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Zusammenfassung

In der vorliegenden Arbeit wird die Verwendung von Neuronalen Netzen für eine ver-

besserte Ereignisselektion in der Topquarkmassenmessung im myon+jets Endzustand für

Ereignisse am CMS Experiment für den Run II des LHC mit einer Schwerpunktsenergie

von
√

s = 13 TeV untersucht. Es wurde gezeigt, dass die Zusammensetzung der selek-

tierten Ereignisse bezüglich Permutationstypen der Jetzuordnung in tt̄ Ereignissen einen

starken Einfluss auf die systematische Unsicherheit der Topquarkmassenanalyse hat. Ei-

ne Selektion basierend auf einem neuronalen Netzwerk, dass auf die Klassiefizierung von

Ereignispermutationen des tt̄ myon+jets Enzustandes trainiert wurde, konnte die systemati-

sche Unsicherheit der bisherigen Topquarkmassenmessung in diesem Kanal von etwa 630

MeV auf 560 MeV verbessern.

Abstract

In this analysis the usage of deep neural networks for an improved event selection for

the top-quark-mass measurement in the tt̄ muon+jets channel for events at the CMS ex-

periment for the LHC run II with a center of mass energy
√

s = 13 TeV was investigated.

The composition of the event selection with respect to different jet-assignment permutation

types was found to have a strong influence on the systematic uncertainty of the top-quark-

mass measurement. A selection based on the output of neural network trained on classifying

event permutations of the tt̄ muon+jets final state into these permutation types could then

be used to improve the systematical uncertainty of the current mass measurement from a

systematical uncertainty of around 630 MeV to 560 MeV.
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1 Introduction

Particle physics is the science that describes the interaction of the fundamental particles, the

building blocks of nature. Thus research in the area of particle physics gives us insight in

processes of all scales of nature, from the interaction of the sub atomic quarks inside the atomic

nuclei up to the long term evolution of the universe, cosmology. The Standard Model of particle

physics is a consistent theory that describes todays knowledge in this field and seems to be

in very good agreement with most of the experimental data gathered in the last decades. Its

predictions of new particles are all satisfied since the discovery of the higgs boson in 2012 [23].

Nontheless there is still a lot that needs to be explained. The Standard Model gives no candidate

for dark matter, which is motivated by astronomical and cosmological observation, it does not

allow massive neutrinos, despite the fact that we observed neutrino oscillations [32]. It does not

cover gravity. The internal structure of the Standard Model also raises some questions: Why

do we have three generations of particles? Why are the fermion masses distributed over several

orders of magnitude? Can we explain the hierarchy problem or the lack of CP violation?

All these questions are a good motivation for extending the Standard Model. Therefore one of

the tasks of modern particle physics is to search for more deviations between nature and the

Standard Model. In this thesis data from the CMS1 experiment at CERN is used to measure the

mass of the top-quark, the heaviest fundamental particle we found so far. The top-quark mass

is an important parameter of the Standard Model of particle physics as well as models beyond.

Therefore a precise measurement of this quantity is an important step to find and understand new

physics. To improve the current measurement approaches, new methods are needed, therefore

this thesis focuses on using machine learning methods in general and Deep Artificial Neural

Networks (Deep ANN’s) in particular. This "deep learning" is computational expensive but

delivers a powerful tool when dealing with complicated classification or regression problems.

The goal of this work was to adapt ANN techniques for selection purposes in the top- quark-

mass analyses.

1Compact Muon Solenoid
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2 The Standard Model of Particle Physics

The Standard Model of particle physics (SM) is the foundation of modern particle physics. The

following chapter gives a short overview of the main aspects of the theory based on [69], [48]

and [45].

2.1 Introduction to the Standard Model

The SM is a quantum field theory with a SU(3)C×SU(2)L×U(1)Y symmetry. A more detailed

theoretical description can be found in subsection 2.1.2. The particle content and basic interac-

tions are described in the following section 2.1.1

2.1.1 Particle Content and Interactions in the SM

The SM describes the interaction of the known fundamental particles via the fundamental

forces, except gravity, in a quantum field theory. Figure (1) gives a good overview of the parti-

cle content so the SM. It can be divided in force mediating bosons with spin 1, fermions with

spin 1
2 as building blocks of nature and the famous higgs boson with spin 0. The higgs boson

arises from the higgs mechanism that gives mass to the fundamental particles, as described in

section 2.1.2. Depending on how they interact through the strong, weak and electromagnetic

force, the fermions are further divided in quarks, charged and neutral leptons. The charges of

a particle are quantum numbers that determine how a particle can interact with other particles.

Each fermion comes with a partner, its anti particle with inverse charge with respect to the three

forces, but otherwise same properties like the particle mass.

The charge most noticeable in everyday life is the electric charge. All SM fermions with the

exception of the neutral leptons, the neutrinos, are electrically charged and can therefore inter-

act via the electromagnetic force. The associated force carrier is the massless photon. Particles

with electric charge interact with each other by exchanging photons. The strong force that holds

atoms cores together is coupling to the color charge. There are three color charges: red, green

and blue. Quarks are the only fermions holding color charge. The corresponding force carrier is

the massless gluon. The gluon itself is charged, holding color and anti color and therefore also

interacts with itself. Stable states are found to be always colorless. This means that bound states

are either comprised of particles with canceling colors and anti colors (e.g a blue quark and an

anti blue anti quark) or comprised of particles with all three colors (e.g. a red, a green and a

blue quark). The weak force that is mainly responsible for particle decays couples to the so

called weak isospin. The weak isospin of a particle directly connects to another particle prop-

erty, the chirality. The chirality is defined mathematically by the response of a particle to the

chirality projection operators PL = 1
2(1− γ5) and PR = 1

2(1+ γ5). For particles with a velocity

below the speed of light the chirality is a superposition of left handed and right handed states,

depending on the helicity of the particle. For velocities v ≈ c helicity and chirality approach

equality. Left handed particles correspond to a spin projection anti parallel to the particle mo-
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mentum. In the weak force only left handed particles (and right handed anti particles) interact.
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Figure 1: Elementary particles of the Standard Model [70].

The fermions are given by left handed dublets and right handed singlets. For the doublets, the

third component of the weak isospin I3 =+1
2 for one and I3 =−1

2 for the other particle. Right

handed singlets have I3 = 0. This allows dividing the quarks in up-type and down type quarks

and leptons in neutrinos and charged leptons with I3 = ±1
2 for their left handed variants. In

the SM neutrinos are massless, traveling at the speed of light, therefore the SM excludes right

handed neutrinos since they are also electrically and color neutral and would not interact with

any other SM particle. The weak force has three force carriers in total. The Z boson is uncharged

and interacts with all particles with weak charge. The two electrically charged W bosons allow

another kind of interaction. They couple to the fermion doublets, allowing transitions between

up and down type particles as well as neutrinos and charged leptons. Due to the non zero mass

of the W and Z bosons, the range of the weak force is limited at low energy scales and weak

interactions are suppressed. Fermions come in three different generations. For every fermion

there are two other variants with the same quantum numbers with respect to the three forces but

a different mass. The forces described by the SM with exception of the weak force conserve

additional quantum numbers, that define the flavour of a particle given by the corresponding

generation and weather it is up or down type. Only the weak force allows transitions between

different flavors and generations. An overview of all fundamental particles and their quantum

numbers can be found in table 1.
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Table 1: List of all particles in the SM with their masses and quantum numbers [52].

name symbol mass
[

GeV
c2

]

electric charge [e] color charge weak isospin

fermions spin= 1
2

u
p

-a
rt

ig
e

q
u

a
rk

s up quark (1st. generation) u 0.0022+0.0006
−0.0004 +2/3 red/green/blue +1/2, 0

charm quark (2nd. generation) c 1.27±0.03 +2/3 red/green/blue +1/2, 0

top quark (3rd. generation) t 174.2±1.4a +2/3 red/green/blue +1/2, 0

d
o
w

n
li

k
e

q
u

a
rk

s down quark (1st. generation) d 0.0047+0.0005
−0.0004 -1/3 red/green/blue -1/2, 0

strange quark (2nd. Generation) s 0.096+0.008
−0.004 -1/3 red/green/blue -1/2, 0

bottom quark (3rd. Generation) b 4.18+0.04
−0.03 -1/3 red/green/blue -1/2, 0

n
eu

tr
i-

n
o

s

electron neutrino (1st. generation) νe 0b 0 - +1/2

muon neutrino (2nd. generation) νµ 0 0 - +1/2

τ neutrino (3rd. generation) ντ 0 0 - +1/2

ch
a
rg

ed

le
p

to
n

s electron (1st. generation) e 5.1099 ·10−4 -1 - -1/2, 0

muon (2nd. generation) µ 0.1057 -1 - -1/2, 0

τ lepton (3rd. generation) τ 1.777 -1 - -1/2, 0

gauge bosons spin=1

b
o

so
n

s

photon (electromagnetic force) γ 0 0 - 0

W+-Boson (weak force) W+ 80.385±0.015 +1 - +1

W−-Boson (weak force) W− 80.385±0.015 −1 - −1

Z-Boson (weak force) Z0 91.1876±0.0021 0 - 0

Gluon (strong force) g 0 0 color + anti color 0

higgs boson spin=0

higgs boson h 125.09±0.24 0 - 0

aThe pole mass of the top quark. “pole mass“
bMassles in the SM.

2.1.2 Electroweak unification and gauge theory of the SM

The phenomenology of the SM described in the previous subsection arises from the equations

of motion received from the lagrangian density of the SM [69, 60]. The lagrangian of the

SM contains the kinetic and potential energy terms of the different fermions. For the SM the

lagrangian density is required to be invariant under transformation of a SU(3)×SU(2)×U(1)

symmetry. This requires the introduction of gauge fields that will resemble the force carriers of

the electromagnetic, the weak and the strong force. Interaction terms with those fields lead to the

description of the respective forces. Finally the higgs mechanism from which the higgs boson

arises is introduced to allow mass terms for the introduced gauge fields without breaking the

gauge invariance. In the following the composition of the SM lagrangian density is motivated.

To start we can look at the U(1) symmetry group. The kinetic and mass terms of the fermionic

fields Ψ would result in the following lagrangian density

Lfermion = ψ̄(iγµ∂µ)ψ − mψ̄ψ .

5



With γµ the gamma or dirac matrices and m the fermions mass. A local U(1) phase transforma-

tion would change the dirac fields in the form of

ψ(x)→ ψ ′(x) = eig Y
2 χ(x)ψ(x) .

With a coupling constant g, the Hypercharge Y and a local phase χ(x). Now we would like

to require that the lagrangian density is invariant under local phase transformations of the U(1)

symmetry group

L
′ = L .

If we use the U(1) phase transformation L is transformed to

L →L
′ = ie−ig Y

2 χ ψ̄γµ [eig Y
2 χ∂µψ + ig

Y

2
(∂µ χ)eig Y

2 χψ]−me−ig Y
2 χ ψ̄eig Y

2 χψ

= L −g
Y

2
ψ̄γµ(∂µ χ)ψ .

To fulfill the requirement of local gauge invariance, gauge fields are introduced which introduce

new terms that cancel the deviations between L and L ′. For the U(1) symmetry we can simply

introduce a new field Bµ and replace the partial derivative in the lagrangian density with the so

called covariant derivative

∂µ → Dµ = ∂µ + ig
Y

2
Bµ

where Bµ changes under the U(1) local phase transformation like

Bµ → B′µ = Bµ −∂µ χ .

If we look at the covariant derivative we see that a new interaction term is introduced:

g
Y

2
γµBµψ

This term will later describe the electromagnetic interactions and Bµ will, after a mixing with

another gauge field, represent the photon. Similar to Bµ , other gauge fields are introduced to

allow for invariance of the lagrangian density under local phase transformations of the SU(2)

and SU(3) symmetry groups. Those fields then together with Bµ represent the Z and the W

bosons as well as the gluons. It is easily possible to write down a invariant kinetic term for the

Bµ

LEM =−1

4
FµνFµν

with Fµν = ∂ µBν − ∂ νBµ . But if we try to introduce a mass term for the Bµ we encounter a

problem:
1

2
m2BµBµ → 1

2
m2(Bµ −∂µ χ)(Bµ −∂ µ χ) 6= 1

2
m2BµBµ

6



The introduced mass term is not invariant under transformation. This is not a problem of elec-

tromagnetism since the photon is massless but similar terms arise for the fields of the weak force

even though the Z and W bosons are measured as massive particles. This problem is solved by

introducing the higgs mechanism to the SM. This is done in the Salam-Weinberg model where

electromagnetic and weak force are unified to the electroweak force. The higgs field of the SM

consists of a doublet of two complex scalar fields

φ =

(

φ+

φ 0

)

=
1√
2

(

φ1 + iφ2

φ3 + iφ4

)

.

A new term is added to the lagrangian density

Lhiggs = (∂µφ)†(∂ µφ)−V (φ) ,

with V (φ) = µ2φ †φ +λ (φ †φ)2 the higgs potential. If µ2 is negative, the higgs potential has

an infinite number of minima with non zero expectation value satisfying φ †φ =− µ2

2λ
= v2

2 , with

v the vacuum expectation value of the higgs field. Since the photon is massless the vacuum

should be electrically neutral. Therefore only the neutral part of the higgs doublet is expected

to have a non zero expectation value. The higgs field can be expanded around its minimum

at 1√
2

(

0

v

)

:

φ =

(

φ+

φ 0

)

=
1√
2

(

φ1(x)+ iφ2(x)

v+η(x)+ iφ4(x)

)

The introduction of the higgs doublet introduced four new degrees of freedom. In the Salam-

Weinberg model a gauge is chosen, fixing three of the higgs fields, which leads to three massive

bosons for the weak interaction and one physical higgs field h(x) giving rise to the higgs boson.

