposed in Section 3.1 creates
a confinement along the 1D tubes has been considered, neither the possibility to
average the density distribution along the y-axis, i.e. to average over the tubes, has
been taken into account. In this section I will show that such a confinement makes
an observation of Friedel oscillations impossible and therefore present method based
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Figure 3.8: A) Friedel oscillations at the vicinity of a barrier in a one-dimensional homogeneous
potential for different temperatures. B) The wavelength of the Friedel oscillations in dependence
on the temperature. C) Amplitude of the first oscillation in dependence on the temperature.
D) Amplitude of the second oscillation in dependence on the temperature. The red dashed line
indicates the noise level. Whereas λFO is not affected significantly by the temperature in the
displayed range, the amplitudes of the Friedel oscillations strongly decrease with an increase
of the the temperature. This makes low temperatures necessary for the second oscillation to
stand out from noise.

on the DMD to recover a homogeneous potential, that is called makeflat-algorithm.
Also, the creation of the barrier by means of the DMD is modeled realistically. Within
a simulation I was able to compensate the confinement of an optical lattice and to
imprint a barrier of sufficient height and steepness to induce Friedel oscillations of
almost the same strength as in the test potential, showing that it is in general possible
to design a suitable potential for our intent.
As mentioned previously, we are planning to realize the 1D tubes via a red detuned

lattice. The simulation with the test potential defined by the parameters listed in
table 3.2 yielded a Fermi energy of Ef = 518 Hz. Since this determines the shortest
time scale on which the system evolves, it is mandatory that the tunneling rate J of
the lattice is even smaller to ensure that tunneling events between the tubes play a
minor role in the dynamics of the system. Additionally one has to guarantee that
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Figure 3.9: Density distribution in the test potential with parameters listed in table 3.2 and
an additional confinement of 122 Hz. The wavelength of the resulting Friedel oscillations is
clearly below our resolution.

in each lattice well only the ground state is occupied along the confined direction in
order to truly reduce the dynamics to one dimension. This is achieved as soon as the
spacing between ground state and first excited state of the lattice well exceeds the
Fermi energy in x-direction significantly. Thus, regarding the lattice we can formulate
two conditions:

J < Ef and ~ωlattice > Ef (3.57)

For a retro-reflected gaussian beam with characterized by the waists wx = 370 µm
and wz = 10 µm and a wavelength of λ = 1064 nm we find the above condition to be
fulfilled for a laser power of Psqueeze & 350 mW giving rise to a harmonic confinement
along the tube of ωtube = 122 Hz. The parameters coincide with the parameters of the
squeeze beam. Figure 3.9 shows how such a confinement leads to an accumulation of
the atoms in the center of the tube such that the wavelength as well as the amplitudes
of the oscillations become far too small for an observation. Obviously the approach
of slicing the gas into tubes with a red lattice is not applicable without further effort.
We hope that we can recover a homogeneous potential by the means of our DMD.
The idea is to increase potential energy with the blue detuned DMD beam until the
bottom of the potential is flat again. By activating pixels on the DMD we can locally
add potential energy in the plane of the atoms. In order to find an appropriate
pattern for the DMD pixels the makeflat-algorithm was developed. It is supposed
to work similar to a controll-loop. A recorded atomic density distribution serves
as an error signal. Regions with above-average density are regions of low potential
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energy and vice versa. Hence, for the next experimental cycle corresponding pixels
are turned on or off respectively resulting in a new potential. The next recorded
density distribution provides a new error signal, the DMD pixels are adjusted and so
on and so forth. To achieve a meaningful error signal an average over several density
images has to be taken before the density distribution can be processed. To really
flatten the potential at any point x a specific amount of potential energy has to be
added.
How can one smoothly control the intensity of the DMD beam at the position of

the atoms, when an individual pixel can only be turned on or off? The key point is,
that because of the finite resolution of the DMD imaging, the laser intensity I(x) at a
certain position in the plane of the atoms is not determined by a single pixel, but by
several pixels of the DMD whose precise number depends on the width of the point
spread function. The point spread function describes how the image of an idealized
point source is broadened due to diffraction and aberrations of the imaging system.
If only diffraction is taken into account the point spread function has the form of a
Bessel function and the distance from its central maximum to the first zero-crossing
defines the resolution [56]. For a resolution R ' 1 µm the number of contributing
pixels is at least 25 since the effective pixel size, i.e. the physical pixel size of the DMD
divided by the magnification of the imaging system, is approximately 0.2×0.2 µm2 in
our setup. By activating only a certain fraction of them the power can be controlled
in approximately 25 steps. In order to simulate the process of flattening the tubes
we wrote a model based on the makeflat-algorithm. The Figure 3.10 visualizes the
functioning of the model that shall be explained in the following.
To understand the model it is convenient to distinguish three different planes,

namely the DMD plane, the camera plane and the plane of the atoms. The plane
of the atoms is the plane where the atoms are trapped and where the precise form
of the potential is of importance. This plane is modeled by a grid with a size of
218× 218 µm2 and a grid point spacing of ∆ = 0.05 µm. The potentials delivered by
the three involved laser beams, Vring, Vsqueeze and VDMD, are calculated for this plane
with respect to their beam parameters. The DMD beam has a waist of wx = wy =
75 µm and the ring beam is modeled by the radial symmetric intensity distribution
I(r, φ) ∝ exp(−2[r−R0]2/s2) where R0 = 60 µm defines the ring radius and s = 5 µm
the width of the ring wall. The intensity distribution in a retro reflected beam equals
four times the intensity of the forward propagating beam modulated with cos2(ky)
for y being the propagation direction. The lattice characteristics of the beam was

42



3.4 1D Friedel oscillations in homogeneous potentials generated...

 
 
 
 
 

DMD plane 
1980 x 1080 px² 

Plane of 
the atoms 
218 x 218 µm² 

Camera 
plane 

512 x 512 px² 

𝑇1: real space potential  
      is mapped to the camera. 

𝑇2: the generated error signal  
      is mapped onto the DMD 

𝑇3: binary DMD array is  
      mapped to the real space 
 

generation of an error  
signal corresponding  
to the potential 

translation of the  
error signal into  
a DMD pattern 

addition of the correction potential  
to the original potential 

Figure 3.10: Schematic representation of the functioning of the model used to simulate a
flattening of a potential by means of the makeflat-algorith.

unimportant for the test of the makeflat-algorithm, hence we ignored the periodic
modulation in the calculation of the squeeze potential. The waists of the squeeze
beam are wx = 370 µm and wy = 10 µm. The powers were set to Psqueeze = 350 mW,
PDMD = 70 mW and Pring = 100 mW. The combined potential of the ring beam and
the squeeze beam is the starting point for the model. The imaging process in the
experiment is replaced in this simulation by simply applying a transformation matrix
T1 to the plane of the atoms that maps the potential onto the camera plane which
is represented by a 512 px× 512 px array. To incorporate the finite resolution of the
imaging microscope we apply a gaussian filter with a waist of σcamera = 1 µm to the
image in the camera plane. This filtered image of the potential is translated into
an error signal. Hence, in this simulation the error signal is not based on an atomic
density but on the potential itself. A second transformation matrix T2 maps this error
signal to the DMD plane that is given by a 1920 px×1080 px array. Corresponding to
the error signal DMD pixels are activated or deactivated until finally a binary array
of DMD pixels is mapped back onto the plane of the atoms by a third transformation
matrix T3. The DMD image is subsequently multiplied with the potential that was
calculated for the DMD beam in the plane of the atoms resulting in a correction
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potential. Again, in order to respect the finite resolution of the DMD imaging, a
gaussian filter is applied to the correction potential whose waist σDMD was varied
for different runs of the program. The filtered correction potential is added to the
original potential resulting in a new potential which is then closer to homogeneity.
This new potential is the starting point for the next iteration. Figure 3.11 shows the
starting potential, the DMD potential that is used for the correction and the resulting
potential.
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Figure 3.11: A) The combined potential provided by the squeeze beam and the ring beam in
the plane of the atoms. The color scale does not cover the whole range of the potential. B)
Potential provided by the DMD beam in the plane of the atoms. C) Resulting potential from
the flattening process with σDMD = 3 µm. D) Profile of the potential in C) along a horizontal
section at y = 0 (red line in C).