The higgs doublet in this gauge is given by:

φ(x) =
1√
2

(

0

v+h(x)

)

Similar as for the U(1) symmetry we can define a covariant derivative for a SU(2)×U(1) sym-

metry: ∂µ → ∂µ = ∂µ + igWT ·Wµ + ig′Y2 Bµ . With fields Wµ for the weak interaction, T = 1
2σ

the generators of the SU(2) symmetry group, a coupling gW and the already for the U(1) sym-

metry introduced field Bµ . This leads to the gauge invariant lagrangian density for the higgs

field Lhiggs = (Dµφ)†(Dµφ)−V (φ) with:

(Dµφ)†(Dµφ) =
1

2
(∂µh)(∂ µh)+

1

8
g2

W(W
(1)
µ + iW

(2)
µ )(W (1)µ − iW (2)µ)(v+h)2

+
1

8
(gWW

(3)
µ −g′Bµ)(gWW (3)µ −g′Bµ)(v+h)2

7



From this the terms quadratic in the gauge fields can be associated with potential energy terms

and thus with the mass terms. For the W bosons we get terms like:

1

8
v2g2

WW
(1)
µ W (1)µ =

1

2
m2

WW
(1)
µ W (1)µ

with mW = 1
2gWv. The terms of the photon and Z boson are intertwined. To arrive at the physical

field a rotation can be performed resulting in the photon field Aµ and the field corresponding to

the Z boson Zµ :

Aµ =
g′Wµ(3)+gWBµ
√

g2
W +g′2

Zµ =
g′Wµ(3)−gWBµ
√

g2
W +g′2

with mZ = 1
2v

√

g2
W +g′2. Due to the mixing of Bµ and W

(3)
µ the coupling to the Z boson then is

not given by gW and thus the weak isospin, but by the so called weak hypercharge 2Q− I
(3)
W with

the electrical charge Q. The mixing terms between the physical higgs field and the weak fields

W (i) can be interpreted as interaction terms describing interactions between the gauge bosons

and the higgs with a coupling proportional to their mass. A term quadratic in the higgs field

h(x) gives us the mass term of the higgs boson leading to a higgs mass given by
√

2λv while

terms with h3 and h4 represent self interaction terms of the higgs boson. Since the weak force

we observe in nature only couples to left handed fermions, the mass term that we introduced in

the beginning of this subsection mψ̄ψ = −m(ψ̄RψL + ψ̄LψR) will not be invariant under local

gauge transformations of the SU(2)L symmetry group. To add mass terms for the fermions, the

Yukawa term

−g f [L̄φR+(L̄φR)†]

with L a left handed fermion doublet, R a fermion singlet and g f =
√

2
m f

v
with φ+ = 0 and

φ 0 = v+ h can be added. This results in a mass term for fermions and a coupling term of

the higgs to fermions. Before we can arrive at the full lagrangian density of the SM another

property of the weak interaction that has to be discussed is flavor mixing. As discussed in

section 2.1.1, there are three generations of fermions. The lefthanded doublets the W (1) and

W (2) fields couple to, are mixed versions of the doublets in the mass base given by the six

quark flavors. For quarks this mixing is described by the Cabibbo-Kobayashi-Maskawa (CKM)

matrix [43], that describes a mixing of the down type quarks to flavor eigenstates:







d′

s′

b′






=







Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb













d

s

b






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This allows for flavor changing interactions between the generations through the exchange of

W bosons. A similar matrix, the Pontecorvo-Maki-Nakagawa-Sakata matrix (PMNS [54, 46])

exist for the leptonic sector describing the mixing of the neutrino flavours. The last components

of the lagrangian density of the SM are given by the terms describing the strong interactions

of QCD. Those arise from requiring invariance under local phase transformations of the SU(3)

symmetry group. Similar to the electromagnetic and weak interaction new fields are intro-

duced who manifest themselfs as the bosons called gluon. The SU(3) symmetry group has 8

linear independent generators given by the Gell-Mann matrices resulting in 8 gluons represent-

ing different color/anti-color states e.g. in the basis of rḡ, gr̄, rb̄, br̄, gb̄, bḡ, 1√
2
(rr̄− gḡ) and

1√
6
(rr̄+gḡ−2bb̄). If the potential and kinetic terms of the higgs field including the interaction

terms with gauge bosons and their mass terms, the Yukawa terms of the fermions, the kinetic

energy terms of the gauge bosons and the kinetic energy terms for the fermions with the ap-

propriate covariate derivative giving us the interactions of electromagnetism, weak and strong

interaction are combined, we arrive at the final lagrangian density [60] of the Standard Model of

particle physics which is invariant under transformations of the SU(3)c×SU(2)L×U(1)Y sym-

metry:

L =− 1
4 Fµν Fµν − 1

8 tr(Wµν Wµν)− 1
2 tr(Gµν Gµν) The kinetic terms for the gauge fields

+(ν̄L, ēL)σ̃
µ iDµ

(

νL

eL

)

+ ēRσ µ iDµ eR + ν̄Rσ µiDµ νR +(h.c.) Kinetic and interaction terms of the leptons

−
√

2
v

[

(ν̄L, ēL)φMeeR + ēRM̄eφ̄

(

νL

eL

)]

Mass and higgs interaction terms of the charged leptons

−
√

2
v

[

(−ēL, ν̄L)φMν νR + ν̄RM̄ν φ̄

(

−eL

νL

)]

Mass2and higgs interaction terms of the neutrinos

+(ūL, d̄L)σ̃
µ iDµ

(

uL

dL

)

+ ūRσ µiDµ uR + d̄Rσ µ iDµ dR +(h.c.) Kinetic and interaction terms of the quarks

−
√

2
v

[

(ūL, d̄L)φMddR + d̄RM̄d φ̄

(

uL

eL

)]

Mass and higgs interaction terms of the down type quarks

−
√

2
v

[

(−d̄L, ūL)φMuuR + ūRM̄uφ̄

(

−dL

uL

)]

Mass and higgs interaction terms of the up type quarks

+Dµ φDµ φ −m2
h[φ̄φ − v2/2]2 Higgs kinetic and self interaction terms

−V (φ) Contribution of the higgs potential

Here Fµν = ∂µBν − ∂νBµ , Wµν = ∂µWν − ∂νWµ + igW(WνWµ −WνWµ)/2 and Gµν =

∂µGν − ∂νGµ + igs(GνGµ −GνGµ). With σ µ = [I,σ1,σ2,σ3] and σ̃ µ = [I,−σ1,−σ2,−σ3]

with the Pauli matrices σi. e,µ and u,d are the Dirac fields of the fermions with fL = (1− γ5) f

and fR = (1+ γ5) f . The mass matrices M f hold the fermion masses as well as the information

of the flavor mixing matrices (PNMS and CKM). The covariant derivative Dµ includes the in-

teraction terms with the different gauge fields and acts on quarks and leptons as well as left and

right handed particles differently:

Dµ

(

νL

eL

)

=
[

∂µ − igY

2 Bµ + igW
2 Wµ

]

(

νL

eL

)

,

2Originally in the SM, the neutrino masses were assumed to be zero but due to the observations of neutrino

oscillations we indeed know that neutrinos have mass.
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Dµ

(

uL

L

)

=
[

∂µ + igY

6 Bµ + igW
2 Wµ + igsGµ

]

(

uL

dL

)

,

Dµν = ∂µν ,

DµeR = [∂µ − igY Bµ ]eR,

DµuR =
[

∂µ + i2gY

6 Bµ + igsGµ

]

uR

DµdR =
[

∂µ − igY

6 Bµ + igsGµ

]

dR

and Dµφ =
[

∂µ + igY

2 Bµ + igW
2 Wµ

]

φ .

2.1.3 Limitations of the Standard Model

Until today the Standard Model of particle physics has proven to describe most experimental

data. With the discovery of the higgs boson in 2012, all fundamental particles predicted by

the Standard Model were found and seem to be SM like [23]. Experimental data suggests [58]

that there is no 4th generation of fermions to be expected in a mass range close to the other

fermions. Nonetheless there are a few disadvantages of the SM that makes it most certain that

there is physics beyond our current Standard Model that has to be discovered. In the following

some of the motivations for physic beyond the SM will be discussed.

Dark Matter Many different observations indicate that there must be a different kind of stable

matter not described by the particle content of our Standard Model (e.g. [21]). The matter

we are able to describe seems to only make 5% of the energy density of the universe while

a far bigger amount of 23% seems to be a new kind of matter that only sparsely interacts non

gravitationally with SM particles or itself with interaction strength possibly consisted with those

of the weak interaction in the SM. In contrast to neutrinos of the SM, those particles should have

high masses to explain for example the structure formation of galaxies.

Matter- Anti-Matter Asymmetry According to our current cosmological models, the uni-

verse that we live in was at the beginning consisting of a dense and hot plasma. Particles,

anti-particles and radiation were in a constant state of interaction with particle creation and an-

nihilation. When the universe expanded, the energy density dropped, the universe got colder and

depending on their mass the creation of particles in the thermal equilibrium eventually stopped.

Since in the Standard Model of particle physics matter- and anti-matter always is produced in

pairs, one would expect that when particle creation is no longer possible, the particles would

annihilate with the anti particles, converting their energy to electromagnetic radiation. A small

amount of the needed inbalance between matter- and anti-matter can be explained with a small

amount of CP violation allowed in the SM3. For the current models of the early universe this

would not be enough to explain the asymmetry we observe [56].

3In the PNMS and CKM matrix that describe flavor mixing, a parameter for CP violating phase is included.
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The hierarchy problem The particle masses in the SM are depending on the energy scale

and undergo corrections from loop interactions with other particles. This leads especially for the

higgs bosons to high mass corrections that are quadratic in the energy scale. If the theory is build

to hold up to the highest energy scales, a huge amount of fine tuning is needed to keep the higgs

mass as small as 125 GeV at the low energy regime we observe at modern particle colliders.

This fine tuning is considered unnatural and other theories like a supersymetric extension of the

SM deliver more natural ways to explain the relatively low higgs-boson mass.

Neutrino masses As mentioned in section 2.1.1 the neutrinos are assumed massless in the

SM to avoid the problem of right-handed neutrinos. Today we know that neutrinos have mass

due to the observation of neutrino oscillations [32]. It is possible to describe massive neutrinos

in the framework of the Standard Model, but the neutrino masses are constrained to be in the

sub electron volt regime. Therefore the SM offers a fermion mass range spread over 11 orders

of magnitudes from the sub electron volt neutrinos to the top quark with a mass of 172.5 GeV.

The SM does not deliver a natural explanation for this huge mass range.

Unification As discussed in section 2.1.2 the electromagnetism and the weak force can be

described in a unified theory. In fact if the energy scale is high enough interactions with photons

and Z bosons become indistinguishable. A theory that could combine all three forces would

give a more natural description of nature. Such a unification of forces is possible in other

physics models outside the scope of the SM. E.g., in theories with a SU(5) symmetry [34] the

couplings of the different forces unify and that delivers additional theoretical motivation for a

model beyond the SM.

2.2 Top physics in the Standard Model and beyond

As motivated in section 2.1.3 the Standard Model of particle physics is not a complete theory

and extensions beyond the SM are highly motivated. Checking the internal consistency of the

SM and the most precise measurement of its parameters is one of the possibilities to see where

new physics might arise. In those consistency test for example done by the Gfitter group [15],

the dependencies of the different Standard Model parameters on each other are used to constrain

the other parameters like for example the higgs mass. By comparing the fit results for one pa-

rameter with its experiental measured value, it can be tested if the SM describes particle physics

in a self consistent way. To reasonably do this, precision measurements of the different param-

eters are needed. One of the most influential parameters is the mass of the heaviest Standard

Model particle, the top quark. It heavily contributes to the loop corrections on the higgs mass

and can for example in combination with the W boson mass be used to check compatibility with

the mass of the higgs as can be seen in figure (2).
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Figure 2: The 68% and 95% confidence level contours for electroweak fits including and excluding the

higgs mass measurement as well as the experimental measurements of top quark and W boson mass [15].

Besides tests of the SM, the top-quark mass can also be used to examine the form of the higgs

potential. It determines if our universe is stable with respect to the minimum of the higgs po-

tential. The dependence of the vacuum stability on higgs and top mass as well as their current

measurements can be seen in figure (3).

Figure 3: The stability/instability dependence of the higgs potential on top-quark and higgs mass and

the error ellipse of the current mass measurements [20].

Further the mass of the top quark and its coupling to other particles have far reaching im-

plications on theories beyond the Standard Model, for example in supersymetric theories that

minimize the influence of top-quark-loop corrections on the higgs mass.
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2.3 The tt̄ process

Since the top-quark mass is a possible indicator for new physics, this thesis aims to enable a high

precision measurement. The idea of this thesis is based on the top-quark-mass measurement of

the CMS experiment discussed in section 3.2 in the semi-leptonic decay channel of top anti-top

pair creation events (tt̄ ). Therefore the following discusses the phenomenology of tt̄ processes.

For this thesis we look at tt̄ pairs produced at proton-proton collisions at the Large Hadron Col-

lider (LHC), discussed in section 3. The proton is a baryon consisting of three valence quarks,

two up and one down quark bound together by gluon exchange. However if probed at high

energy scales at the LHC, the protons substructure of gluons and virtual quark-anti-quark pairs

is seen. Therefore the collision of two protons at high energies is the collision of multiple par-

ticles from two particle crowds. The average momentum fraction x that the different proton

constituents hold is described by the parton distribution functions. It represents the number of

particles at a given x, see figure(4).

Figure 4: The parton distribution functions of gluons, valence- and sea quarks inside the proton at scales

of Q=10 GeV2 and 104 GeV2[17].

At the LHC the collision energy is high enough that gluons and sea quarks that are mainly

found at low x have enough energy to produce a top-quark pair. Therefore the leading processes

for tt̄ production at the LHC are given by gluon-gluon fusion and quark-anti quark annihilation

shown in figure (5)[59].
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Figure 5: The leading order feynman diagrams of tt̄ pair production at the LHC with gluon gluon fusion

(top) and quark anti-quark annihilation.

The top quark has a very short lifetime (τt ≈ 5×10−25s) and decays via a weak interaction be-

fore forming bound states with other particles. The decay is a flavor changing decay via the

irradiation of a W boson. The CKM matrix element for couplings between third generation

quarks as the top quark and first or second generation quarks is very small. The branching ra-

tio of a decay to a bottom quark is BR(t → bW ) ≈ 99.8%. The W boson then decays further

either hadronically in a pair of one quark and a different anti quark or leptonically in a lepton

and a neutrino. This thesis focuses on the lepton+jets channel where one of the two W bosons

produced in the decay of the tt̄ pair decays hadronically in two light quarks and the other lep-

tonically in a neutrino and either a electron or a muon.

q

q

νµ
b

q

g

t
W

b

t
W

q

µ

Figure 6: The feynman diagram for the muon+jets final state of tt̄ events.

This channel has two advantages. First a rather high branching fraction since the hadronic de-

cay mode of the W boson is more likely. Second the leptonically decaying W bosons gives the

event a rather clear signature, since pure hadronic events have more background processes that

produce similar signatures in the detector. Colored states like quarks can not exist freely. If

an uncolored state is broken up, a cascade of particles is created until only colorless states re-

main. Therefore the two expected light quarks as well as the two b quarks produce so called jets

consisting of mesons, baryons, leptons and photons collimated in a cone-like structure in the
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detector. For this process we expect an event signature consisting of four jets, one lepton and

some not reconstructed momentum carried away by the neutrinos. Two of the jets are expected

to be reconstructed as b-jets. The feynman diagram describing the tt̄ decay with an example

production can be seen in figure (6). Processes similar to the one that we aim to observe that

contribute as background events include WZ, W+jets and ZZ production as well as single top

production tW and QCD multijet events [4].

2.4 Natural Units

Particle physics uses mostly the unit system of natural units. In natural units, [kg, m, s] of the

SI system are expressed in terms of [h̄, c, GeV]. By then choosing h̄ = c = 1, most equations of

particle physics are simplified, since energy, momentum and mass now all can be expressed in

terms of GeV [69]. Natural units are used in this thesis.
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3 About the Experiment

This thesis uses simulated event samples and experimental data from the CMS4 experiment

inside the LHC5 at CERN6 near Geneva in Switzerland. This section gives an overview about

the experiment and the data acquisition in CMS.

3.1 The Large-Hadron Collider

The LHC is a circular particle collider in the tunnel of the former LEP7 experiment at CERN.

It accelerates either protons or lead nuclei and collides them at four interaction points at the

ATLAS8, ALICE9, LHCb10 and CMS detectors. The data for this thesis is the 2016 data from

proton-proton collisions in the run II of the LHC with a center of mass energy of
√

s = 13 TeV

and a peak Luminosity of L = 1.2× 1034cm−2s−1. The protons are supplied by a chain of

accelerators, the CERN accelerator complex that can bee seen in figure (7).

Figure 7: Schematic overview of the CERN accelerator complex with the pre accelerators of the LHC

and the main detector experiments [47].

4Compact Muon Solenoid
5Large Hadron Collider
6Conseil européen pour la recherche nucléaire, the European Organization for Nuclear Research
7Large Electron Proton collider
8A Toroidal LHC ApparatuS
9A Large Ion Collider Experiment

10LHC beauty experiment
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The accelerator chain includes the linear accelerator (LINAC), the BOOSTER, the Proton

Synchrotron (PS) and the Super Proton Synchrotron (SPS) accelerators which preaccelerate the

protons to an energy of 450 GeV. The LHC ring itself then accelerates the protons to their final

energy of 6.5 TeV. This results in a center of mass energy of
√

s= 13 TeV, at the four interaction

points where two proton bunches with an average proton number of 1.1·1011 collide every 25

ns [19, 18].

3.2 The CMS Detector

The CMS experiment is a multi purpose detector at the LHC. Similar to the ATLAS experiment,

it was designed to discover the higgs boson and search for all kinds of deviations from the

Standard Model of particle physics. The CMS experiment consists of four subsystems, that are

the name giving muon system, the 3.8 T solenoid magnet, a calorimetric system and a tracking

system. A slice of the detector can be seen in figure [8].

Figure 8: A slice of the CMS detector, showing how different particles interact with the sub systems[62].

The slice shows how particles in CMS are reconstructed in general:

• Charged particles leave tracks in the tracking system situated at the center of the detec-

tor. Their tracks are bend in the magnetic field of the superconducting solenoid magnet,

allowing for charge reconstruction and momentum determination.

• Mainly electromagnetic interacting particles like electrons and photons, as well as short

lived particles decaying into those like the π0 meson, deposit most of their energy in the

electromagnetic calorimeter, allowing for energy measurements.

• Particles that mainly interact via the strong force like protons and neutrons deposit their

energy in the hadron calorimeter.

18



• Muons, beeing minimally ionizing particles, are not stopped in the inner parts of the

detector. Their tracks are reconstructed with the muon system in the outer part of the

detector.

A schematic overview of the whole detector and the position of the different subsystems can

be seen in figure (9). In the following sections the separate subsystems are described in more

detail.

Figure 9: A schematic overview of the CMS detector showing the layered structure of different subsys-

tems including the tracking system, the calorimetry, the solenoid magnet and the muon system [22].

3.2.1 Coordinate system in CMS

To discuss the structure of CMS it is helpful to know the coordinate system of CMS and a

few basic terms. The CMS is build as a cylindrical structure around the beam line, with the

interaction point in the center. CMS uses a right handed coordinate system with its origin at the

interaction point. The x axis points toward the center of LHC and the y axis points up, while the

z axis is given by the counterclockwise beam direction. Cylindrical coordinates are used. The

radial distance r is the minimal distance from the z axis. The azimuthal angle ϕ measured in

the x− y plane and the polar angle θ measured from the positive z-axis. The latter is often used

in form of the pseudo rapidity η = ln tan(θ/2) measured from the positive z axis, to give an

Lorentz invariant measure ∆η for the angle [59]. Most of CMS subsystems are comprised of a

barrel and a end cap part. The barrel parts are rotation symmetrical structures around the z axis

and form, together with the end caps which are perpendicular to the z axis, a cylindric structure.

3.2.2 Tracking systems

A tracking system like the CMS tracker [22] has to fulfill several requirements. It measures the

momentum, using the bending of charged particles in the 3.8 T magnetic field of the solenoid.

Therefore a high granularity is needed to enable the measurement of the curvature even for

highly energetic particles with marginally bent tracks. A good spatial resolution is needed
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especially close to the interaction point, to allow for determination of secondary and displaced

vertices. Being close to the interaction point the tracker has to be radiation hard, while having a

low material budget. For a precise energy measurement the particles should lose their energy in

the calorimeter system, not the tracker. CMS uses silicon trackers, ensuring a good resolution

and radiation hardness. The total material budget is between 0.4 X0 and 1.8 X0. With X0 the

radiation length of charged particles. Good vertex reconstruction is ensured with the highly

granular pixel detector. A number of up to 12 layers in the strip detector, together with the three

pixel layers, ensures a good transverse momentum reconstruction of ∆pT
pT

= 1-2% up to |η | > 1.6

at pT ≈ 100 GeV.

The pixel tracker covers the innermost part of the detector with three layers in the barrel region

of the detector (BPix) at radii between 4.4 cm and 10.2 cm from the beam line. It has two pixel

layers each in the end cap region (FPix). The silicon strip detector has 10 barrel layers and 3 +

9 disk layers in the end cap region. All together barrel and end cap cover a detector region up to

a pseudo rapidity of |η | < 2.5. The pixel detector that can be seen in figure (10) is comprised of

(48 + 18) million 100×150 µm pixels in the two subsystems BPix and FPix. Using the effect

of charge sharing a spatial resolution of 15-20µm can be achieved. This allows for a 3D vertex

reduction that is essential for b quark and τ lepton reconstruction.

Figure 10: Schematic of the inner tracking layers of CMS with the pixel detector layers in the barrel

region (BPix) and the end cap region (FPix), as well as orientation lines for the η coverage of the detector

planes [22].

The silicon-strip detector is comprised of four sub-systems, the TIB11 and TOD12 in the barrel

region and TID13 as well as TEC14 in the end cap region (see figure (11)).

11Tracker Inner Barrel
12Tracker Outer Barrel
13Tracker Inner Disks
14Tracker End Cap
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Figure 11: Schematic overview of the different subsystems of the tracking system in CMS with emphasis

on the strip detectors. The radial and longitudinal positions of the pixel detectors in forward/end cap

and barrel part of CMS, FPix and BPix (Pixel) and the strip detectors: the Tracker Inner Barrel (TIB),

Tracker Outer Barrel (TOB), Tracker Inner Disks (TID) and Tracker End Cap (TEC) are given together

with information about the η coverage of the detector planes [22].

They are made of 9.3 million strip sensors with a thickness of 320 µm (all) and 500 µm (TEC).

In TIB the pitch between the strips is 80 µm and 120 µm in layers 1 + 2 and 3 + 4 respectively

leading to a single point resolution of 23 µm and 35 µm. The TOB has pitches of 183 µm in

the first four layers and 122 µm in the outer two layers resulting in a resolution of 53 µm and

35 µm.

3.2.3 Calorimeters

Calorimeters use dense materials to further particle showering, eventually stopping the particles

and measuring the particle energy deposited in the calorimeter material. There are mainly two

different types of particle showers, namely electromagnetic and hadronic showers dominated

by interactions of the electroweak force and the strong force respectively. For particles mainly

showering via the electroweak force like electrons and photons, the characteristic shower scale

is given by the radiation length X0, driven by the electron density of the showering material.

The characteristic shower scale of hadronically showering particles like protons, the interaction

length λ1 is driven by the nucleon density of the showering material. This suggests two calori-

metric systems, one with a high Z material, measuring electromagnetic showering (ECAL) and

one system with dense material to measure hadronic showering (HCAL). While protons and

other strongly interacting particles can travel through the ECAL without loosing to much en-

ergy, electromagnetically interacting particles would be stopped in the HCAL, therefore the

ECAL lies radially inside the HCAL. Since electrically neutral particles can not be measured in

the tracking system, the calorimetric system has to provide good granularity and energy resolu-

tion to reconstruct neutral particles like photons. In CMS the ECAL and HCAL lie between the

tracking system and the solenoid magnet. This provides the advantage that the particle energy

can be measured, without depositing energy in the massive magnet. On the other hand both

calorimeters have to be dense to deliver enough radiation length or interaction length respec-
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tively to stop the particles in the constrained space inside the solenoid.

ECAL The CMS ECAL [22] uses lead tungsten crystals PbWO4 as showering material. The

advantage of PbWO4 is that it can also be used as a scintillator. Charged particles, like those

produced in an electromagnetic shower, that travel through scintillator material produce low

energy photons that then again can be measured by photo detectors attached to the crystals.

Measuring the number of photons, which is proportional to the deposited energy, allows for

an energy measurement of the primary particle that induced the particle shower. The CMS

ECAL is composed of 61200 crystals in the barrel region and another 7324 crystals in the

end cap region. The barrel part of the ECAL covers particles up to a pseudo rapidity of |η |

< 1.479 with an granularity of 360-fold in ϕ and (2× 85) fold in η , resulting in an average

cross section of 0.0174×0.0174 in η −ϕ . The crystal length of the barrel crystals of 230 mm

corresponds to 25.8 X0. The crystals in the end caps cover a range of 1.479 < |η | < 3.0.

The end cap crystals have a length of 220 mm corresponding to 24.7 X0. In addition to the

crystals, the ECAL consists of a pre-shower detector covering 1.653 < |η | < 2.6. The pre-shower

detector detects neutral pions in the end caps and helps to distinguish electrons from minimally

ionizing particles, while enhancing the position determination of electrons and photons with a

high granularity. The pre-shower detector is build as a sampling calorimeter. This means that

the calorimeter is composed of an passive material that initiates showering in alternating layers

with the actual active detector material that measures the deposited energy. The pre-shower

detector consists of two layers lead radiators as showering material with silicon strip sensors

after each radiator to measure the shower energy. The two strip layers are orthogonal to each

other allowing for a 2D position measurement. The pre-shower detector has a length of 20

cm, corresponding to 2 + 1 X0 before the first and second detector layer, resulting in 95% of

the photon induced showers starting before the second plane. This is for identify e.g. neutral

pions that rapidly decay to two photons, which need to be identified as two separate showers to

identify the pion. For particles below an energy of 500 GeV, the energy resolution of the ECAL

can be described with a stochastic term S, a noise term N and a constant term C :

(

σ
E

)2
=
(

S√
E

)2
+
(

N
E

)2
+ (C)2

A typical resolution to be found for energies E in GeV is:

(

σ
E

)2
=
(

2.8%√
E

)2
+
(

0.12
E

)2
+ (0.30%)2

HCAL The HCAL [22] is comprised of several subsystems that can be seen in figure (12).
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Figure 12: Schematic of the CMS detector with emphasis to the subcomponents of the HCAL. Positions

of the HB, HO detectors in the barrel part of CMS as well as the HE and HF detectors in end cap and

forward region are marked [22].

The barrel part of the HCAL HB is situated between the ECAL at r = 1.77 m and the solenoid

at r = 2.95 and covers an η range up to |η | = 1.3. It is a sampling calorimeter composed of

a front and a back steel absorber plate and 8 layers of flat brass absorber plates as showering

material. Plates of plastic scintillator serve as detector material between the different absorber

plates. The scintillator plates deliver a detector segmentation of (∆η , ∆ϕ) = (0.087, 0.087). The

total number of interaction lengths in the absorber material is 5.82λ1. The effective thickness

increases under the polar angle θ to up to a maximum of 10.6 λ1 at |η | = 1.3. The ECAL adds

another 1.1 λ1 of material to the total budged.