In the following the generation and the processing of the error signal shall be
explained a bit more detailed. Of course the starting potential Vring + Vsqueeze is not
supposed to be flattened in the whole plane of the atoms, but only on a circular area
Π inside the ring. In the first iteration the algorithm defines a normalization constant

C = max{ |Vi,j − V Π| }|i, j ∈ Π (3.58)
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for the error signal, where V Π denotes the average of V on the area Π.11 Afterwards
the program calculates an error signal on each camera pixel within Π:

errori,j = Vi,j − V Π

C
, (3.59)

allowing for positive and negative values. This error matrix is weighted with the
inverse potential delivered by the DMD beam in the plane of the atoms to ensure
a constant gain over the whole region of interest. Subsequently the error matrix is
mapped onto the DMD plane and multiplied with a gain factor G ≤ 1 such that all its
values lie within the range [−G;G]. In a randomized process pixels of the DMD are
turned on or off, where the probability of a pixel to be turned on or off is simply given
by its absolute error value. A positive sign indicates that a pixel shall be turned on
whereas a negative sign leads to turning it off, where of course only a pixel that was
off before can be turned on and vice versa. This process results in the binary DMD
array that is processed as described above. The program memorizes the DMD array
until in the next iteration step it will be modified by activating and deactivating pixels
with respect to the new error signal. The maximum deviation of Vi,j|i, j ∈ Π from
its mean value is assumed to decrease for each iteration resulting in a damping of the
response of the DMD due to the normalization by C, i.e. the number of pixels whose
status changes in one iteration is supposed to decrease from iteration to iteration.
Otherwise the DMD array would not converge and the potential would not become
homogeneous.
Even within the framework of this simulation, where perfect beam profiles are

available, it was challenging to really flatten the potential. On the attempt to suppress
the fluctuations of the potential to δV . 0.1Ef we encountered various difficulties. If
the area Π was chosen too large it included parts of the ring potential which implied
a huge normalization constant C. As a result the error signal was too small in the
center to appropriately flatten the potential. Furthermore, the power of the DMD
beam was crucial for the quality of the resulting potential. If the power of the DMD
beam is too high, active pixels can cause local deviations in the potential on the order
of magnitude of the Fermi energy, meanwhile if it is too low it cannot compensate
the squeeze potential especially at larger distances from the center of the beam. An
adequate power of the DMD was found to be PDMD = 70 mW. Next, I had to reduce

11Since the plane is discretized we use the indices i, j to address a certain grid point replacing the
continuous variables (x, y).
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the gain factor to G = 0.2 to prevent the DMD array from swinging. Swinging in
this case means an alternating on- and off-switching of a great number of pixels in
each iteration. In this case the error signal does not decrease and the the DMD
pattern does not converge. Finally, it turned out that the final potential heavily
depends on the width of the gaussian filter that smooths the correction potential. In
the experiment one should try to improve the homogeneity of the resulting potential
by defocusing the DMD image. As already mentioned the number of DMD pixels
contributing to the intensity at one point in the plane of the atoms increases for
a broader point spread function resulting in a smoother correction potential and
respectively a smoother final potential. The applicability of the makeflat-algorithm
remains to be tested in the experiment when the signal is not the potential itself any
longer, but rather the atomic density with noise on it. It is certainly recommendable
to use atomic clouds of high density as a signal for the algorithm in order to achieve
a high signal to noise ratio.
In Figure 3.12 the resulting potential along a single tube, i.e. a section in x-direction

at y = 0 through the potential in the plane of the atoms, is shown together with the
resulting density distribution for T/Tf = 0.1. Each plot corresponds to a different
waist σDMD for the filter. Obviously the potential corresponding to σFilter = 1 µm
exhibits strong fluctuations up to half of the Fermi energy. The profile of the potential
significantly influences the profile of the density distribution in a reverse proportional
manner. Thus, the density wildly fluctuates and Friedel oscillations are not visible.
For σFilter = 3 µm the fluctuation of the potential has significantly decreased in
magnitude. Accordingly the density profile looks smoother as well and on a first
sight the oscillations close to the barrier and close to the walls look familiar to the
Friedel oscillations that emerged in the test potential in the previous sections. The
Friedel oscillations close to the potential barrier stand out from the fluctuations of the
density caused by the fluctuations of the potential. This is a necessary requirement
for their observation. Further increase of σDMD leads to further improvement of the
homogeneity. However, the Friedel oscillations decrease in amplitude because the
potential barrier is more smeared out. The results for σDMD = 3 µm and σDMD =
5 µm are the most promising.
The resulting 1D tubes after the flattening process all differ from one another not

only in their length but also in the way how they deviate from the perfect form. Re-
spectively, also the density profiles exhibit individual fluctuations but in an average
over several tubes the fluctuations in the potential cancel (not shown) and so do the
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Figure 3.12: Flattened potentials and the corresponding density distribution. The filter used
for the imitation of the point spread function of the DMD imaging is varied between the four
images.

fluctuations in the density (see Figure 3.13). Taking the average over the density dis-
tributions of the 101 central tubes essentially cancels most of the density fluctuations
provoked by fluctuations of the potential and a clear signal of Friedel oscillations is
left (see Figure 3.13). Only for the case σFilter = 1 µm we cannot report any mea-
ningful result. Obviously the imperfections of the potential are too distinct to allow
for the occurrence of visible Friedel oscillations. σFilter = 3 µm provides the best
results in the simulation. The first oscillation is well pronounced with an amplitude
of Θ1 = 29 %, but the second oscillation Θ2 = 7 % is smaller than the noise level of
8 % quantified in Section 3.1. For larger σFilter we still find clear Friedel oscillati-
ons but with smaller amplitudes due to the broadened barrier. These numbers are
in agreement with the results we found for the test potential, where the simulation
yielded an amplitude of Θ2 = 9 % for T/Tf = 0.1.

I conclude that the procedure of flattening the potential leads to Friedel oscillations
of almost the same quality as reported for the test potential. Of course this procedure
still has to be established experimentally, but at least the simulation suggests that
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Figure 3.13: Averaged density distribution in the flattened potential. The average was per-
formed over the density distributions of 101 one dimensional potentials given by parallel slices
along the x direction with a distance of 0.5 µm. The slices were taken symmetrically around
y = 0. The four images correspond to four different filters used to imitate the point spread
function of the DMD imaging.

creating a suitable potential for the observation of Friedel oscillation is in general
possible. It was observed how distinct imperfections in the potential drastically alter
the particle density distribution, leading to the demand δV << Ef . The makeflat-
algorithm was tested successfully with idealized input data and it turned out that
the power of the DMD beam, the sharpness of the DMD imaging and the gain of the
algorithm are crucial for its performance. In the average over the tubes the reduction
of noise originating from the imaging process was not incorporated so far. The
considerations only confirmed, that fluctuations of the potential can be eliminated
in such an average. It will now depend on a detailed analysis of the signal to noise
ratio whether or not the observation of Friedel oscillations in our experiment seems
feasible.
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3.5 Signal to noise ratio

The most realistic simulation of Friedel oscillations revealed a Friedel wavelength of
λFO = 4 µm and relative amplitudes of Θ1 = 29 % and Θ2 = 7 % for the first and the
second oscillation respectively. For these calculations the density and the temperature
were set to n1D ' 0.25 µm−1 corresponding to n2D ' 0.5 µm−2 and T/Tf = 0.1. I
recall, that the estimate from Section 3.1 yielded a signal to noise ratio of SNR ' 12
for an average over 1000 images. Even then the second oscillation would be obscured
by noise, as the noise level after averaging remains to be about 8% of the signal.
In this section the signal to noise ratio is treated in more detail and I include

technical noise as well as the quantum efficiency of the camera. Also, higher imaging
intensities will be regarded that require a modification of the Beers law to account
for saturation effects. The goal of these considerations is to determine a realistic
estimate on the number of images that have to be averaged in order to make the
second amplitude visible. As already mentioned, we rely on the detection of at
least two oscillations to attribute the modulation of the density to the mechanism
of Friedel oscillations, since close to the potential barrier also other effects can cause
an apparent density modulation. For example, diffraction of the imaging light from
sharp edges in the optical density can occur. I expect the second oscillation to be
visible when its amplitude is at least twice the amplitude of the noise. Regarding the
numbers from above this implies that a way has to be found to suppress the noise
to a maximum of 4 % of the signal expected from a 2D density of n2D ' 0.5 µm−2.
In other words, the signal to noise ratio has to exceed a value of SNR ' 25. I find
that for optimal imaging parameters an average over 2300 images is required to meet
these conditions. It is not realistic that such an average can be performed since long
term drifts, for example in the alignment of the laser beams, ultimately limit the
achievable enhancement of the signal to noise ratio by averaging.
However, our setup allows for an averaging along the y-axis, i.e. over the different

one-dimensional tubes. The noise suppression caused by this average has not been
taken into account so far. Since the density distribution slightly differs from tube
to tube it is not as efficient as it would be if the density profile was precisely the
same in all the tubes. Yet, a first estimate predicts this effect to be small, such
that incorporating an average over 100 tubes still improves the signal to noise ratio
by a factor of almost ten. In this framework the number of images that have to
averaged to make the Friedel oscillations visible reduces to 25. Even though it is
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likely that the calculation underestimates the impact of the density fluctuations this
result suggest that Friedel oscillations might be observable within an average over a
reasonable number of images in our experiment. In an ultracold atom experiment
working with a heavier atomic species than 6Li the required signal to noise ratio
of SNR = 25 might be achievable more easily. The higher mass for example of
fermionic 40K allows for longer imaging times and thus an enhanced signal to noise
ratio of an individual image. Fermionic 173Yb again is even heavier than 40K. If the
imaging time τ was expanded to 100 µs an average over only 100 images provided a
SNR > 25 even without the tube average.12 For this reason it certainly should be
easier to perform the presented experiment with heavy fermionic atoms rather than
with 6Li.
In order to discuss the signal to noise ratio of our experiment the principles of

our absorption imaging shall be briefly presented. We apply an imaging pulse of
resonant laser light to the atoms, i.e. ωlaser = ω0, where ω0 is the frequency of the
D2 transition of 6Li.13 The atoms scatter the photons and therefore cast a shadow
onto the charge-coupled device (CCD) camera. Under the assumptions that