The end cap part HE of the HCAL covers a large eta range of 1.3 < |η | < 3. The HE is also

designed as a sampling calorimeter using brass plates and plastic scintillator. Together with

the ECAL, it has a total length of 10 interaction length (λ1). The granularity is (∆η , ∆ϕ) =

(0.087, 0.087) for |η | < 1.6 and (∆η , ∆ϕ) = (0.17, 0.17) for |η | ≥ 1.6. In the central region

|η | < 1.3 the ECAL and HB are expanded by the outer calorimeter HO laying outside of the

solenoid and before the muon system. This is done since the combined stopping power of

HB and ECAL is not strong enough to stop all hadron showers. The HO adds another 1.4
sin(θ)

interaction length λ1 to the calorimeter. Thus the minimum absorber length is extended to 11.8

λ1 at minimum. The tiles in the HO are made to match those of the HB, having a granularity

of (∆η , ∆ϕ) = (0.087, 0.087). It consists of two layers of scintillator in the central region from

-2.686m to +2.686m from the interaction point in z-direction. This corresponds to ring 0 of

the muon system. Outside the central region one layer of scintillator is used. The HCAL is

completed by a forward calorimeter HF, covering a range up to |η | = 5. The HF has to survive

large doses of radiation, therefore quartz fibers were chosen as the active medium. A signal

is generated for shower particles over the Cherenkov threshold. Since the threshold is low for

light particles like electrons (190 keV) and higher for heavy particles, the calorimeter is mostly

sensitive to electromagnetic subcomponents of the hadron showers. The calorimeter consists of

steel absorber plates, with the quartz fibers embedded in the absorber. The structure is divided

into (∆η , ∆ϕ) = (0.175, 0.175) towers. The whole length of the detector is approximately 10
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λ1.

3.2.4 Solenoid

The CMS detector contains a massive solenoid [22] with a length of 12.5 m, able to create a

magnetic field of up to 4 T inside its 6.3 m diameter. The magnetic flux is returned in a 10000 t

iron return yoke that contains the muon system. The solenoid itself has a four layer winding of

NbTi conductor, weighing 220 t.

3.2.5 Muon system

One of the goals of CMS is to achieve a very high muon detection efficency and a very precise

muon energy resolution, since the h → Z → 4µ is one of the golden channels for finding

the Higgs boson. Therefore the CMS detector has an additional dedicated muon system [22]

situated outside the solenoid magnet, embedded in the return yoke of the magnet. The muons

are the only Standard Model particles that traverse the whole detector, except for neutrinos,

which can not be measured by the CMS detector. This allows for a good muon identification

when identifying them in the tracker as well as in the muon system (global muons). The muon

system consists of gaseous particle detectors inside the plate of the return yoke, that serve as

absorber for muon identification. In the barrel region (|η | < 1.2), drift tube chambers (DT) are

used. In the end caps cathode-strip chambers (CSC) are used, covering a range of |η | between

0.9 and 2.4. In both the barrel and the end cap region the muon system is extended with fast

resistive plate chambers (RPC), dedicated for muon triggering. The DT system, that can be

seen in figure(13), consists of four cylindric structures consisting of 60 chambers each in the

first three cylinders and 70 chambers in the fourth with in total over 172 000 sensitive wires.

Figure 13: Schematic of the CMS detector with emphasis on the muon system. The radial positions

of the ECAL and HCAL barrel detectors, the solenoid magnet and the different components of the iron

return yoke and muon system are given[22].
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There are layers of wires parallel to the beam line allowing for a track measurement in the

(r-ϕ) plane, as well as wires orthogonal to the beam allowing for a position measurement along

the z axis. The single cell spatial resolution was determined in test beam studies to be 170 µm

on average. The CSC system, shown schematically in figure (14) consists of 468 chambers of

different sizes, covering either 10◦ or 20◦ in ϕ . Muons in 1.2 < |η | < 2.4 cross three to four

CSC. In the overlap region 0.9 < |η | < 1.2 muons are detected by both DT and the CSC system.

Figure 14: Schematic view of the muon system of CMS with an emphasis on the CSC detectors [22].

The CSC have an expected spatial resolution of ≈ 80 µm.

The RPCs are gaseous parallel-plate detectors. They deliver a time resolution of much smaller

than the 25 ns between two bunch crossings and are therefore usable as a source of trigger

information [22].

3.3 Event reconstruction in CMS

3.3.1 Trigger system

The LHC creates a huge number of proton proton interactions to find even the rarest types of

particle interactions, colliding bunches of protons every 25 ns, resulting in a event rate of over

1 GHz. Processing and storing the resulting amount of data is not feasible. Therefore the CMS

has a trigger system, selecting possibly interesting events for storage and further analysis. The

selection process has to be very fast, since even a fraction of the > 1 GHz event rate would be

impossible to store. Fot this reason, the CMS trigger system is comprised of a fast hardware

based trigger, the L1 trigger, that dramatically reduces the event rate to 100 kHz and a software

trigger, the HLT15, that reduces the final event output rate of the CMS experiment to an average

rate of 400 Hz [41].

The L1 trigger The L1 trigger has 4 µs to decide whether an event is further processed or

discarded. It is comprised of several sub trigger components, which use the faster subsystems of

CMS, the calorimetry and the muon system. The L1 trigger tries to identify events with high en-

ergetic muon, electron, photon, τ lepton or jet candidates, as well as events with a high amount

15High Level Trigger
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of missing transverse energy16. To give an example, the muon triggers use all three subsystem

of the muon system, the DT, the CSC and the RPC. They identify track segments from hits in

multiple detector planes in a single measurement station. Pattern recognition algorithms then

identify muon candidates and their momentum. All candidates are assigned with a pT, a quality

code and a (η , ϕ) position in the muon system. In the final step of the L1 trigger system, up

to 128 separate selections are implemented, using the information of the different sub trigger

systems [41].

HLT The HLT consists of a server farm that allows for an event reconstruction similar to the

offline event reconstruction. The event rate reduction of the L1 allows the HLT to accommodate

a event processing time of up to 175 ms. In this time, for every event, physics objects like

muons, electrons and jets are reconstructed. This allows the application of specific identification

criteria to select the events of interest that are then further processed for offline reconstruction

and permanent storage [41].

3.3.2 Reconstruction of physic objects

For offline analysis the information collected by the CMS detector has to be translated to par-

ticle candidates, allowing the reconstruction and analysis of the recorded events. This is done

by assigning the signatures to physics object related event structures like tracks in the track-

ing system or energy clusters in the calorimeters. Combining the information of the different

subsystems in the particle flow algorithm [62], those structures are combined to higher level

physics objects like muon candidates or jets.

Particle flow Algorithm The particle flow algorithm [62] is used to reconstruct events, com-

bining information of all CMS subsystems. The idea is to use the measurements with the highest

energy resolution for the specific particle, disentangle overlapping particles and avoid double

counting of particles. For example, to reconstruct an electron, a track reconstructed in the

tracking system would be extrapolated to find corresponding energy clusters in the ECAL and

HCAL and pre-shower detectors. Those would then be combined with candidate clusters of

bremsstrahlungs photons to the final electron candidate.

Muon reconstruction Since muons can leave tracks in the tracking system as well as in the

muon system, there are several possible definitions for reconstructed muons, based on which

subsystems are emphasized in their reconstruction. For standalone muons, hits in every DT and

CSC detector are used as the seed for pattern recognition algorithms that gathers all hits along

the muon trajectory in the DT, CSC and RPC detectors. Tracker muons are reconstructed from

tracks in the tracking system with a pT > 0.5 GeV that are extrapolated to the muon system

16The negative sum of all energy deposited in the detector
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and accounted as a tracker muon if at least one muon segment matches the extrapolated track.

Finally, global muons, that are used in this thesis, are standalone muons that can be matched to

a track in the inner detector [62].

Electron reconstruction Electrons are reconstructed from clusters in the ECAL with a trans-

verse energy ET > 4 GeV. Those clusters are extrapolated to possible hits in the innermost track-

ing layers. To account for possible bremsstrahlungs photons, the ECAL cluster is extended to a

super cluster searching for possible energy depositions from photons irradiated from the elec-

tron. A multivariate analysis is then used to identify electrons from possible electron candidates

[62, 59].

Jet reconstruction Jet reconstruction requires an infrared- and collinear safe reconstruction

algorithm. This means that the jet definition has to be independent from infinitesimally ener-

getic radiation like soft gluon irradiation and has to remain unchanged if the jet is split into

multiple particles with nearly the same direction. For this analysis the anti-kT algorithm is used.

This algorithm is part of a set of algorithms defined by the two distances:

di j = min(p2k
T,i, p2k

T, j)
∆2

i, j

R2

and diB = p2k
T,i

with ∆i, j the distance of the two objects i, j in the η , ϕ plane, R a radius parameter that defines

the characteristic clustering scale and k defining the behavior of the clustering algorithm. Both

distances are calculated for all pairs of input objects. If a di j is the smallest, both objects i, j

are merged, if a diB is the smallest, i is considered a jet and removed from further clustering.

The clustering stops when all remaining objects are considered jets and therefore no objects are

left for clustering. Different values of k result in different clustering algorithms with different

resulting jet shapes. For k = -1 the anti-kT algorithm is found. The anti-kT algorithm results

in cone shaped jets with a maximum radius given by R. As input to the clustering algorithm,

particle flow candidates are used. Charged particles are excluded if they originate from another

vertex than the selected primary vertex. Jet candidates have to be composed of more than two

constituents, one of them has to be either a charged hadron, a muon or an electron. The jets

are required to have an energy fraction of charged hadrons smaller than 0.99 but larger than

0.0 and an contribution from neutral hadrons and photons, smaller than 0.99. On these particle

flow jets, jet energy corrections [26] (JEC) are applied, determined on Monte Carlo data by

comparing reconstructed jets and corresponding generator jets. Further residual corrections

based on reference objects like leptonically decaying Z bosons are applied. Based on the jets,

additional algorithms for particle identification are used. This process is called tagging and is

used for example to identify jets induced by a b quark. For the b-tagging, the properties of the b

quark like its relative hight mass of≃ 5 GeV and its lifetime of O(10−12) s, are used. The rather

long lifetime leads to typical b quark flight distances of≈ 7 mm and therefore often to displaced
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secondary vertices for the b quark decay. Flight distances to the secondary vertex, invariant

mass and quantities like the number of tracks with large impact parameters with respect to the

primary vertex are used in different algorithms to compute a likelihood based discriminator

value that can then be used to separate b jets from other jet types. [59]

Missing transverse energy Neutrinos as well as possible new particles like dark matter can-

didates only interact via the weak force and will therefore not interact with the CMS detector.

Nonetheless they leave a signature in the recorded events because of momentum and energy

conservation. The momentum and energy carried by those undetectable particles can be tracked

when looking at the overall momentum balance in the detector. This is described by the so

called missing transverse energy (momentum), it is defined as the negative vectorial sum of the

pT of all reconstructed particles in the detector. This missing energy (MET) gives a handle on

invisible particles like neutrinos in W boson decays and momentum and energy uncertainties of

particles used in kinematic fits [59].
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4 The top-quark-mass measurement with the ideogram method

The main part of this work is based on the CMS top quark mass measurement in the lepton + jets

channel of tt̄ events with the so called ideogram method. This chapter is aimed at describing the

analysis for the 2016
√

s = 13 TeV data. With the most recent result given in CMS-PAS-17-007

[4]. The following follows closely the analysis note [4], the CMS internal analysis note CMS

AN-16-327[27], a phd thesis [44] , and the master thesis found in [33].

4.1 Dataset and event selection

For the most recent analysis the 2016 dataset of CMS, with an integrated luminosity of 35.9 fb−1,

was used. For the mentioned analysis, the events have to either pass a single muon trigger with

an isolated17 muon pT greater than 24 GeV or an single electron trigger with an isolated18 elec-

tron and pT greater than 32 GeV. The selection is aimed at identifying tt̄ events. Events with

either exactly one isolated muon and pT > 26 GeV and |η | < 2.4 or exactly one isolated elec-

tron with pT > 34 GeV and |η | < 2.1 are selected if they have in addition at least four jets with

pT > 30 GeV and |η | < 2.4, of which two have to be b-tagged. The jets are clustered with the

anti-kT algorithm using particle-flow objects and a distance parameter of 0.4. (see section 3.3)

In Table (2) the Monte Carlo generators and parton showering algorithms used in simulation

are summarized.

Table 2: Monte Carlo generators and parton showering algorithms used for the signal and background

samples.

Sample Generators & parton showering Annotations

tt̄ signal PYTHIA 8.219 [64, 65] with the CUETP8M2T4 tune [66] mt [GeV] ∈ {166.5, 169.5, 171.5, 172.5, 173.5, 175.5, 178.5 }

WZ/ W+jets/ ZZ(→ 2l2q) MADGRAPH_aMC@NLO v2.2.2 [11] with FxFx merging [30] @ NLO Drell-Yan with MLM [12] @ LO

WW/ ZZ(→ 2l2ν)/ tW POWHEG v2 [49, 55, 9, 31, 14] single top with POWHEG v2 and MadSpin

The default parametrization of the parton density functions, NNPDF3.0 NLO with the a strong

coupling constant of αs = 0.118 is used for all datasets. In addition for all datasets a GEANT4

[8, 10] based simulation of the CMS detector including the effects of additional proton-proton

collisions is applied.