• only single scattering events occur,

• the laser light remains resonant to the D2 transition throughout the duration
of the imaging pulse and

• that the laser pulse itself does not change the density distribution

one finds the decrease of the probe intensity I(x, y, z) to be described by the Beer-
Lambert law

d

dz
I(x, y, z) = −n3D(x, y, z) σabs

1 + I(x, y, z)/Isat
I(x, y, z), (3.60)

where z is the propagation direction of the beam. n3D denotes the atomic density,
σabs = 3λ2/2π the scattering cross-section and Isat = π

3
hcΓ
λ3 is the saturation intensity

[55, 58]. λ = 2πc
ω0

is the corresponding wavelength to the atomic transition and
Γ = 5.87 MHz is the corresponding line width [57]. The Beer-Lambert law accounts
for saturation effects and it is derived in full detail for example by Foot [55]. equation
12These numbers still refer to 6Li. For a precise result the absorption cross-section and the saturation

intensity have to be replaced according to the atomic species.
13For detailed information on the transitions in 6Li see Gehm [57].
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(3.60) is an ordinary differential equation that can be solved by separation of variables
resulting in an expression for the two-dimensional density:

n2Dσabs = −ln(T (x, y)) + s(x, y)(1− T (x, y)), (3.61)

where n2D =
∫∞
−∞ dz n3D(x, y, z) was used for the two-dimensional density and

T (x, y) = Iout(x, y)/Iin(x, y) for the transmission coefficient of the atomic cloud.
The saturation s(x, y) = Iin(x, y)/Isat is the imaging intensity relative to the satu-
ration intensity. I refer to I(x, y,−∞) as Iin and to I(x, y,−∞) as Iout, which are
both measurable quantities. If Isat is known, the density n2D can be deduced from a
measurement of Iin and Iout.

The number of photons Nph ∝ I hitting a pixel during the imaging process is
transferred into counts C ∝ Nph by the CCD camera, i.e. a digital signal consisting
of a single integer number. Expressed in counts equation (3.61) reads

n2Dσabs = −ln
(
Cout(x, y)
Cin(x, y)

)
+ Cin(x, y)− Cout(x, y)

Csat
, (3.62)

where Cin ∝ Iin, Cout ∝ Iout and Csat ∝ Isat. The product n2Dσabs = OD is called
the optical density. In order to determine the signal to noise ratio

SNR = n2D√
σ2
n2D

= OD√
σ2
OD

(3.63)

we need to quantify the error on the optical density σOD. From error propagation it
follows that

σ2
OD = (1 + s)2

(
σCin

Cin

)2

+ (1 + sT )2
(
σCout

Cout

)2

, (3.64)

where the overbars indicate expectation values. This notation is used for all expec-
tation values in the following. This equation actually assumes only Cin and Cout to
be defective and Csat to be precise. In order to evaluate this expression I will derive
an expression for the error on Cin and Cout. Doing so, we have to take into account
two aspects: namely the noise on a single density image and the fact that two images
are taken to measure each of the two quantities. We will show that the variance14 of

14We use the words error and variance equivalently. The variance is the squared standard deviation.
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counts on a single pixel for an individual image is given by

σ2
C = κ2QeNph + σ2

tech, (3.65)

where σtech denotes a technical noise that will be quantified later on, Qe is the quan-
tum efficiency of the camera and Nph is the expectation value of photons hitting
the camera pixel during the imaging process. κ is a transformation coefficient that
indicates the number of counts per photo electron accounting for the gain G and the
sensitivity S of the camera. The technical error simply adds to the intrinsic photon
shot noise multiplied with quantum efficiency and the squared transformation coeffi-
cient. Taking into account the two-image measurement scheme we find the quantities
entering equation (3.64):

Cin =

image I︷ ︸︸ ︷
κQe

(
N
probe
in +N

leak
in

)
−

image II︷ ︸︸ ︷
κQeN

leak
in = κQeN

probe
in (3.66)

Cout = κQeT
(
N
probe
in +N

leak
in

)
− κQeTN

leak
in = κQeTN

probe
in (3.67)

σ2
Cin

= κ2Qe(N
probe

in + 2N leak

in ) + 2σ2
tech (3.68)

σ2
Cout

= κ2Qe(T 2N
probe

in + 2N leak

in ) + 2σ2
tech . (3.69)

Nprobe
in is the incident number of photons from the probe beam andN leak

in is the number
of photons from so-called leak light. For a given optical density OD and saturation
s the transmittance T is determined by equation (3.60) and according to equation
(3.63) the signal to noise ratio reads

SNR(s,OD) =
OD√√√√√(1 + s)2

√κ2Qe(Nprobe
in +2N leak

in )+2σ2
tech

κQeN
probe
in

2

+ (1 + sT )2

√κ2Qe(T 2N
probe
in +2N leak

in )+2σ2
tech

κQeTN
probe
in

2
.

(3.70)

First, the error on the counts of an individual pixel shall be derived for a single
image. Figure 3.14 gives an overview on the processing of the photons that are
captured by the camera and the noise that enters the process. The main sources of
noise that will be considered in this derivation are the photon shot noise, that noise
that arises from the translation of photons into photo electron due to a quantum
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Figure 3.14: Schematic representation of the imaging process. The main noise sources entering
the imaging process are the photon shot noise, the noise that arises from the translation of the
photons into photo electrons and the technical read-out noise.

efficiency Qe < 1 and the technical noise that enters during the processing of the
photo electrons. For a given intensity I the number of incident photons on one pixel
during an imaging pulse is given by:

Nph =
IL2

pxτ

hνph
, (3.71)

where Lpx is the linear pixel size. τ is the duration of the imaging pulse and hνph is
the energy of a single photon from the imaging light. The number of photons in a
coherent light beam is poissonian distributed [59].

Pph(Nph = k,Nph) = Nph
k

k! e−Nph (3.72)

If the expectation value is given by Nph, then the variance of the photon number is
σ2
ph = Nph as well. This is the first source of noise entering our measurement and

at the same time it is the noise with the most intrinsic character, that is, it cannot
be suppressed by technical improvement. Each photon that hits a CCD pixel creates
a photo electron with the probability given by the quantum efficiency Qe = 0.93.
Effectively a Bernoulli experiment is performed for every photon hitting the pixel,

53



3 Observation of Friedel oscillations in ultracold Fermi gases - a feasibility study

such that the number of photo electrons created by a fixed number of incident photons
Nph is binomially distributed:

Pe(Ne, Nph) =
(
Nph

Ne

)
QNe
e (1−Qe)Nph−Ne . (3.73)

Combining these two stochastic processes one ends up with an expectation value of
N e = QeNph and a variance of σ2

Ne
= QeNph as well. The probability for Ne photo

electrons to be generated reads

P (Ne, Nph) =
∞∑

Nph=Ne

Pph(Nph, Nph)Pe(Ne, Nph)

=
∞∑

Nph=Ne

N
Nph

ph

Nph!
e−Nph

(
Nph

Ne

)
QNe
e (1−Qe)Nph−Ne .

(3.74)

The photo electrons load a capacitor and therefore create a voltage proportional to
the number of electrons. This voltage is amplified with a gain of G and subsequently
transferred into counts by dividing it by the sensitivity factor S. Noise disturbing this
read-out process causes the number of counts to be gaussian distributed around their
real value with a width given by the so-called read-out noise σRON . The origin of
the read-out noise lies mainly within fluctuations of the capacitor voltage caused for
example by thermal voltage, but it accounts also for further technical noise sources
[60]. In general the read-out noise can be reduced by operating at smaller read-out
rates. Usually this noise is specified in [electrons], i.e. the output signal given in
counts is afflicted with a noise that corresponds to a noise of σ2

RON [electrons] on the
capacitor. As the amplification and the division are both linear processes the read-out
noise in counts is given by σ2

RON [counts] = σ2
RON [electrons] (G/S)2. In the following

we will call the read-out noise in counts σ2
tech and denote the quotient G/S by κ. Our

CCD camera is operated with a gain of G = 2.4 and a sensitivity of S = 3.83 electrons
counts .

The read-out noise is specified to be σ2
RON = 9.27 electrons=̂5.81 counts = σ2

tech. The
number of counts resulting from a given number of photo electrons Ne is therefore
given by

P (C,Ne) = 1
σtech
√

2π
exp

(
−1

2
(C − CNe)2

σ2
tech

)
, (3.75)

where the expectation value of the counts for a given Ne is determined by CNe = κNe.
To account for the probability distribution of photo electrons the probability P (C,Ne)
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has to be summed over all values for Ne weighted with the corresponding probability
P (Ne, Nph):

P (C,Nph) =
∞∑

Ne=0
P (Ne, Nph)P (C,Ne)

=
∞∑

Ne=0

∞∑
Nph=Ne

N
Nph

ph

Nph!
e−Nph

(
Nph

Ne

)
QNe
e (1−Qe)Nph−Ne

1
σtech
√

2π
exp

(
−1

2
(C − CNe)2

σ2
tech

)
(3.76)

This distribution describes the probability to measure a certain number of counts.
It is determined by the quantities σtech, Qe and N , where the average number of
photons is again determined by the imaging intensity, duration and the effective
pixel size of the camera.15 The expectation value for the number of counts for this
final distribution simply reads

C = κQeNph (3.77)

and the variance of the distribution is given by

σ2
C = κ2QeNph + σ2

tech. (3.78)

The factor κ only scales the distribution but does not alter the signal to noise ratio
since it also incorporated in σtech. This result displays the variance of the total
number of counts on each pixel of the CCD camera for a single image accounting for
photon shot noise, the quantum efficiency and the read-out noise. In the derivation
I neglected two further noise sources, namely spurious noise that is caused by clock
induced charge and dark current, i.e. noise that arises from thermal generation
of electrons in the silicon [60]. Both sorts of noise are heavily suppressed in our
experimental setup because we operate with short exposure times and small read-out
rates. Additionally the CCD-chip is cooled to −40◦C preventing the generation of
thermal electrons. The last source of noise that shall be considered in this work is
the leak light or background light which is the reason why two images are taken for
the measurement of Cin and Cout respectively. During the exposure time ϑ light from
a different source than the imaging laser illuminates the chip. In order to prevent
15As mentioned previously, the number of counts is an integer. The rounding that arises from the

conversion process from an analogue voltage to a digital integer number is not captured by the
given distribution.
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systematical errors due to the leak light we take in total four images (as described in
[61]) for the measurement of the optical density:

1. atoms_bright. The imaging pulse is applied to the atoms and the transmitted
intensity is captured by the camera.

2. atoms_dark. After the atoms have left the illumination area we take a second
image using the same exposure time as for the atoms_bright image, but we
do not apply any laser light. This image is supposed to capture the same
leak light as the atoms_bright image, such that subtracting atoms_dark from
atoms_bright removes leak light signal from the atoms_bright image.

3. no_atoms_bright. For the third image again a laser pulse is shone onto the
camera but without any atoms available to scatter photons.

4. no_atoms_dark. As before, this image shall capture the same leak light as the
no_atoms_bright in order to subtract it. Actually this image should equal the
atoms_dark image, but for technical reasons we have to take it again.

The quantity Cout ∝ Iout is thus given by the difference of the two images atoms_bright
and atoms_dark, whereas Cin ∝ Iin is determined by the difference between no_atoms
_bright and no_atoms_dark. There are three quantities that actually contribute to
the measurement of Cin. There is light of the probe laser and further there is the
leak light, which is first added to the probe light and subsequently subtracted. The
errors from every single light source can simply be added up and so do the variances
from the individual images due to error propagation. Hence, the error of Cin reads

σ2
Cin

= σ2
Catmos_bright

+ σ2
Catoms_dark

= (Nprobe
in +N

leak
in )κ2Qe + σ2

C +N
leak
in κ2Qe + σ2

C (3.79)
= κ2Qe(N

probe

in + 2N leak

in ) + 2σC .

For Cout the same arguments hold and it is

σ2
Cout

= κ2Qe(T 2N
probe
in + 2N leak

in ) + 2σC . (3.80)

Together with the equations (3.63),(3.64) and (3.77) these results yield the signal to
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noise ratio as already presented in equation (3.70):

SNR(s,OD) =
OD√√√√√(1 + s)2

√κ2Qe(Nprobe
in +2N leak

in )+2σ2
tech

κQeN
probe
in

2

+ (1 + sT )2

√κ2Qe(T 2N
probe
in +2N leak

in )+2σ2
tech

κQeTN
probe
in

2
.

(3.81)

For a given optical density and saturation the transmittance T is determined by
equation (3.61) which can be rewritten as follows:

T = W [exp(s−OD)s]
s

, (3.82)

where W denotes the Lambert’s W function [61].
Figure (3.15) displays the signal to noise ratio on a parameter space spanned by

OD and s. Since the quantity Nprobe

in depends linearly on the imaging time τ , the
longer the imaging time is, the smaller the denominator and thus, the better the
signal to noise ratio will be. Therefore the imaging time was chosen to be τ = 5 µs,
which is the maximal time we can image without significantly altering the density
distribution. We are limited by the fact that the atoms get pushed out of the focus of
the microscope along the imaging axis because of the acceleration an atom experiences
when it absorbs a photon. Additionally the atoms perform a random walk due to
the recoils accumulated from spontaneous re-emission, such that the spatial density
distribution broadens along all directions during the imaging process. These problems
occur particularly for 6Li because its small mass corresponds to high recoil velocities,
such that the atoms travel fairly high distances during the imaging time τ . Regarding
the exposure time ϑ one finds an improved signal to noise ratio for shorter exposure
times as ϑ affects only the number of the leak light photons. In the experiment
we operate with an optimized exposure time giving rise to approximately N

leak
in '

25 counts
pixel .

16 This number was extracted from an analysis of a set of 50 atoms_dark
images. For n2D = 0.5 µm−2 the maximal signal to noise of SNR = 0.52 is found for
a saturation of s = 1.5. Improvement of the signal to noise ratio can be achieved by

16To be precise, we interrupt the keep clean cycle of the camera instead of using a shutter. But this
goes to much into detail at this point. It is important to know the counts from the leak light
and that their number can hardly be reduced any further.
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Figure 3.15: Signal to noise ration dependent on the two-dimensional density ρ2D and the
saturation parameter s = I/Isat.

repetition of the same measurement. Averaging over k images reduces the error by
a factor of 1/

√
k. Satisfying the conditions that the noise amplitude is smaller than

half of Θ2 therefore requires a signal to noise ratio SNR = 25 which corresponds to
an average over 2311 images. It is not realistic that such an average could actually
make Friedel oscillations visible. There are too many components in the experiment
whose stability is insufficient for such an approach. For example the alignment of
the involved laser beams drifts over longer times. Furthermore, there is a fluctuation
in the number of atoms loaded into the trap as well as in the temperature of the
samples.

As mentioned previously, the average over the tubes, i.e. an average along the
y-axis, does not only compensate the fluctuations that occur in the precise form of
the potential between individual tubes, but at the same time it improves the signal to
noise ratio of a single image. A rough estimate sketched in the following shows that
this average is promising to significantly enhance the signal to noise ratio. Again,
for perfect tubes the 1D density at the position x would be equal for all the 1D
systems. Instead, the individual shape of the potential in each tube gives rise to
fluctuations in the density n1D(x) between different tubes that we call δn1D,y. How
do the errors δn1D,y from the density itself and σOD from its measurement combine?
Considering each tube as an individual measurement of the density distribution, it
is convenient to incorporate the fluctuation of the density δn1D,y by introducing an
error on the transmittance T . Dividing the one-dimensional fluctuation by the tube
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spacing and multiplying it with the absorption cross-section gives a corresponding
fluctuation in the optical density δOD = δn1D,y/0.5 µm σabs. Since T is given by
equation (3.82) a fluctuation on the optical density manifests itself as a fluctuation
on the transmittance given by

σ2
T =

(
W [exp(s−OD)s]

1 +W [exp(s−OD)s] exp(s−OD)
)2

δ2
OD. (3.83)

Since we did not investigate the precise distribution of the density fluctuations P (n1D,y)
the distribution of the transmittance P (T ) is unknown. For simplicity, let us assume
a gaussian distribution for T , which is likely to be wrong but nonetheless may serve
to derive a first estimate on the impact of σT . The error σT will only contribute to the
distribution of Cout in the way, that the number of transmitted photons Nout = NinT

hitting a pixel is now given by the usual poissonian distribution multiplied with the
gaussian distribution for T . As a result, the error σCout changes to

σ2
Cout

= κ2Qe(T
2
N
probe

in + σ2
TN

probe

in

2
+ σ2

TN
probe

in + 2N leak

in ) + 2σ2
tech. (3.84)

Apart from that the formula for the signal to noise ratio remains the same. The
study of the density distribution in different tubes of a flattened potential yielded a
standard deviation of δn1D,y ' 0.01 µm−1 leading to a fluctuation in the transmittance
of σT ' 0.01. From these numbers it follows that the signal to noise ratio for a
saturation of s = 1.5 and an average 2D density of n2D = 0.5 µm−2 decreases from
0.52 to 0.51. Even though this result is far from being precise it indicates, that
the fluctuations in the density will not drastically worsen the signal to noise ratio.
Now that we introduced a signal to noise ratio that takes into account a fluctuation
of the optical density itself, it is meaningful to regard each tube as an individual
measurement. Thus an average over 100 tubes leads to an increase in the signal to
noise ratio by a factor of ten. In this framework we find a signal to noise ratio of
SNR = O(5) in a single image. Correspondingly, to accomplish the condition that Θ2

exceeds twice the amplitude of the noise an average over only 25 images is required.
Most probably, the impact of δn1D,y is underestimated in these considerations and
thus more than 25 images are needed to make Friedel oscillations visible, but still
the result suggests that a detection of Friedel oscillation might be possible within an
average over a reasonable number of images.
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3.6 Conclusion and outlook