4.2 Kinematic fit

To ensure the compatibility of the selected events with the tt̄ hypothesis and to improve the

resolution of the reconstructed quantities like the top-quark mass, a kinematic fit is applied that

was first used at the DØ experiment [6]. The fit assumes the production of two heavy particles

of equal mass, each decaying into a W boson with a mass of 80.4 GeV and a b quark with a

mass of 4.7 GeV. Since we look at the lepton+jets channel of tt̄ decays, we expect one W boson

to decay hadronically and one to deacay leptonically. The fit uses the two non-tagged jets as

17The complete muon definition can be found in the appendix, section 9
18The complete electron definition can be found in the appendix, section 9
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candidates for the W boson decay products of the hadronically decaying W boson. The b tagged

jets are used as b quark candidates. The part of the missing transverse momentum pmiss
T , calcu-

lated as the negative vectorial sum of the transverse momentum of all particle flow candidates

in the event that is uncorrelated to the other four jets is used to constrain the neutrino. The se-

lected charged lepton is used as candidate for the muon/electron in the lepton+jets event. The fit

then varies the transverse momentum components of the neutrino and the momenta of the other

particle candidates within the given resolution and the kinematic and mass constraints minimiz-

ing χ2 := (x− xm)TG(x− xm) with x the vector of fitted observables, the vector of measured

observables xm and the inverse error matrix G of the observables. The masses of the neutrino,

the lepton and the light quarks are approximated to be zero. With two possible assignments of

b quarks and W bosons and two possibilities for the solution of the longitudinal momentum of

the neutrino, each event has four possible input permutations for the fit. In the case of tt̄ events,

these can be classified as correctly paired permutations (cp) if the jet and neutrino assignment

is correct, or wrongly paired if the assignments are switched. A third category is given for per-

mutations or events where at least one quark or lepton of the tt̄ decay cannot be matched with

one of the selected jets or lepton within a distance in the (η−ϕ) plane of ∆R < 0.419. To give

an example, this can occur if there are more than four jets in the event and one (or more) of

the signal jets are not selected due to detector acceptance or due to failing the selection. Those

permutations are called unmatched (un). The wrongly paired and the unmatched permutations

contribute to the measurement as an additional combinatorial background. Hence, to improve

the fraction of correctly paired permutations, an additional cut on the goodness of fit probability,

given by the integral over the χ2 probability distribution is applied. The fit has two degrees of

freedom, which simplifies Pgof to Pgof = exp
(

−1
2 χ2
)

. In Figure 15, the distribution of the three

permutation types in χ2 and Pgof can bee seen for muonic events. For the analysis, a cut of Pgof

> 0.2 is applied. This reduces the contribution from non-tt̄ background in the baseline selection

from 7.6% to 4.3%. Additionally weighting the permutations by their Pgof value enhances the

fraction of cp permutation from 14.9% to 48.0%, while mostly discarding unmatched permuta-

tions.

19∆R is definded as ∆R=
√

∆ϕ2 +∆η2
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Figure 15: The χ2 (left) and Pgof (right) distributions of the kinematic fit for the baseline selection

described in ssection 4.1 (Here: muon+jets events only).

4.3 Ideogram method

After the baseline selection described in section 4.1 and after the kinematic fit described in

section 4.2 is applied, the top-quark mass is determined with the ideogram method [38]. The

ideogram method is a template fit method20 that extracts the top-quark mass simultaneously

with an additional jet-energy-scale factor (JSF). The templates are extracted from the top-quark

mass and JSF sensitive distributions of the fitted top-quark mass mfit
t and the reconstructed W-

boson mass mreco
W (see figure (16)).
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Figure 16: The mfit
t and mreco

W distributions after the baseline selection, Pgof cut and the application of

Pgof as a weight[4].

For this, the two distributions are fitted on Monte Carlo samples for different generator val-

ues of the top-quark mass and the JSF. The templates are calculated separately for the different

permutation types (cp, wp, un). For the mreco
W distributions, an asymmetric Gaussian is assumed:

20The fitted quantaties are extracted, comparing distributions in measured data with templates extracted from

simulation data, describing the dependence on the generator values of the extracted quantaties.
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AG(x, µ, σl, σr) =







1
σl

√
2π·exp

(

(x−µ)2

2σ2
l

)

, for(x−µ) < 0

1
σr

√
2π
· exp

(

(x−µ)2

2σ2
r

)

, for(x−µ) > 0

The mt distributions are fitted with a Voigt distribution, a Breit-Wigner distribution convoluted

with a Gaussian function for the correctly paired permutations:

V(x, µ, σ , Γ) =
∫

dx′BW(x′, µ, Γ)×G(x− x′,σ),

with BW(x,µ,Γ) =
1

2π
· Γ

(x−µ)2 + Γ2

4

,

and G(x,µ,σ) =
1

σ
√

2π
· exp

(

(x−µ)2

2σ2

)

For the wrongly paired and unmatched permutations, a crystal-ball function is used:

C(x,µ,σ ,α,n) = N ·







exp
(

− (x−µ)2

2σ2

)

, for
x−µ

σ >−α
(

n
|α|

)n

· exp
(

− |α|
2

2

)

·
(

n
|α| −|α|−

x−µ
σ

)

, for
x−µ

σ ≤−α

The templates are then extracted by fitting the different functional parameters like x, µ, σl, σr in

the asymmetric Gaussian for the different (m
gen
t , JSF) samples to determine their top-quark mass

and JSF dependencies. These templates are then used to derive probability density functions

P j(m
fit
t |mt,JSF) and P j(m

reco
W |mt,JSF) for the different permutation types denoted by j. Then

the probability density functions can be used to calculate a likelihood to find the measured data

for a given mt and JSF:

L (sample | mt, JSF)=P(JSF) · ∏
events

(

n

∑
i=1

Pgof(i)

(

∑
j

f jP j(m
fit
t,i|mt,JSF)×P j(m

reco
W,i |mt,JSF)

))wevt

.

Here n denotes the number of selected permutations in one event, j denotes the permutation type

(cp, wp, un), f j the fraction of the given permutation type derived on a Monte Carlo sample and

P(JSF) the prior probability for JSF. Minimizing the negative log likelihood

−2ln[L (sample | mt, JSF)] by varying mt and JSF then results in the measured top-quark mass

and JSF. This measured top-quark mass can therefore be seen as the generator top-quark mass

that would be needed to reproduce the data distributions with Monte Carlo samples.

Three different choices can be made for the prior P(JSF) :

1. Fixing JSF to 1, reducing P j(m
reco
W,i |mt,JSF) to a constant, since mreco

W does not depend

on the top-quark mass. This approach is called 1D approach. This is equivalent to the

original approach before introducing the JSF extraction to the top-quark-mass extraction.

2. Leaving JSF free in the minimization, enabling the extraction of mt and JSF. This is

called the 2D approach and motivates the likelihood above. The additional fit of JSF
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was introduced to reduce the systematic uncertainty coming from the standard jet energy

scale (JEC) calibration.

3. The third approach was developed by combining the results of the two approaches above.

This was mainly done to reduce the systematic uncertainties on the jet energy corrections

(JEC), since a combination of the 1D and the 2D approach leads to a partial cancellation

of uncertainties.

In this hybrid approach, the JSF is constrained by a Gaussian centered at 1. The width

of this Gaussian is motivated from prior knowledge on the JES systematic uncertainty:

σprior = δ JSF2D
stat

√

1/whyb−1 = 0.0012, with the statistical uncertainty on the JSF mea-

surement in the 2D approach δ JSF2D
stat

21 and the hybrid weight whyb = 0.3, chosen to mini-

mize the systematic uncertainty. The hybrid weight determines the contribution of 1D and

2D approach to the hybrid result with m
hyb
t (whyb = 0) = m2D

t and m
hyb
t (whyb = 1) = m1D

t .

4.4 Calibration of the template fit Method

To compensate for possible biases in the top-quark-mass extraction originating from the choice

of samples that is used for the template extraction22, a calibration step is applied to the results of

the template fit to compensate for a possible bias. Therefore pseudo experiments are generated

for each of the 7×5 points of the Monte Carlo samples in the (mt, JSF) plane. The difference

between input and measured top-quark mass and JSF are calculated for the 7× 5 samples and

then fitted. This is then used to compute a correction function that is applied after the template

fit to correct for biases. The effect of the calibration can be seen in figure (17).
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Figure 17: The difference between generator mass and the extracted 2D mass(top) and the extracted

and applied JSF (bottom) for the different Monte Carlo samples after calibration for muons (left) and

electrons (right). [4]

21expected value: δ JSF2D
stat=0.0008

227×5 samples with mt values 166.5, 169.5, 171.5, 172.5, 173.5, 175.5, 178.5 and JSF values 0.96, 0.98, 1.00,

1.02, 1.04 were used
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4.5 Systematic uncertainties

For the determination of most of the systematic uncertainties, the top-quark-mass measurement

is performed on Monte Carlo samples where parameters that represent the systematic uncer-

tainty are scaled up and down. The resulting top-quark mass is then compared with the top-

quark-mass result on the default Monte Carlo sample with a top-quark mass of 172.5 GeV and

a JSF of 1.00. From the shifts between systematic samples and the default Monte Carlo sample,

in case of an up-/down scaling, the larger shift is used as the systematic uncertainty contribution

from the parameter that was varied. Table (3) gives an overview of the contributions of the

different systematic uncertainties.

Table 3: The different contributions to the systematical uncertinty for the combined measurement (elec-

tron and muon channel) for the three different top-quark mass approaches. [4]

2D approach 1D approach Hybrid

δm2D
t δ JSF2D δm1D

t δm
hyb
t δ JSFhyb

[GeV] [%] [GeV] [GeV] [%]

Experimental uncertainties

Method calibration 0.05 <0.1 0.05 0.05 <0.1

JEC (quad. sum) 0.13 0.2 0.83 0.18 0.3

– JEC: InterCalibration (−0.02) (<0.1) (+0.16) (+0.04) (<0.1)

– JEC: MPFInSitu (−0.01) (<0.1) (+0.23) (+0.07) (<0.1)

– JEC: Uncorrelated (−0.13) (+0.2) (+0.78) (+0.16) (+0.3)

Jet energy resolution −0.08 +0.1 +0.04 −0.04 +0.1

b tagging +0.03 <0.1 +0.01 +0.03 <0.1

Pileup −0.08 +0.1 +0.02 −0.05 +0.1

Non-tt̄ background +0.04 −0.1 −0.02 +0.02 −0.1

Modeling uncertainties

JEC: Flavor (linear sum) 0.42 0.1 0.31 0.39 <0.1

– light quarks (uds) (+0.10) (−0.1) (−0.01) (+0.06) (−0.1)

– charm (+0.02) (<0.1) (−0.01) (+0.01) (<0.1)

– bottom (−0.32) (<0.1) (−0.31) (−0.32) (<0.1)

– gluon (−0.22) (+0.3) (+0.02) (−0.15) (+0.2)

b-jet modeling (quad. sum) 0.13 0.1 0.09 0.12 <0.1

– b frag. Bowler–Lund (−0.07) (+0.1) (−0.01) (−0.05) (<0.1)

– b frag. Peterson (+0.04) (<0.1) (+0.05) (+0.04) (<0.1)

– semileptonic B hadron decays (+0.11) (<0.1) (+0.08) (+0.10) (<0.1)

PDF 0.02 <0.1 0.02 0.02 <0.1

Ren. and fact. scale 0.02 0.1 0.02 0.01 <0.1

ME/PS matching −0.08 +0.1 +0.03 −0.05 +0.1

ME generator +0.19±0.14 +0.1 +0.29±0.08 +0.22±0.11 +0.1

ISR PS scale +0.07±0.09 +0.1 +0.10±0.05 +0.06±0.07 <0.1

FSR PS scale +0.24±0.06 −0.4 −0.22±0.04 +0.13±0.05 −0.3

Top quark pT +0.02 −0.1 −0.06 −0.01 −0.1

Underlying event −0.10±0.08 +0.1 +0.01±0.05 −0.07±0.07 +0.1

Early resonance decays −0.22±0.09 +0.8 +0.42±0.05 −0.03±0.07 +0.5

Color reconnection +0.34±0.09 −0.1 +0.23±0.06 +0.31±0.08 −0.1

Total systematic 0.72 1.0 1.09 0.62 0.8

Statistical (expected) 0.09 0.1 0.05 0.07 0.1

Total (expected) 0.72 1.0 1.09 0.62 0.8
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In the following, a brief description of the different sources of systematic uncertainty [4]

and how the respective samples are created is given:

Experimental uncertainties:

• Method calibration:

The quadratic sum of the statistical uncertainty and residual biases after the calibration is

taken as the uncertainty for the calibration of the template method.

• Jet energy corrections:

To take into account the influence of pT- and η-dependent energy corrections on the

extraction of the JSF, the energies of all jets were scaled up and down with respect to

their data/simulation uncertainties [39, 1].

• Jet energy resolution:

The jet energy resolution (JER) is measured in data. [39]. This is then used to smear out

simulated events, so that they match the data. To propagate the uncertainty of the JER

measurement, the smearing of the simulated events is varied by one standard deviation.

• b-tagging:

To take the pT dependent uncertainties of the b-tagging efficiency and the misidentifi-

cation rate of the tagging algorithm into account, the weights of the default sample are

reweighed for this uncertainty.

• Pileup:

The uncertainty originating from the uncertainty on the number of pileup events is ac-

counted for by varying the pp cross section by ± 4.6%.

• Non-tt̄ background:

To account for the uncertainty in the theory prediction of the normalization of the non-

tt̄ background, the normalization is varied by ±100% (QCD multijet samples), ±30%

(W+jets samples) and ±10% (single top quark and Z+jets and di-boson samples). The

luminosity uncertainty [3] of 2.5% is also included in this variations.

Modeling uncertainties:

• JEC flavor dependence:

The difference in jet energy response in PYTHIA 6.4 and HERWIG++ 2.4 [16] is determined

for each jet flavor [39]. The different uncertainties for each flavor are evaluated separately

and then added linearly.

• b-jet modeling:

Three terms are computed:

1. The fragmentation into b hadrons is varied within the uncertainties of the Bowler-

Lund fragmentation function [36, 7].
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2. The Bowler-Lund fragmentation function is compared to the Peterson fragmentation

function.

3. The uncertainty on the branching fraction of semileptonic B hadrons is included by

varying the BR by -0.45% and +0.77%, the uncertainty obtained in the measure-

ments of B0/B+ decays[53].

• Parton distribution function (PDF):

To incorporate this uncertainty, a number of replicas for each event is created with NNPDF3.0

NLO PDF the RMS of those is used as uncertainty. Also the strong coupling αs is scaled

to 0.117 and 0.119 (default: 0.118).

• Renormalization- and factorization scale:

A reweighting of the simulated events is done to match the shapes of events generated

with renormalization and factorization scales that are both or separately scaled by factors

of 0.5 and 2.

• Matching:

In POWHEG the matching to parton showering described by PYTHIA is controlled by the

parameter hdamp = 1.58+0.66
−0.59 [2]. To account for its contribution, it is varied within its

uncertainty.

• Parton shower: Scale of initial state radiation (ISR):

For the uncertainty in the ISR modeling, the scale used in the simulation of initial state

radiation is scaled by factors of 0.5 and 2.

• Parton shower: Scale of final state radiation (FSR):

For this uncertainty, the FSR scale of PYTHIA is scaled by a factors of
√

2 and 1√
2

[66].