After all, we have to state that it still remains questionable whether or not Friedel
oscillations can be successfully observed in our experimental setup. Our main concern
was that we might not be able to create barriers of sufficient steepness. However,
the calculation revealed that the quality of experimental measurements will most
likely not be limited by the steepness of the barrier. Rather the combination of the
limited resolution of our imaging system and the 1/n1D dependence of the Friedel
wavelength forces us to work with very dilute samples resulting in a low signal to
noise ratio. Furthermore, it is uncertain whether we will be able to accomplish the
requirements regarding the temperature T/Tf < 0.1 and the homogeneity of the
potential δV � Ef . Even though the simulation in Section 3.4 showed that the
generation of a suitable potential for the observation of Friedel oscillations by means
of a DMD is in general possible, the proposed method remains to be tested in the
experiment.
However, other experiments work with higher resolutions allowing for higher den-

sities or with heavier atoms as for example 40K or 173Yb. Due to the higher atomic
masses much longer imaging pulses can be applied yielding higher signal to noise
ratios. For example for a density of n2D = 1 µm−2 and an imaging time of τ = 50 µs a
signal to noise ratio of about 3.7 can be reported for optimal saturation.17 An average
over only 100 images would thus suppress the noise to below 3% even without the
tube average.
Besides, there exist further methods to possibly improve the signal to noise ratio

that could also be implemented in our experiment. If for example a blue detuned
laser beam was used for the creation of the 1D tubes the distance between the tubes
could be diminished leading to an increase of the two-dimensional density without
changing the one-dimensional density. Loading two or more layers of the 2D-lattice
results in an enhanced 2D density as well, without affecting the 1D density of the
individual 1D systems. This approach would require a high degree of similarity
between the loaded layers regarding their precise potential shape, their density and
their temperature. Next, imaging the densities of the different spin components at the
same time is comparable to taking an average over two density images corresponding
to an improvement of the signal to noise ratio by a factor of

√
2. Additionally, it

has the advantage that the technical noise enters the process only once thus the total
17This exemplary signal to noise ratio was calculated with parameters referring to 6Li.
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improvement of the signal to noise would exceed
√

2. A further possibility for noise
reduction lies within the fact that our camera supports binning of camera pixels. In
order to resolve an oscillation with a wavelength of 4 µm it does not seem reasonable
to bin pixels along the x-axis, but in y-direction the binning could be particularly
useful. The last option that shall be mentioned here is to Fourier transform the
density image in order to detect the oscillations. It could still be tested from the
simulated data whether kf is more pronounced in Fourier space, than it is in real
space.
Given that in a experiment with ultracold atoms a potential of the form of the test

potential as shown in Figure 3.3 can be generated, in order to answer the question
whether it is suitable to observe one-dimensional Friedel oscillations, the following
considerations should be taken into account. Can temperatures of T/Tf . 0.1 be
achieved? Higher temperatures strongly reduce the visibility of Friedel oscillations.
What is the resolution R of the used imaging system? This introduces a minimal
Friedel wavelength λFO > 2R and therefore a maximal one-dimensional density n1D =
1/λFO. What is then the maximal signal to noise ratio for the corresponding density?
Assuming that the second amplitude of the Friedel oscillations ranges between 5 % and
10 % which is reasonable for realistic impurity potentials the noise should be below 5 %
which holds for signal to noise ratios greater than 20. If these general requirements
are accomplished the experiment is in general suitable for the observation of Friedel
oscillations. In general it should be possible to observe Friedel oscillations in one-
dimensional systems of ultracold atoms with evidence.
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4 Calibration of an optical lattice and
the imaging magnification based on
the Kapitza-Dirac effect

The associated potential of a one-dimensional optical lattice is described by V (y) =
V0 cos2(ky), where the amplitude V0 is referred to as the lattice depth.1 Such a
potential can be used to restrict the dynamics of an atomic sample to the dimensions
perpendicular to the lattice direction. For this purpose the lattice has to fulfill two
criteria. First, the spacing between the ground state and the first excited state in
an individual lattice well has to exceed the Fermi energy significantly in order to
guarantee that the occupation of states in the lattice well is restricted to the ground
state. Secondly, the atomic tunneling rate between lattice wells has to be smaller
than the characteristic time scale of the dynamics of the system which is determined
by the Fermi energy. For large enough lattice depths both criteria are fulfilled. Hence,
the dimensionality of the system is reduced by one.
Since one-dimensional systems offer a vast field of research, we aim to slice a 2D

system into one-dimensional tubes by means of an optical lattice. These tubes could
serve for example for the study of Friedel oscillations as explained in Section 3.1.
Regarding the lattice, a verification of the above criteria is required to guarantee
that the tubes constitute truly independent one-dimensional systems. To measure the
depth of an optical lattice the Kapitza-Dirac effect is a suitable an well established
tool. We performed corresponding measurements in order to calibrate the +x-y-
lattice that is provided to create the 1D tubes. The results will be presented in this
chapter.
The Kapitza-Dirac effect describes the diffraction of matter from a standing light

wave - the optical lattice. When an atomic ensemble that is essentially at rest is
1In accordance with the previous chapter I maintain the convention that the lattice is aligned along
the y-axis.
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exposed to a short pulse of a standing light wave a fraction of the atoms receives a
momentum of ∆p = 2n~kph, where ~k is the wave vector of the standing light wave
and n denotes the diffraction order. For a lattice created by two laser beams this
momentum transfer originates from n two-photon processes in which an individual
atom first absorbs a photon from the one beam and secondly re-emits it into the
other. After a certain time of flight τ the separation of the diffraction orders in
momentum space manifests itself as a spatial separation given by ∆x = 2~kτ/m.
From absorption images one can extract the relative populations of the diffraction
orders which are related to the lattice depth V0. By comparing the separation of
the diffraction orders in real space ∆real with the equivalent distance in the camera
plane ∆image the magnification of the imaging system can easily be derived from these
images as well. This method provides a higher accuracy than former methods used
for the determination of our magnification.

The evaluation of the data yielded a lattice depth of

V0(Pl) = 6.14(22) ErW Pl, (4.1)

where Pl denotes the power of the +x-y-lattice beam in Watt. Er = ~2k2
ph/2m is

the recoil energy, that is transferred in any absorption or emission process, m being
the mass of the particle. The measured value is only a tenth of the value predicted
by a calculation taking into account the lattice beam parameters. This discrepancy
is attributed to difficulties in the evaluation scheme and a misalignment of the laser
beam in Section 4.4.2.

For the magnification I found

M = 37.2(2). (4.2)

This value for the magnification deviates from values determined in former measu-
rements. Nevertheless, considering the high precision of this method a high level
of validity can be ascribed to this result. Since long term drifts in the experiment
alter the position of traps, a refocusing of the imaging microscope is required in cer-
tain temporal intervals accompanied by a change of microscope position along the
z-axis. We took the opportunity to investigate the dependence of the magnification
on the position of the microscope along the z-axis Zm. The results suggest a linear
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dependence of the form
∂M/∂Zm = 0.048(20) µm−1. (4.3)

The magnificationM reported above refers to a value of Zm = 45 µm. At this position
the microscope was focused to the squeeze position at that time.
In the following I introduce the Kapitza-Dirac effect before I proceed to a detailed

discussion on the evaluation of the recorded data.

4.1 The Kapitza-Dirac effect

The diffraction of light by a matter grating is a well studied phenomenon in physics.
If both light and matter exhibit wave and particle characteristics, should the reverse
process, i.e. the diffraction of a matter wave by light, not work as well? The answer
is yes. In what is known as the Kapitza-Dirac effect, a matter beam is diffracted by
a standing wave of light, acting as a grating.
Already in 1933 Kapitza and Dirac proposed to reflect a beam of electrons from

a standing wave of light [62], aiming to observe stimulated scattered radiation. If
one thinks of the standing wave as of two counterpropagating plane waves, then both
waves can individually interact with the electrons. An electron passing through such
a light field would first absorb a photon from one of the plane waves and subsequently
re-emit it into the counterpropagating plane wave in a process of stimulated emission.
The total momentum transfer necessarily is

∆p = 2~kph = 2hν
c
. (4.4)

Here, ν is the frequency of the standing wave light and c is the speed of light. Kapitza
and Dirac predicted the fraction of electrons in the beam undergoing such a two
photon process to be on the order of 10−14 considering the strongest light sources
available at that time. Hence, before the invention of the laser no attempts were made
to observe the Kapiza-Dirac-effect. It was only in 2001 that a successful diffraction
of an electronic beam by a standing light wave could be reported by Freimund et
al. [63], whereas already in 1986 Gould et al. exploited the effect to diffract neutral
atoms from an optical lattice [64]. The reason why the Kapitza-Dirac effect was first
observed with neutral atoms is their enhanced interaction with light compared to
bare electrons.
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Figure 4.1: Schematic representation of the Kapitza-Dirac effect. For a narrow standing light
wave diffraction occurs due to the short interaction time (left). For the wide standing light
wave Bragg scattering takes place (right). Reprinted from [65].