The momenta of all jets in the FSR samples are scaled such that the response for the light

jets match the response of the default sample.

• Choice of the Monte Carlo generator:

To estimate the effects from the choice of the Monte Carlo generator, the default sample

with the POWHEG v2 generator is compared to a sample generated with MADGRAPH_aMC@NLO

and FxFx matching.

• Modeling of top pT spectrum:

There is a suggestion from a recent calculation that the top pT spectrum is strongly af-

fected by next-to-leading-order effects [28]. Hence, the simulation of top pT is varied to

match the distribution measured in [40, 63].

• Underlying event:

PYTHIA is tuned to match measurements [66, 2] of the underlying event for non perturba-

tive QCD effects. The tune is varied within the uncertainty of its parameters
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• Early resonance decays:

Enabling early resonance decays (ERD) in PYTHIA allows the estimation of the effects

of color reconnection on the top-quark decay products.

• Color reconnection:

The default sample with PYTHIA8 is compared to samples with two alternative models of

color reconnection, "QCD inspired" [25] and "gluon move" [13].

Since the 1D and 2D approaches of the mass extraction resemble special cases of the hybrid

approach, it is understandable that the top-quark-mass shifts of the hybrid mass are between

those of the 1D and 2D mass. In case of different signs of the top-quark-mass shifts in 1D

and 2D approach this leads to a sort of partial cancellation effect and thus to lower systematic

uncertainties. This fact is used in the derivation of the hybrid weight, so that the hybrid mass

by construction reduces the systematic uncertainty.

4.6 Results of the lepton+jets analysis and implications on this thesis

The analysis yields the following results for the top-quark mass in the different approaches:

• m1D
t =172.93±0.07(stat)±1.09(syst) GeV

• m2D
t =172.40±0.09(stat+JSF)±0.68(syst) GeV

• JSF2D = 0.994±0.001(stat)±0.010(syst)

• m
hyb
t =172.25±0.08(stat+JSF)±0.62(syst) GeV

• JSFhyb = 0.996±0.001(stat)±0.008(syst)

As expected, the hybrid approach leads to the smallest uncertainties. It is to be noted that this

analysis is limited by the systematic uncertainties and not the statistical uncertainty. There-

fore, this thesis is aimed at searching for new techniques to improve the analysis summarized

above and thus reduce the systematical uncertainties of the ideogram method. In the following

chapters, possible approaches with neural networks that aim to solve this by an improved event

selection, will be discussed. It should be mentioned that my work restricts itself to the muon

channel. When only looking at the muon events, the top-quark-mass result and therefore the

starting point of this thesis is: m
hyb
t =172.33±0.1(stat+JSF)±0.64(syst) GeV
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5 Introduction to neural networks

Developments in machine learning in general and artificial neural networks in particular are

growing more important everyday. The influence of machine learning in our everyday life

ranges from image recognition that is used e.g. in modern cameras for facial recognition to

the powerful algorithms of social media. But besides that it can also be used, and is used, in

particle physics analysis. Machine learning allows us to write computer programs that can learn

to see patterns in data and use the achieved knowledge to model nearly every function that maps

the input data to an output value. This can be a continuous or integer valued function solving

regression or classification problems. In the work of this thesis artificial neural networks were

used for event categorization in three different categories, namely the cp, wp and un permuta-

tions that were described in chapter 4.2. To understand how this works, the following chapter

explains the basics of machine learning with neural networks. The content in this chapter is if

not noted other way based on [37] and [35].

5.1 The neuron model

The idea of a neural network is based on concepts that describe the biological processes in

the human brain. The computational units of an artificial neural network, the neurons, are

inspired by the biological neurons. This is often misunderstood in the sense that artificial neural

networks model a human brain, but the truth is that the neurons in an artificial neural network

are only a simplified mathematical description of a biological neuron and the structures how

neurons are connected in the human brain are much more complicated. Nonetheless artificial

neural networks have proven to be very useful (especially) outside biology.

Figure 18: The biological (left) and mathematical model of a neuron (right) [37].

In figure 18 on the left we can see the biological model of a neuron. The neuron collects

incoming signals from it dendrites which are connected to other neurons. Out of these signals

it produces an outgoing signal along its axon, which then is again connected to the dendrites of

other neurons. The mathematical description of this processes leads to the neuron model of an

artificial neuron on the right of figure 18: The neuron computes a weighted sum of its inputs

coming from other neurons and may add a bias value to it. The weighted sum of inputs (plus

the bias) is then input to a nonlinear function, the so called activation function that computes

the output signal of the neuron. Later we will see that the weights and a bias value that may be
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added to the sum, are parameters that contain the information a neuron has learned. An artificial

neural network is a more or less complex structure of these building blocks connected to each

other. A trained network then maps a (multi dimensional) input to a (multi dimensional) output

it was trained to compute.

5.2 Building blocks of a neural network

Before we can go on to explain how a neural network can be trained, we have to decide on how

we connect the neurons to a network. Therefore the neurons are ordered in layered structures.

In general the neurons in every layer take the outputs of the layer before as their input. The

first layer of neurons gets its inputs from the input layer. Every node of the input layer is then

one of the variables used as input in the neural network. The output of the last layer is then

the output of our entire network. This can be a number, a vector or a tensor. One of the design

choices one can make when building a neural network is how to connect the output of one layer

to the input of the next, as well as the internal structure of the layers. Most commonly used

are fully connected layers, this means that every neuron takes the output of every node of the

layer before as an input. With this kind of layers we get a simple mathematical description of a

neural network: Let x0 be the vector of input values, then the output of the next layer of neuron

is h1 = f (w0 · x0 + b0). Here the layer is denoted by h1, since the layers between input and

output layer are called hidden layers. f () is the activation function of the neurons in this layer,

w is the weight matrix containing a vector of weights for every neuron and b the bias vector with

a bias value for each neuron. The output of the next layer would then be h2 = f (w1 · h1 + b1).

This gives us a recursive mathematical definition of the whole network: hi+1 = f (wi · hi + bi).

A schematic depiction of a layered ANN is shown in picture 19.

Figure 19: Schematic description of a densely connected feed forward network with two hidden layers

[37].

This definition holds for all so called feed forward networks, i.e. networks without loops where
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the output of a neuron has influence on its own input. Other layer types include pooling layers,

convolutional layers, dropout layers and many more. Of those only the dropout [67] layer are

used in the context of this thesis and are therefore discussed. Dopout layers are a technique for

regularization and are discussed in subsection 5.5.

5.3 Activation functions

Another important step when designing a neural network is to choose wich activation function

is used in the neurons. This is especially important for the output layer, since the activation

function of the last layer gives the possible value range the output can have, i.e it determines the

form of the network output that we can map the inputs to. In the following some of the most

commonly used activation functions are shown and discussed.

Most commonly used are ReLu23 units. They are defined as f (z) = max(0,z), i.e the output

of a ReLu neuron is simply z = wi[ j] · hi + bi[ j] if the weighted input of the neuron wi[ j] · hi

is greater than a threshold −bi[ j] or 0 otherwise. An advantage of ReLu units is, that they are

easy to compute. On the downside ReLu units can "die", i.e. if their output gets zero, there is

the possibility that a NN training algorithm does not find an other weight update that gets the

neurons output non zero again, since most algorithms are gradient based and the gradient for

negative wi[ j] ·hi +bi[ j] is simply zero.

Neurons with a step function like activation, the perceptrons, played an important role in the

development of neural networks, since they can be used to build logical functions like AND,

OR, and NAND. These are the basic functions out of which every other function on a computer

is build up.

Sigmoid units are a more general version of a perceptron, that can have a non binary output.

The sigmoid function is defined as σ(z) = 1
1+e−z with z defined as for the ReLu units.

Figure 20: The ReLu (left) and sigmoid (right) activation function.[37].

The sigmoid maps its inputs to the value range [0,1]. A continuous function like the sigmoid

function has the advantage of being better defined when calculating a gradient in training than

a not differentiable function like the step function. The range [0,1] also allows the network to

make a binary classification with a sigmoid in the output layer, i.e a input from type A would

23Rectified Linear Unit
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be mapped to values ≈ 0 and inputs of another type B to values ≈ 1. A similar problem as for

negative inputs of the ReLu function occurs also for very high or low inputs of the sigmoid, the

gradient becomes very small and the output of the neurons becomes very insensitive to weight

changes in the neural network training. To deal with this problem the inputs of the neural net-

work like particle momenta were rescaled in this thesis to start in the gradient sensitive regions

of the activations function. For the neural networks in this thesis, both ReLu and sigmoid were

used. However, for the output layer a softmax classifier is used, that assures that the sum over

all outputs in the output layer is one with, the single outputs also ranging between [0,1] as for

the sigmoid neurons. It is defined as f (x j) =
e

x j

∑k exk
.

5.4 Training of a neural network

The basic of idea of training a neural network is to compare the output of the network on a

training input to a known target output and then modify the weights, biases and other train-

able parameters of the neurons to improve the agreement of the computed and the target output.

Therefore, the networks usually starts with a random initialization of the trainable parameters. A

typical choice to do this would be to choose random values out of a Gaussian distribution around

zero with width one. In this analysis, a data based approach, the layer-sequential unit-variance

(LSUV) initialization described in [51], is used. In this initialization method the weights of ev-

ery layer are iteratively scaled, so that the variance of the layer output on a test batch of data is

forced to unity. This technique can help to improve the convergence behavior of the network in

training, i.e. it improves the training time that is needed for training our network model. After

the initialization a loss function is computed that describes the difference between the predicted

and the target output. Then a usually gradient based algorithm is used to minimize this loss and

hence improve the agreement between the neural network output and the wanted output on the

training data. In the case of this thesis where a classification based on an output node for every

class is used, the most common choice is the categorical cross entropy. It is defined as

−1
n ∑x ∑ j[y j · ln(z j)+(1− y j) · ln(1− z j)]

where the zi are the outputs of the different output neurons that classify our input and yi the

desired neuron outputs. The minimization algorithm then changes the weights and biases itera-

tively to minimize the loss. The simplest algorithms are based on gradient descent. This means

that they calculate the derivative of the loss function with respect to the weights and bias param-

eters and change those in the direction of falling gradient with a variable step width. This step

width is usually called the learning rate and is an adjustable parameter in the network design.

Typically the learning rate is adapted over time, i.e. is reduced when approaching the minimum.

One method tried in this thesis is ADADELTA. It is discussed in [71]. It is a gradient descent

based method that chooses dynamically adapting learning rate for every weight dimension, so

that no manual learning rate choosing is necessary. Other algorithms considered are the basic

SGD, RMSprob, ADAM [42] and ADAGRAD [29].
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5.5 Regularization

One problem that can occur when training a neural network is called overtraining. This ba-

sically means that the network learns patterns in the training data that are only of statistical

nature and not existing in the overall data the network is trained to describe. To check the train-

ing process for this effect, normally a part of the training data is hold back to test the network

on an independent data set while training it on the rest. If the loss function on the data used

for training gets smaller than on the test data, the network starts to focus on statistical artifacts

of the training data set. This happens eventually if the network is trained rather long and has

learned most relevant features in the data or has an insufficient training data set for the given

number of trainable parameters. A way to assist the network in handling over training is regu-

larization. In the following some possible techniques are described: The commonly used L2/L1

regularizations and dropout layers. The first extends the loss function with a penalty term of the

form: −1
2 ·λ ·w2, the squared sum of all weights and biases in the network multiplied with the

regularization strength. This especially penalizes single large weights in the network. Those in-

dicate the usage of a single input in parts of the network and therefore the ability of the network

to focus on the distribution and fluctuations in one single input parameter instead of looking

at overall patterns in the data. The idea of the L1 regularization is similar, here instead of the

square a linear term of the form λ ·w is used. The idea of dropout layers [67] takes a differ-

ent aproach in the direction of network averaging. A dropout layer randomly disables nodes

in the attached layer removing them temporally from the network. This way in every training

iteration an other sub network of the original network is trained, basically training multiple net-

works with shared neurons at the same time. This has shown to prevent over training and helps

improving the networks performing.
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6 Analysis

The Analysis in this thesis mainly focuses on the usage of deep neural networks (DNN) in the

context of the top-quark-mass extraction described in section 4. How DNNs work in general

is explained in section 5. The following subsection 6.1 describes a first look at the application

of neural networks in the context of the lepton+jets analysis. The knowledge and intuition

gained in this first tests with neural networks is then used in section 6.2.1 to build a neural-

network selector that can be used to tune the fractions of the different permutation types in the

selection for the top-quark-mass extraction. The usability of this classifier for the top-quark-

mass extraction is then discussed in section 6.3. The neural networks in this thesis were build

with keras [24] using the theano [68] and tensorflow [5] backends. The data and Monte Carlo

samples used here are the same that were used in the lepton+jets analysis described in section

4, however the work here is restricted to the muonic decay channel.

6.1 Starting with neural networks and classification problems

Before starting with the classification task of separating the different permutation types, some

intuition is needed on how to build neural network architectures for physical classification tasks

in general. We will start looking at Monte Carlo events from the lepton+jets analysis describing

tt̄ events at reconstruction level. Before we start distinguishing jet assignments we can start with

a simpler task, namely the distinguishing of the di-jet systems in tt̄ . We take events that passed

the baseline selection of the lepton+jets analysis having a correctly paired jet assignment. The

two b-tagged jets will give the invariant mass of the bb system, mbb. While the other two

jets give the W -boson mass, mW . To start with a two dimensional task we can try to separate

both di-jet systems using their invariant masses. This will be a first step to distinguish jets and

jet assignments and provides an easy understandable task of separating easyly distinguishable

distributions. The distributions of mreco
W and mreco

bb that we want to separate can be seen in figure

(21).

Figure 21: Distribution of the reconstructed di-jet masses mreco
W (blue) and mreco

bb (green) in GeV for

simulated tt̄ events with a generator top-quark mass of 172.5 GeV.
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As can be seen the W mass distribution has a rather sharp peak around the W-boson mass

of 80.4 GeV while the invariant mass of the bb system has a rather flat distribution that tends

also to higher values of 300 GeV or more. In order to put the assignment problem in the form

of a classification problem we give the network two inputs, supposed to be the W boson and the

bb mass. Defining a true category with (mW, mbb) inputs and a false category with the reverse

input (mbb, mW), the network then has to decide if the mass "assignment" was correct or not.

This input mapping task the network has to learn is visualized in figure (22).

(mW, mbb)→ 1 (true) (mbb,mW)→ 0 (false)

Figure 22: The input mapping a neural network has to learn to separate correct (true) and wrong (false)

assignments of (mW, mbb), in the (mW, mbb) mass plane with masses in GeV.

Networks designed for classification should give an output usable to make binary decisions, if

the different categories apply or not. In this case we have two categories, so we can use a single

output to decide weather an input was classified true or false with predicted values near one and

zero respectively. The training input is (mW, mbb) and (mbb, mW) with training labels (1) and

(0). For the output we use a single output node with a sigmoid activation resulting in outputs

between zero and one. The rest of the network architecture was optimized with a hyper param-

eter search determining how many layers and nodes are needed and which activation functions

and optimizers to use. We also tested for overtraining, weather normal L1 or L2 regularization

should be used or if dropout layers are helpful. Taking inputs with an output of > 0.5 as true

and < 0.5 as false predicted, we achieved a 91.17% accuracy on a separate test data sample. A

dense network with two hidden layers having 128 nodes each, intermediate dropout layers and

a simplified version of the sigmoid function24 as activation function was used. Considering that

the distribution of two categories (true/false) in the mW ,mbb are fairly different, 91.17% seems

to be an insufficient result. However when looking at the distribution of both test samples in

figure (23) an overlap between (mW, mbb) and (mbb, mW) inputs can be seen, where the bb mass

is similar to the mass of the W-boson peak.

24The hard_sigmoid activation in keras, that approximates a sigmoid by a combination of linear functions, and

therefore reduces computing time.
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Figure 23: The test sampel of the NN training, with true (mW, mbb) and false (mbb, mW) permutations

in the (mW, mbb) mass plane.

With≈ 13% of the events in the overlap region and an expected discrimination accuracy of 50%

in this region, a total accuracy of ≈ 93% is to be expected. This leaves the result with 91.17%

as a reasonable result. For this low dimensional 2D case it is possible to look at the network

output for the whole input space, as can be seen in figure (24).

Figure 24: The output of a neural network for a scan in the (mW, mbb) input space.

This scan proves that the network is indecisive in the overlap region. It can also be seen what

happens when the network tries to describe input regions that were not covered by the train-

ing input. The category predictions can and should work in regions where training data exists

and the dataset was sufficiently big. However predictions outside the coverage of training data

should be handled carefully.

To move closer to the physical problem of judging a jet assignment as the next step a neural net-

work was challenged to solve the same task of classifying inputs of the di-jet systems, but this

time using four momenta. The network has again to decide if an input has the right assignment,
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with the momenta of the W system followed by those of the bb system, or a wrong assignment

with the interchanged order of inputs. The network has to map:

(~Pwp1,Ewp1,~Pwp2,Ewp2,~Pb1,Eb1,~Pb2,Eb2) → (1)

(~Pb1,Eb1,~Pb2,Eb2,~Pwp1,Ewp1,~Pwp2,Ewp2) → (0)

If the NN understands the input well enough, we should receive a result at least as good as for

the 2D Input, since the mass info can be calculated from the four vectors. For this task more

layers proved to be helpful. Since the network has to use low level variables only, the need

for more layers is to be expected. With four layers having 128 nodes, each using ReLu acti-

vations, intermediate dropout layers and a small L2 regularization term with strength 0.0001,

an accuracy of 93.36% was achieved. This is fairly close to the best case accuracy we approx-

imated for the 2D input. The additional information in the four vectors seems to be helpful,

possibly allowing the network to improve its classification power in the mass overlap region,

that is now accessible by the additional input information. To test how much physical insight

the trained network contains, it was tested with rotated and lorenz-boosted data25. If the net-

work has learned higher level physical quantities like the mass to separate both input types,

the classification strength should be similar. An accuracy of only 68.31% shows that this is at

least not completely applicable, even though in this case the network is still better than guessing

which would lead to a accuracy of 50%. It is interisting to note that the network seemed to have

learned non lorenz invariant quantities.

Since the input of the network has 16 dimensions, it is not obvious to find an accurate repre-

sentation for the network output in the complete input space, as with the input scan for the 2D

input. If we again calculate mW and mbb we can see where the network inputs classified as true

and as false lie in the (mW, mbb) space, see figure (25).

Figure 25: The input events classified true (left) and false (right) for the network trained with the 16

dimensional four vector input.

Except for some deviations in the overlap region, the recived distributions are close to the orig-

inal mass distributions of the inputs the network had to separate.

25The Monte-Carlo events where rotated in η and boosted by a four vector, pointing in a random direction with

a pT between 0 and 30 GeV.
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The next step is to combine low and high level variables. Combining the inputs of the two

neural networks, the next problem tried was to map:

(~Pwp1,Ewp1,~Pwp2,Ewp2,~Pb1,Eb1,~Pb2,Eb2,mW ,mbb) → (1)

(~Pb1,Eb1,~Pb2,Eb2,~Pwp1,Ewp1,~Pwp2,Ewp2,mbb,mW ) → (0)

If the neural network is able to find more distinguishable features than the invariant masses, the

result should be even better than for the 2D and 16D task. With the masses already provided, the

best result was achieved with only one hidden layer using 128 nodes, ReLu activations and one

dropout layer. The network achieved up to 95.44% accuracy. If again tested on lorenz boosted

data, the accuracy drops to 63.4%.

In figure (26) we can see again the position of the events classified true (output > 0.5) and false

in the (mW, mbb) space. The distribution looks now nearly completely similar to the original

mass distribution in figure 22 .

Figure 26: The input events classified true (left) and false (right) for the network trained with the 18

dimensional input including the four vectors and the two masses mbb and mW.

Until now, the separation problems were chosen to be easily solvable, having only two cate-

gories of which one had the reverse input of the other. We saw that small networks with up to

four layers could solve the task sufficiently.

The next test is to expand this to a more realistic case. Instead of separating the two di-jet

systems, the next task was to identify correctly paired event permutations using the definition

in the lepton+jets analysis. In all the following test, dropout layers were found to be limiting

the training capability of the network. Instead, small amounts of L2 regularization were used to

prevent over training. If we look at the two event categories in the (mW, mbb) plane as shown in

figure (27), we already can see that the W boson mass will be a helpful quantity. The correctly

paired permutations have W boson masses close to the W boson peak of 80.4 GeV, while the

other permutations are spread over a wide mass range.
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Figure 27: Correct paired (left) and not correct paired permutations in the (mbb, mW) plane.

Using the input that we used for the previous task, namely the four vectors of the leading jets

and the invariant mass of the bb and light jet system we are able to separate correctly and not

correctly paired permutations with an accuracy of 69% using four hidden layers with 128 nodes

each using ReLu activations. It should be noted that due to computation complexity the hyper

parameter search was limited to a maximum number of four hidden layers. It is likely that the

optimal number of layers will be higher. To improve this result, the next step was to try different

input and input representation e.g. using the (pT, η , ϕ , M) representation of the four vectors.

Using both the (E,~p) and (pT, η , ϕ , M) representation as well as the two invariant masses re-

sulted in a slightly better accuracy of 71%. As can bee seen in figure (28), the network is not

completly able to classify events around the W-boson-mass peak.

Figure 28: Permutations classified correct paired (left) and not correct paired in the (mbb, mW) plane

with the 34 dimensional network input of four vectors in (E,~p) and (pt, η , ϕ , M) representation and two

invariant masses.

Conclusion:

For the task of identifying the permutation type a network with a dropout layer is not delivering

promising results. The choice of the activation function in the hidden layers does not seem

to have big effects on the training outcome. However the ReLu activation function seems to

work best. The best results were achieved using the maximum number of hidden layers tested.

Therefore a network with more layers could perform even better, provided the number of train-

ing data is sufficiently large, since the number of trainable parameters is growing linearly with
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the number of layers and quadratically with the number of nodes per layer. Input for the NN

that includes low and high level variables deliver good training results. The choice of input

quantities is not optimized yet, but the 34 described observables give a good starting point for

further optimization. It also should be tested if a classification in all permutation categories is

helpful since the network then gets separate training insight into wrongly paired and unmatched

permutations. During the test some stability issues concerning the training outcome were seen.

If multiple networks with same architecture and the same training data were trained, it was ob-

served that they converged differently due to random initialization. This effect could be reduced

using more training data and the ADADELTA optimizer that dynamically adapts the learning

rate.

6.2 A neural network discriminant for the classification of permutation

types

As discussed in section 4.6, in the current version of the lepton+jets analysis, the top-quark-mass

measurement is limited by systematic uncertainties. The current selection offers a event selec-

tion that is nearly free from non-tt̄ background but has strong contributions from unmatched

events and wrongly paired permutations. The correctly paired permutations of tt̄ events re-

semble the signal. Despite the fact that permutations in the unmatched and wrongly paired

categories are also described with the templates and their contribution is considered in the like-

lihood fit, the correctly paired permutations have a better top-quark-mass resolution and should

be better described by Monte Carlo samples than the unmatched permutations. This suggests

an approach focused on improving the jet assignment, reducing the contribution from wrongly

paired permutations and unmatched events. As the following chapter shows, this can be done

by a neural network classifier.

6.2.1 Network design and data processing

To solve the classification problem, we use a densely connected feed forward network that

is based on the knowledge gained in section 6.1. There, we saw a first attempt for separating

correctly paired permutations from unmatched and wrongly paired permutations. The following

network setup is based on the networks used there.

The network uses 38 input variables, including :

• mfit
t

• mreco
W

• Pgof

• preco
jet in (E,~p) and (M, pT , η , ϕ) representation for the four leading jets (4×8 inputs)

• mbb
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• both b-tag values

This combines a reasonable amount of low and high level variables and provides good results

for the classification task. To improve the training performance of the network, the inputs were

rescaled, dividing every input by the typical scale of the input variable26. The network then

consists of ten hidden layers with 128 nodes each, using ReLu activations. Adding Dropout

layers was tested, but provided non satisfying results. Instead, a small L2 regularization term

with a strength of 0.001 was used. Based on the studies in section 6.1, ADADELTA was used

as optimizer during the training. The network has three output nodes with softmax activation,

one for each permutation type. Categorical cross entropy was chosen as loss function.

hidden layers: hi+1 = f (wi ·hi +bi), 10 × 128 nodes
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Figure 29: Scheme of the neural network layout used for separating the permutation types of the lep-

ton+jets analysis.

The network was trained on subsets27 with different m
gen
t and JSF of the Monte Carlo sam-

ples that are also used for the template calculation in the lepton+jets analysis. This was done

to reduce the impact of the generator mass and JSF of the samples used for training and thus

to reduce bias effects on the training results. Some more detail on possible bias effects is given

in section 6.3.1. It should be mentioned that the design can be further optimized, testing other

input combinations or different numbers of layers and nodes. The ten layers that are used give

a fairly deep neural network. It can be assumed that also a smaller network would work reason-

ably well, but since the training time was reasonably low and over training was not a problem,

this was not further optimized. The choice of activation functions, loss, optimizer and regular-

ization motivated by the results of section 6.1 has proven to work well. The real optimization

26i.e. 100 for energies, masses and momenta in GeV and 2π for angular variables.
27500000 permutations from every of the 7× 5 samples. Only the permutation with the best Pgof value in one

event was used.
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potential for this network lies in the choice of input variables. The current input is aimed at

giving the network all information necessary for learning the different jet assignments. Up to

now, the input is highly correlated and lacks other event informations, such as additional jets,

as well as information about the lepton or the neutrino. Including these might also be helpful in

the networks performance. One possible quantity to evaluate the impact of the currently used

input variables is the mutual information [61] between the input distributions and the output

distribution. It is defined as:

I(X ;Y ) = DKL[p(x,y)||p(x)p(y)] = ∑
x∈X , y∈Y

p(x,y) log
(

p(x,y)
p(x)p(y)

)

With DKL[p||q] the Kullback-Liebler divergence of two distributions p and q, p(x) the proba-

bility density distribution of x and p(x, y) the joint probability density function of x and y. It

describes how much information28 in terms of bits, two distributions X , Y have in common and

can therefore be used to rate the influence of the different input variables on the neural network

output. Table (4) shows the mutual information between the different input variables and the

neural-network output for the correct permutations category named NNoutput.

Table 4: The mutual information in bits between the input variables of the neural network and the

network output for the correctly paired permutations category: NNoutput.

Input φi I(φi;NNoutput)

mreco
W 0.933

mfit
t 0.676

Pgof 0.566

E(Whad, jet1) 0.282

pT(Whad, jet1) 0.277

pz(Whad, jet1) 0.232

pT(Whad, jet2) 0.223

M(Whad, jet1) 0.221

E(Whad, jet2) 0.206

pz(Whad, jet2) 0.182

px(Whad, jet1) 0.181

py(Whad, jet1) 0.181

M(Whad, jet2) 0.180

mbb 0.166

pT(b1) 0.154

pz(b1) 0.153

pz(b2) 0.153

E(b1) 0.148

py(Whad, jet2) 0.139

Input φi I(φi;NNoutput)

px(Whad, jet2) 0.139

M(b1) 0.139

E(b2) 0.133

pT(b2) 0.133

M(b2) 0.128

py(b1) 0.122

px(b1) 0.122

px(b2) 0.114

py(b2) 0.114

η(Whad, jet1) 0.08

η(Whad, jet2) 0.07

η(b1) 0.06

η(b2) 0.06

b-tag1 0.05

b-tag2 0.04

ϕ(b2) 0.04

ϕ(Whad, jet2) 0.04

ϕ(b1) 0.04

ϕ(Whad, jet1) 0.04

28Shannon information.
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The results for the mutual information shows that the most important inputs seem to be

mreco
W , mfit

t and Pgof. Also the momenta, energies and masses of the two light jets making up the

W boson have a certain contribution while the b-jets and the angular information play a less

significant role.