The particle picture introduced by Kapitza and Dirac is based on the second quan-
tization of the light field. A photon of momentum ~k is annihilated while one of the
momentum −~k is created. Correspondingly, an electron (or a neutral atom) of an
momentum pin is annihilated and one carrying the momentum pin + 2~k is created.
However, a rigorous formalization of this process has not been carried out yet within
the framework of quantum electrodynamics [65] . Kapitza and Dirac only considered
the case where momentum and energy conservation hold, leading to a Bragg condition
for the reflection of the electron beam [62]

λe− = λph cos(Θ), (4.5)

where Θ is the angle between the incident beam and the plane perpendicular to the
propagation direction of the light. Here, the lattice spacing D from the common
Bragg condition λ = 2D sin(Θ) is replaced by half the wavelength of the light λph/2.
λe− is the de Broglie wavelength of a single electron. Apart from Bragg scattering,
diffraction of electrons from a standing light wave can also be observed, seemingly
breaking the law of energy conservation. This contradiction can be dissolved by argu-
ments based on the Heisenberg uncertainty law [65]. In principle the finite interaction
time between light and electrons is related to an uncertainty of the photon energy
∆Eph allowing for an energy mismatch between the absorbed and the emitted pho-
ton. This explains why diffraction occurs for short interaction times whereas Bragg
scattering dominates for longer interaction times when ∆Eph decreases.

As an alternative to the particle picture employed by Kapitza and Dirac, the pro-
blem can also be addressed theoretically in semiclassical wave picture which is more
practical for calculations. This approach, which is discussed detail by Gadway et al.

66



4.1 The Kapitza-Dirac effect

[66], treats the light as a classical electromagnetic standing wave and incorporates
the interaction via an effective potential. It is particularly useful, since it leads to
the equations (4.12) and (4.13) that relate the population of diffraction orders to the
lattice depth. In a classical standing wave of light, an electron would experience a
so-called ponderomotive potential with a periodicity of λ/2. In the case of the neu-
tral atom, the intensity dependent energy shift of the ground state manifests in the
form of the dipole potential, which is proportional to the intensity of the light field
and hence exhibits the same periodicity of λ/2 [67]. Whereas the original proposal
assumed the electrons to travel through a light field, in our experiment a light pulse
of the duration τ is applied to the atoms, which are essentially at rest. These cases
can be transformed into one another by the interchange of one spatial coordinate
with the time coordinate and hence they can be treated analogously.

During the time of interaction between light and matter the dynamics of a single
particle are determined by the Hamilton operator

Ĥ = − ~2

2m
∂2

∂y2 + V0 cos2(ky), (4.6)

where m is the atomic mass, k = 2π/λph is the wave vector of the light and V0 is the
amplitude of the dipole potential given by

V0 = 3πc2

2ω3
0

Γ
∆I0, (4.7)

if the light predominantly couples to a single transition. For a coupling to multiple
atomic transition, a weighted sum over all of them has to be taken [67]. For the
description of the atomic wave function a basis of plane waves {ein2kz|n ∈ Z} is
considered. Any wave function can be expanded as

ψ(t) =
∞∑

n=−∞
cn(t)ein2kz. (4.8)

Inserting this expression into the one particle Schroedinger equation leads to a set of
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coupled differential equations2:

i
dcn
dt

=
(
εn2 + V0

2~

)
cn + V0

4~(cn+1 + cn−1). (4.9)

ε = ~k2/2m depicts the kinetic energy of the n-th mode in units of ~. Neglecting the
kinetic energy gives rise to the straightforward analytical solution

cn(t) = (i)ne−(i/~)V0tJn(V0t/~), (4.10)

where the Jn denote the Bessel functions of the first kind. The regime where the
atomic kinetic energy remains small in comparison to the lattice depth is called
either Raman-Nath regime [66], diffractive regime [65] or thin grating limit [68]. This
is where diffraction dominantly occurs. The condition

τωho � 1 (4.11)

is claimed to justify the negligence of the kinetic energy term in equation (4.10)
and thereby to guarantee the Raman-Nath regime to apply [66, 68]. The frequency
ωho =

√
2V0k2/m results from a harmonic approximation of a minimum of the lattice

potential and τ denotes the total duration of the interaction. This condition ensures,
that an atom does not oscillate in a lattice well. After the interaction time τ the
probability Pn of having received the momentum pz = n2~k for an individual atom
is given by the modulus squared of the corresponding expansion coefficient cn(τ)

Pn = |cn(τ)|2

= J2
n(V0τ/~).

(4.12)

If the criteria for the Raman-Nath regime is not fulfilled, the evolution of the coeffi-
cients cn(t) demands a more complex treatment. Gadway et al. discuss an analytical
solution for another regime, namely the weak pulse regime defined by the condition
V0 < 4Er = 4(~k)2/2m [66]. For the occupation of the first diffraction order they

2An implicit assumption of this approach is, that the interaction energy between the light and a
single atom is orders of magnitude stronger than the interatomic interaction, which is correspon-
dingly neglected.
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find the equation

P±1 = 1
1 + 2 (4Er)2

V 2
0

sin2

 τ

2~

√
V0

2 + (4Er)2

 . (4.13)

While it took decades from the prediction to the experimental observation of the
Kapitza-Dirac effect, it then rapidly established as a common tool to calibrate optical
lattices for ultracold atoms. The relative population of the diffraction orders can
easily be extracted from absorption images. A comparison with the theory yields the
lattice depth.

4.2 Description of the experiment

Aiming for a precise lattice calibration and a characterization of the magnification
of the imaging system we performed the following experiment yielding Kapitza-Dirac
diffraction of atoms from an optical lattice: We trapped 6Li-atoms in the FORT
trap3 and cooled the ensemble evaporatively in order to achieve high densities and
therewith a high signal to noise ratio. Subsequently, the sample was released from the
FORT and immediately exposed to a short pulse of the +x-y-lattice of the duration
τ = O(µs). After the application of the standing wave light pulse the system was
given the time Θ = O(ms) to evolve, before an absorption image of the atomic density
was taken.
The small waist of wx = 25 µm makes the FORT particular suitable for this expe-

riment, since it ensures that already after a short time of flight a spatial separation of
the diffraction orders is achieved. For the observation of the Kapitza-Dirac effect the
precise temperature is irrelevant as long as the spatial separation of the diffraction
orders significantly exceeds their thermal broadening after the time of flight. For
an efficient cooling of the atoms the experiments were performed in the regime of
attractive interactions inducing the formations of loosely bound 6Li-dimers. 4 The
power of the +x-y-lattice beam was adjusted manually. It was monitored with an
oscilloscope displaying the signal of a photodiode that measured a small outcoupled
intensity fraction. Since the light pulse was not power controlled for the lack of an

3For a description of the optical dipole traps see Chapter 2.
4In the evaluation the changed particle properties have to be taken into account. The dimers are
twice as heavy as atoms and also their polarizability is doubled. As a result they experience four
times the lattice depth as atomic 6Li measured in units of the corresponding recoil energy.
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appropriate controller, we verified that the fluctuations of the power were below 5%
of the applied power during a single light pulse as well as between different pulses. In
this setup the following parameters were modified depending on the purpose of the
individual series of measurement:

• τ := pulse duration

• Θ := time of flight

• Pl := laser power

• Zm := position of the lower microscope along the z-axis.

For Zm = 45 µm the microscope was roughly focused to the position of the FORT.
In order to determine the magnification for this position we recorded a data set where
Θ was varied expecting M to be robust against any change of Θ. To calculate the
lattice depth V0 for a given laser power it is mandatory to vary the pulse duration τ
such that the equation (4.12) or (4.13) can be fitted to the data points. Repeating
this procedure for various laser powers allows to relate the lattice depth V0(Pl) to
the laser power. A corresponding second data set was recorded. Finally, in order to
characterize the dependence of the magnification on the position of the microscope
in z-direction, we performed a series of measurements only varying Zm and keeping
all the other parameters constant.

4.3 Method of the data evaluation
I analyzed the recorded data with the program Matlab. The essence of the evaluation
code can be compactly summarized: The diffraction orders that are visible in the two
dimensional density images are fitted with elliptical gaussian distributions which are
all of the same widths and only differ in amplitude. This is reasonable, because all
diffraction orders maintain the shape of the original cloud.5 Since we never populated
any higher diffraction orders than the first one, the fits must provide three gaussian
peaks. Figure (4.2) exemplary shows a fit to the density distribution that results from
the Kapitza-Dirac effect. Once the density is captured in the fits one can extract the

5Strong interatomic interactions can alter the form of the diffraction orders. As the clouds literally
move through one another many scattering events can significantly reshape the density distribu-
tion. We also observed first diffraction orders looking rather lunate than gaussian. By adjusting
the interaction strength we solved this problem.
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Figure 4.2: A) Density distribution of an atomic ensemble after application of a τ = 5 µs light
pulse and Θ = 800 µs time of flight. B) A summation along the x axis of the experimental data
and the fitted data. C) Summation along the y axis of the experimental data and the fitted
data. D) Fitted data to A). The color bar refers to the plots A) and D).

fraction of atoms that has been transferred to the first diffraction order. This equals
the probability for an individual atom of having received the momentum pz = ±2~k
given by P±1. Plotting P+1 + P−1 against τ and fitting equation (4.12) or equation
(4.13) to the data yields the lattice depth, as shown in Figure 4.3. The magnification
of the imaging system is derived from the data by a comparison of the distance
between the diffraction orders in the density image ∆image and the corresponding
distance in the plane of the atoms ∆real. The latter is given by

∆real = 2~k
m

Θ (4.14)

and ∆image is the distance in pixel in the image times the physical linear pixel size of
the camera. Hence, the magnification reads

M = ∆image

∆real

= ∆imagemλ

4π~Θ . (4.15)
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Figure 4.3: Fit of equation 4.13 to experimental populations P+1 +P−1 of the first diffraction
order for different pulse durations τ for a fixed laser power of P = 0.58W .

4.4 Results

Here, I report on the results from experiments based on the Kapitza-Dirac effect.
First, the characterization of the Magnification is presented, followed by the calibra-
tion of the +x-y-lattice. I discuss certain difficulties that occurred in the analysis of
the data. The results rely on the evaluation scheme presented in the former section.

4.4.1 Magnification

From measurements based on the Kapitza-Dirac effect I determined the magnifica-
tion of our imaging system to be M = 37.6(2) for Zm = 45 µm. Furthermore, the
evaluation yields a linear dependence of the magnification on the position of the mi-
croscope along the z-axis of ∂M(Zm)/∂Zm = 0.048(20) µm−1. First, the measurement
regarding M(Zm = 45 µm) is discussed and subsequently the measurement for the
determination of ∂M(Zm)/∂Zm is addressed.
In order to precisely measure the magnification of our imaging system a set of

data was taken, where the time of flight Θ was varied from 0.5 ms to 1 ms in steps
of 0.1 ms. For each value of Θ an average on 50 images has been taken. All other
system parameters were kept constant at τ = 5 µs and Pl = 1.3 W. In the analysis
of the data I encountered one major issue that is described in the following, namely
a fluctuation of the position of the zeroth diffraction order along the connection line
between the two first diffraction orders. The data actually provides three distances
that can all be evaluated individually to calculate a magnification. They are given
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Figure 4.4: Magnification evaluated for the three types of distance for different times of flight
Θ. M is the average over all M(Θ,∆+1,−1) and SM is the corresponding error.

by the distance between

1. the +1 diffraction order and the zeroth order := ∆+1,0,

2. the −1 diffraction order and the zeroth order := ∆−1,0 and

3. the +1 diffraction order and the −1 diffraction order := ∆+1,−1.

It turned out that these values significantly differ from one another for a given Θ.
Figure 4.4 shows the results for the magnification in dependence on the time of flight
for the three different distances. The magnification from ∆+1,−1 is the most robust
against the variable Θ. However, I found

∆+1,0 + ∆−1,0

2 ' ∆+1,−1 (4.16)

for any Θ. This behavior also occurs when all system parameters are kept constant
and magnifications between individual images of the same kind are compared (not
shown). These observations suggest, that the zeroth diffraction order is shifted along
the connecting line between the two first diffraction orders in a seemingly random
fashion. It is unlikely that the issue is caused by the fit, because it works with a
higher precision. I could not find any plausible physical explanation for this behavior
and therefore decided to rely on the numbers delivered by the evaluation of ∆+1,−1.
The magnification of M = 37.6 was calculated by averaging over the six different
values for the different times of flight. The given error of SM = 0.21 is the standard
deviation of the six magnifications. The derivation of a precise error would require
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Figure 4.5: Linear fit to the magnification in dependence on the position of the lower mi-
croscope Zm.

a more sophisticated treatment including an error propagation through all the steps
of the analysis beginning with the error on the density images. However, since the
standard deviation serves as a good estimate on the error I renounced the costly
calculation of a precise error.
I proceed with the measurement that was carried out to characterize the linear

dependence of the magnification on the microscope position. Addressing this topic
we varied the variable Zm from 20 µm to 70 µm with a step size of 5 µm. For each
value of Zm an average on 10 images has been taken. The time of flight was chosen
to be Θ = 0.5 ms and the pulse duration was set to τ = 5 µs. The laser power was
P = 1.3 W. Since evaluating this data set I encountered the same issue as described
above, I focused again on the evaluation of ∆+1,−1. A linear fit to the magnification
yields the relation ∂M(Zm)/∂Zm = 0.048(20) µm−1 as shown in Figure 4.5. For the
errors on ∂M(Zm)/∂Zm the same arguments as for the error on the magnification
hold. The given error results only from the last step of the evaluation, namely the
linear fit. The influence of Zm on the magnification is significant and has to be
considered in the experiment when changing the position of the microscope.

4.4.2 Lattice calibration

Calibrating the +x-y-lattice by making use of the Kapitza-Dirac effect the lattice
depth was found to be V0(Pl) = 6.14(22) Er

W Pl. The result is based on the analysis
of data for the following four laser powers: Pl = {0.4 W, 0.58 W, 0.76 W, 1.3 W}.
For each laser power the pulse duration τ was varied from 2 µs to 8 µs in steps of 1 µs
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Figure 4.6: Relative occupation of the first diffraction orders P+1 and P−1 in dependence on
the pulse durations τ for different laser powers Pl. The fit parameter V0 is the lattice depth in
units of the recoil energy.

and for each data point an average over 10 images was taken. As explained above,
for a given laser power equation (4.13) or respectively equation (4.12) was fitted to
the determined populations of the first diffraction orders as shown in Figure 4.6. The
lattice depth V0 was the only free fitting parameter. Finally the resulting lattice
depths were related to the laser powers within a linear fit as done in Figure 4.7. The
given error is the error resulting from the linear fit.
A further comment shall be made on the robustness of the presented results. I

used the equation (4.13), that is valid in the weak pulse regime, to fit the data for
Pl = {0.4 W, 0.58 W, 0.76 W}. According to Gadway et al. this regime is specified
by the condition V0 . 4Er. For Pl = 0.76 W this requirement is indeed not fulfilled,
but it turned out equation (4.12) fitted the data worse. However, the fact that the
calculated value of V0(Pl = 0.76 W) = 4.71 Er is not far from the weak pulse regime
and additionally is well reproduced by the linear fit for V0(Pl) justifies the use of
equation (4.13). For Pl = 1.3 W equation (4.12) was fitted to the data, but also
in this case the requirements discussed by Gadway et al. for the application of this
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Figure 4.7: Linear fit to the determined lattice depths in dependence on the laser power.

formula are not accomplished. Whereas τωho � 1 is demanded, one finds τωho ∈ [2; 8]
for the different values of τ . Even though the data for Pl = 1.3 W is reproduced
quite accurately by equation (4.12) as can be seen in Figure 4.6 and the data point
V0(Pl = 1.3 W) = 7.86 Er is in agreement with the linear fit for V0(Pl), the violation
of the presuppositions reduces the reliability of the results. In order to calibrate a
lattice with high accuracy it is recommendable to record data under conditions that
ensure the application of the Raman-Nath regime which was introduced in Section
4.1, i.e. τωho � 1. Figure 4.8 shows the value of τωho = 2τEr

√
V0/Er/~ for a

parameter space spanned by τ and V0. The Raman-Nath regime is limited to quite
a small area where both, τ and V0 take small values. This is due to the small mass
of 6Li corresponding to a high recoil energy.
Finally, the discrepancy between the measured and the theoretical lattice depth

shall be discussed. Taking into account the waists of wx = 400 µm and wy = 15 µm
a calculation shows, that for Pl = 1 W one would expect a lattice with a depth of
V0 = 73 Er. Our experimental result reproduce only a tenth of this value. Possible
explanations for this discrepancy are:

• Further investigation revealed, that power is lost at optical elements on the
pathway from the fibre to the position of the atoms due to clipping.

• The retro reflecting mirror itself has a reflectivity below R < 70%.

• The retro reflected beam is divergent - a cat-eye construction is suitable to
remedy this problem.
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Figure 4.8: The parameter τωho determining the Raman-Nath regime in dependence on τ and
V0. The Raman-Nath regime requires τωho << 1.

• The discussed issues in the evaluation scheme.

Unfortunately the +x-y-lattice had to be disassembled for technical reasons. When
the +x-y-lattice is rebuild the above points should be considered.

4.4.3 Conclusion and outlook

We exploited the Kapitza-Dirac effect for the calibration of an optical lattice and
to characterize the magnification of our imaging system. In both cases the method
provided reasonable results. Regarding the magnification the measurement is ascribed
a high value of validity. The calibrated lattice had to be disassembled, hence the
calibration is obsolete. The lattice depth was found to be only a tenth of the expected
value indicating a misalignment of the lattice beam. The evaluation code was added
to the group repository and is available for the evaluation of future measurements
based on the Kapitza-Dirac effect.
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5 Determination of the Fermi
wavevector in a 2D non-interacting
homogeneous Fermi gas

In the course of this work the relation between the Fermi wavevector and the Friedel
wavelength

λF = π/kf (5.1)

appeared several times. First measurements have been performed to determine the
Fermi wavevector of an ultracold two-dimensional non-interacting Fermi gas trapped
in a homogeneous potential provided by our ring trap and the 2D lattice. The method
is based on the observation of the fermionic density via absorption imaging after the
system was released from the ring trap and expanded freely in two dimension for the
time τ . An evaluation of these time of flight images yielded a Fermi wavevector of kf '
2.864(4) µm−1, corresponding to a wavelength for possible Friedel oscillations of λF '
O(1 µm) which is not resolvable in our experiment1. Furthermore the temperature
could be determined to be smaller than T/Tf = 0.4 with high confidence. Even
though the observation of Friedel oscillations is planned to be performed in 1D this
measurement provides useful information on the 2D sample. The tools for the creation
of homogeneous two-dimensional Fermi gases have only recently been implemented
in our experiment such that any measurements that increase our knowledge about
theses gases are helpful. Furthermore, the results confirm our expectation that in 2D
the Fermi wavevector is too large for the observation of Friedel oscillations. At least
one can derive a 2D density from kf to cross check our density calibration.

1Note that these numbers refer to the 2D system. If this system was sliced into 1D tubes, the
Fermi wavevector was smaller
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5.1 Experimental setup

We prepared a two-dimensional non-interacting and homogeneous Fermi gas by loa-
ding the atoms in a single layer of the 2D-lattice. Their extent in plane was limited
by the ring trap and an adequate magnetic field was applied to make the gas non-
interacting. In a first step in-situ images of the sample were taken. Secondly, we
released the sample from the ring trap allowing for an expansion inside the lattice
layer for the time of flight τ = 2 ms before taking an image.

5.2 Evaluation

Our evaluation scheme is based on the crude approximation that the temperature of
the system is given by T = 0 K. Further, I assume the potential to be of the form

V (rϕ) =

0 for r < R

∞ for r > R
, (5.2)

where r and ϕ are polar coordinates and R is the radius of the ring trap. For this
case the phase space density in a Fermi gas trap in the potential reads

n(k, r) = n0 Θ(|r| −R)Θ(|k| − kf ). (5.3)

Hence, the density is homogeneous is both, in real space and in momentum space. Θ
denotes the Heaviside function and limits the density to circle around the origin in
real and momentum space. From this distribution one can now calculate the total
particle density at the position r0 after the time of flight τ .

nτ (r0) =
∫
dr
∫
dk n(k, r)δ

(
r0 − r− ~kτ

m

)

=
∫
dx
∫
dy
(
m

~τ

)2
n0 Θ

(√
x2 + y2 −R

)
Θ
(√

(x− x0)2 + (y − y0)2 − ~τ
m
kf

)
(5.4)

This integral has a simple interpretation. The question is, which particles will have
traveled to the point r0 after the time of flight? The maximum distance a particle can
travel in the time τ is τ~kf/m, where m denotes the atomic mass. The assumption
of zero temperature implies that all the momenta below kf are surely occupied. Thus
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Figure 5.1: Graphical representation of the integral in Equation (5.4)

if a point r1 lies within the area of the ring trap (r1 < R) and its distance to r0

is smaller than τ~kf/m, then a certain fraction of the density originally located at
r1 will have traveled to r0 within the time τ . If one of these two conditions is not
fulfilled, there is no contribution from point r1 to the density at r0 after the time
of flight. The integral in Equation (5.4) thus simply displays the overlap of a circle
with a radius τ~kf/m around r0 with a second circle with a radius of R around
the origin multiplied with the constant (m/~τ)2n0 (see Figure 5.1). Proceeding with
some maths on Equation (5.4) and replacing τ~kf/m = K one finds:

nτ (r0, ϕ)
(
~τ
m

)2

=K2π

2 −
r2

0 +K2 −R2

2r0

√√√√K2 −
(
r2

0 +K2 −R2

2r0

)2

−K2 arctan

r2
0 +K2 −R2

2r0

/√√√√K2 −
(
r2

0 +K2 −R2

2r0

)2


+R2π

2 −
r2

0 +R2 −K2

2r0

√√√√R2 −
(
r2

0 +R2 −K2

2r0

)2

−R2 arctan

r2
0 +R2 −K2

2r0

/√√√√R2 −
(
r2

0 +R2 −K2

2r0

)2
 .
(5.5)
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Figure 5.2: A fit of Equation (5.5) to the radially averaged measured density, where kf serves
as a fit parameter. The system was given τ = 2 ms time of flight. The data has been norma-
lized.The error given for kf only displays the fitting error, but does not account for the error
due to approximations made in the calculation.

Logically this expression depends only on the distance of r0 from the origin, i.e. the
resulting density distribution nτ (r0, ϕ) is again radially symmetric but not homo-
geneous in real space any more. A fit of this expression to the radially averaged
density images as shown in Figure 5.2 delivers kf as it is the only free parameter.
The fit returns a Fermi wavevector of kf = 2.86 µm−1 corresponding to a density of
n2D = 0.65 µm−2.2 The density extracted from images using the Beer-Lamberts law
is nabsorption

2D ' 0.6 µm−2. This value shall just serve as a sanity check, hence no error
has been calculated. The results roughly agree with one another and lie all within
a reasonable range. Thus, they provide a first estimate for the Fermi wavevector.
A corresponding wavelength of Friedel oscillations in the examined system would be
λF = O(1 µm). I tried to incorporate the temperature in this method by using a
semi-classical description for the initial phase space density

n(r,k) = 1
(2π)2

1
exp(β[Ĥ(r,k)− µ]) + 1

, (5.6)

2The density was calculated with the formula n2D = k2
f/4π which follows from the quantization of

a quadratic 2D volume of constant potential.
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Figure 5.3: Calculated radial density distributions nτ (r0) based on an initial distribution given
by Equation (5.6). The chemical potential was set to µ = ~2k2

f/2m and the Hamilton operator
is defined by the potential in Equation (5.2).

where Ĥ(r,k) = ~2k2/2m+ V (r) and µ is the chemical potential [69]. Respectively,
after the time of flight the density is given by

nτ (r0) =
∫
dr

1
(2π)2

(
m

~τ

)2 Θ(|r| −R)
exp(β[ (r0−r)2m

2τ2 − µ]) + 1
. (5.7)

Figure 5.3 displays calculated radial density distributions nτ (r0) for different tem-
peratures together with the experimental data. The plots show that this method
cannot serve as precise thermometer, but it delivers a first orientation regarding the
temperature of the system. The results suggest that T/Tf lies rather in the range of
0.1 or 0.2 than 0.4. The R2 value, giving a measure for the quality of a fit is the best
for T/Tf = 0.1.3 Nevertheless, it is obvious from the plots that the quality of the
data does not permit to deduce the temperature to high level of precision.

3R2 = 1−SSE/SST , where SSE =
∑
i(yi− fi)2 and SST =

∑
i(yi− y)2.. yi is a measured value

and fi is the corresponding value of a fit expression. y is the average over the measured values.
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5.3 Conclusion and outlook
Conclusively, analyzing time of flight density images of a two dimensional homo-
geneous and non-interacting Fermi gas allowed us to approximately calculate the
Fermi wavevector kf ' 2.864(4) µm−1 and to give an upper limit for the temperature
T/Tf < 0.4. The method requires little effort and thus is a suitable instrument to
get a first benchmark on the system. Possibly, it could serve as a relative measure
on the temperature. This could be realized by deriving a fit function for nτ (r0) with
T as a free parameter or by observing the R2 values resulting from the comparison
of experimental data with calculated densities for different temperatures as done in
Figure 5.3. If the R2 value for zero temperature increases, while R2 for T/Tf = 0.5
decreases in the cause of a change of the experimental cycle, it is likely that the
system became cooler. A temperature dependent fit function requires an analytical
solution for the integral in Equation (5.7), which I did not find so far. Maybe this
method could also be extended to one-dimensional system. Consider a homogene-
ous one-dimensional potential bounded by the ring trap. Deactivating the ring trap
allows a non-interacting Fermi gas to expand along the tube. Assuming zero tem-
perature certainly allows to calculated a corresponding fit function with kf as a free
parameter. kf is the same in all the tubes, despite their different lengths because it
depends only on the density.
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