6.3 Performance of the neural network classifier

The neural network that is described in the previous section was trained in separating the three

permutations types cp, wp and un. Cuts on the output node with the cp class score should

now allow us to steer the fraction of correctly paired permutations entering the mass-extraction

method. Since in the original lepton+jets analysis (see section 4.1) Pgof is used as selection

criteria, it is reasonable to compare the selection strength of Pgof with that of the neural net-

work output. In figure (30) we can see the distribution of the different permutation types in the

NNoutput and Pgof. The included 2016 data with a center of mass energy of
√

13 TeV and a

collected Luminosity of 35.9−1 fb shows that data agrees with the Monte Carlo simulation.
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Figure 30: The Pgof (left) and NNoutput (right) distribution with the three permutation types cp, wp and

un. For values above 0.2 in Pgof and 0.108 in the NNoutput respectively .

In both distributions a cut is already applied, those correspondent to the Pgof > 0.2 cut in the

lepton+jets analysis and one of the working points NNoutput > 0.18 that was evaluated for the

neural network cuts. Those cuts exclude rather large peaks around zero with huge contribu-

tion from unmatched events. The NNoutput distribution ends at ≈ 0.9. This indicates that the

network could not find correctly paired permutations that have no overlap with permutations

of the other types, optimizing the loss by giving even the clearest permutations a lower output

value than one. In both distributions the unmatched permutations accumulate at low values,

additionally for the NNoutput the correctly paired permutations accumulate at higher values.

This makes the NNoutput a good separator for correctly paired permutations. In figure (31) we

can see a comparison of the separation strength for Pgof and NNoutput.
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Figure 31: The composition of selected permutations for different cut values on Pgof (left) and the

NNoutput (right).

In the figure we see the fraction of cp, wp and un permutations for different cut values between

0 and 1 on Pgof and NNoutput respectivly. For Pgof we see that above the 0.2 cut chosen in

the lepton+jets selection the fractions do not change much, while for the NNoutput the frac-

tion of correctly paired permutations increases monotonically with higher cut values, allowing

fractions of over 80% for the correctly paired permutations. This shows that the neural network

output provides a good classifier for the correct permutations. To test if this can be beneficial to

the top-quark-mass measurement one should look not only at the fractions we can achieve with

the neural network, but rather at the efficiency of the cp selection and the wp and un rejection,

since a fraction of 80% correctly paired permutations would not be sufficient if only O(10)

permutations survive the selection. In figure (32) we see ROC29 curves comparing cuts on Pgof

and NNoutput.

Figure 32: ROC curves showing the trade off between cp selection and wp/un rejection efficiency for

different cut values on Pgof (blue) and the NNoutput (red). The (εcp, 1-εwp+un) point corresponding to the

Pgof > 0.2 selection of the lepton+jets analysis, as well as two working point for a NNoutput cut with

the same 1-εwp+un (left) and εcp (right) as for the Pgof > 0.2 selection are marked.

The ROC curve shows that the NNoutput is a way better selector for correctly paired permuta-

tions than Pgof and offers a better trade off between cp selection efficiency and wp/un rejection.

The position of the Pgof > 0.2 cut from the lepton+jets analysis is marked in the figure. Two

exemplary working points with either the same cp selection (right) or wp/un rejection (left)

29Receiver Operating Characteristic
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efficiency ar marked. They correspond to cuts of 0.41 and 0.18 on the NNoutput respectively.

In table (5) we can see the permutation fractions for baseline selection, Pgof cut and the two

NNoutput working points.

Table 5: The permutation type wise composition of selected permutations for the baseline selection, the

Pgof > 0.2 selection as in [27] and the NNoutput selections for the two working points 0.182, 0.411.

baseline Pgof > 0.2 NNoutput > 0.182 NNoutput > 0.411

εcp 1 71.3% 91.1 % 71.3 %

1-εwp,un 0 85.1% 85.1 % 94.8 %

(cp) 14.8 % 45.1 % 49.6 % 65.6 %

(wp) 8.1 % 15.7 % 14.3 % 5.9 %

(un) 77.1 % 39.3 % 36.1 % 28.5 %

The results in the table show that for low cut values the NNoutput selection behaves like the Pgof

selection mostly discarding un permutations enhancing the fraction of cp and wp permutations.

For higher values the NNoutput can be used to discard bigger fractions of wp permutations. In

figure (33) we can see the mfit
t distributions after baseline selection, for the Pgof and the two

NNoutput cuts.
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Figure 33: The distribution of correctly paired, wrongly paired and unmatched permutations as well as

non-tt̄ background in mfit
t for the baseline selection (top-left), the Pgof > 0.2 selection and the two selected

working points of the NN: NNoutput > 0.182 and NNoutput > 0.411.

We can see that for the NNoutput selections only permutations in a narrow peak around the

top-quark mass survive. This excludes mainly unmatched permutations.
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6.3.1 Controlling for bias effects

Sine the goal is to measure the top-quark mass as precisely as possible, the template method

of the lepton+jets analysis is calibrated, compensating bias effects originating from the choice

of Monte Carlo samples used for template extraction. Since the calibration mechanism is basi-

cally independent from the event selection, comparing generator information and fit results, it

should also be able to compensate possible bias effects introduced by a neural network selec-

tor. Nonetheless, one should avoid large bias effects that might be difficult to compensate. To

check for those, several networks were trained on Monte Carlo samples with different generator

masses and JSF. To avoid performing the full template extraction in the optimization phase of

the neural network, a simplified bias check was used. The mfit
t distribution was reweighted with

the NNoutput value for the different permutations and a simple Gaussian fit was performed

to determine the position of the top-quark-mass peak for subsets of every mass sample. The

position of the mass peak mNN and the generator top-quark mass was then compared with the

generator mass mtrue in every sample.

Figure 34: The position of the top-quark-mass peak mNN in the mfit
t distribution of different mass samples

reweighted with the output of neural networks trained on samples with different generator-top-quark

masses (left) and a network trained on a sample combining multiple generator masses (right) determined

with a Gaussian fit plotted against the generator mass of the tested sample mtrue. On the right plot the

(mNN, mtrue) are also plotted for samples that only consist of correctly paired permutations (cp).

In the left part of figure (34) we can see the result. The (mNN, mtrue) points for every network

lie on straight lines slightly tilted away from the diagonal. One can see that there is a strong

dependence on the generator mass sample that was used for training as well as a deviation from

the diagonal, leading to a mass dependent deviation of extracted and generator mass, that has

to be corrected by a calibration. Similar dependencies were observed when looking at the JSF

of the training samples. This led to the decision to train on samples with all generator masses

and JSF values available drawn from the samples that are used for the template generation in

the lepton+jets analysis. In the right part of figure (34) we can see a slight improvement when

training on all samples. The (mNN, mtrue) points lie on a straight line close to the diagonal. If

we look only at extracted masses from correctly paired event permutations, the dependence on

the generator mass is smaller. The remaining bias then can be removed in the calibration step
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of the template-fit method. This can be seen in figure (35) where the complete top-quark-mass

extraction was performed for a selection on the workingpoint NNoutput > 0.41065.

>
 [

G
e

V
]

t,
g

e
n

 m
− 

t,
e

x
tr

<
m 1.5−

1−

0.5−

0
0.5

1
1.5

2
2.5

 [GeV]t,genm

166 168 170 172 174 176 178

 J
S

F
>

− 
e

x
tr

<
J
S

F

0.025−

0.02−

0.015−

0.01−

0.005−

0
0.005

0.01
0.015

+jetsµ (13 TeV), -1private work, 35.9 fb

JSF=0.96 JSF=0.98 JSF=1.00
JSF=1.02 JSF=1.04

>
 [

G
e

V
]

t,
g

e
n

 m
− 

t,
e

x
tr

<
m 1.5−

1−

0.5−

0
0.5

1
1.5

2
2.5

 [GeV]t,genm

166 168 170 172 174 176 178

 J
S

F
>

− 
e

x
tr

<
J
S

F

0.025−

0.02−

0.015−

0.01−

0.005−

0
0.005

0.01
0.015

+jetsµ (13 TeV), -1private work, 35.9 fb

JSF=0.96 JSF=0.98 JSF=1.00
JSF=1.02 JSF=1.04

Figure 35: The difference in extracted and generator mass (top) and JSF (bottom) for a cut on the neural

network output for the cp category: (NNoutput > 0.41065), before (left) and after calibration (right).

Dependencies on mt and JSF and thus possible biases in the mass extraction have been removed.

Another check that should be made, is to look if the new neural network based selection intro-

duces a mass or JSF dependence of the permutation type fractions. These are presumed to be

independent of mass and JSF for the Pgof > 0.2 selection. Thus in the lepton+jets analysis the

fractions can enter the likelihood as derived on the "default" mass sample with a generator-top-

quark mass of 172.5 GeV and a JSF of 1.00. To check if this assumption holds for a selection

with the neural network classifier, the permutation fractions were calculated on subsets of the

Monte Carlo samples for different working points of the neural network output. As can be seen

in figure (36) the fractions are neither mass nor JSF dependent and the assumption holds.

Figure 36: The fraction of correctly paired (cp), wrongly paired (wp) and unmatched permutations

evaluated on samples with different generator-top-quark mass (left) and JSF (right) after a cut on the

neural network output for correctly paired permutations: NNoutput > 0.41065.

6.3.2 Implications for systematical uncertainties in the top-quark-mass measurement

In the chapters 6.1-6.3 we discussed how we can achieve a better selection for correctly paired

permutations. To see how well the cuts on the neural network output work in achieving our
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primary goal to improve the precision of out top-quark-mass measurement, the complete top-

quark-mass extraction method described in section 4.2 has to be redone, this time with cuts on

the neural network output evaluated with respect to the systematical uncertainty. In table (6)

we can see the shifts in the top-quark-mass extraction between the default Monte Carlo sample

and the systematic samples for the biggest contributers to the systematic uncertainty for three

different scenarios, a Pgov > 0.2 selection, a cut30 on the network output of NNoutput > 0.411

and a cp-only selection.

Table 6: Shifts in the top-quark-mass extraction between a default sample with a generator top-quark

mass of 175.5 GeV and JSF = 1.00 and several systematic samples, that represent the biggest contributers

to systematic uncertainties in the top-quark-mass measurement in the lepton+jets channel. The table

contains shifts for the 1D, 2D and hybrid extraction method evaluated for the Pgof > 0.2 selection, a

selection with NNoutput > 0.411 and a cp-only selection that selects all correctly paired permutations of

the baseline selection. In red/green larger deviations in the shifts for the hybrid mass between the Pgof >

0.2 and the other selections are marked.

shifts [GeV] Pgo f > 0.2 NNoutput >0.411 cp only

1D 2D hyb 1D 2D hyb 1D 2D hyb

FSR -0.55 0.31 0.05 -0.46 0.61 0.29 5 -0.5 0.45 0.17

ISR 0.1 0.13 0.11 0.08 0.13 0.12 0.11 0.1 0.1

JEC Flavour -0.34 -0.42 -0.4 -0.34 -0.44 -0.41 -0.32 -0.38 -0.36

ME Gen. 0.23 0.28 0.27 0.2 0.1 0.13 0.51 0.32 0.38

CR def/“gluon move” (erd on) 0.21 0.29 0.27 0.17 0.27 0.24 0.25 0.4 0.36

CR def/“QCD inspired” (erd on) -0.22 -0.15 -0.17 -0.29 -0.17 -0.21 -0.24 -0.11 -0.15

CR def ERD off / def ERD on 0.47 -0.15 0.04 0.5 0.06 0.19 4 0.45 -0.18 0.01

JEC (Quad sum) (0.81) (0.11) (0.18) (0.84) (0.05) (0.22) (0.78) (0.09) (0.18)

B jet modl. (Quad sum) (0.07) (0.08) (0.08) (0.03) (0.06) (0.05) (0.04) (0.05) (0.05)

Combined 0.59 0.65 0.69

If we compare the results for the Pgof and the NNoutput cut, we can see that some of the shifts

for the hybrid mass are larger, some are reduced and the overall uncertainty grows slightly when

exchanging the Pgof cut with the neural network selection. First of all, this means that this work-

ing point of the neural network will not improve the systematic uncertainty compared to the old

selection. This can have at least three possible reasons:

1. The network classifier works not as anticipated and introduces bias effects that increase

the overall systematic uncertainty.

2. The NN selector selects phase space regions that are especially vulnerable to the system-

atic variations.

3. The hybrid weight responsible for the hybrid mass is not optimized.

4. The approach of selecting more cp and less wp/un permutations is not helpful with regard

to the systematic uncertainty of the top-quark-mass extraction.

Since no obviously unexpected effects could be seen in different control distributions for the

tt̄ selection as well as the fact that the calibration of the template method should compensate for

30This cut corresponds to the working point where the cp selection efficiency is as high as for the Pgov > 0.2 cut.
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bias effects, the latter two reasons were studied. The optimization of the hybrid weight showed

no qualitative difference in the observed lack of improvement. Therefore the efforts of under-

standing this result were directed at the systematic uncertainty in a cp only selection. To test the

effectiveness of a purer selection, the top-quark-mass measurement was redone with a selection

that artificially only selects correct permutations. This is solely possible on Monte Carlo events

and is therefore no realistic scenario. But it offers the possibility to look at a selection that

models a perfect neural network selection, selecting only cp permutations, while discarding wp

and un permutations as well as background completely, without introducing any kind of bias.

If we look at the result for the cp selection in table (6), we can see that the overall systematic

uncertainty gets even larger. This means that the uncertainty would not improve if the neural

network selector would work perfectly regarding to its classification goal and that the other

permutation types are helping to make the top-quark-mass determination more stable against

the systematical variations. The cp selection selects all permutations that are correctly paired

regardless of their other properties, while the Pgof cut for example discards permutations that

do not fit to the tt̄ hypothesis. Therefore also combinations of the cp and the Pgof selection were

tested. But those resulted all in systematic uncertainties higher than in the original Pgof > 0.2

selection. Therefore either the correct permutations are especially vulnerable to the systematic

variations or the other permutation types have a stabilizing effect on the top-quark-mass extrac-

tion. In the following we will see that the latter is the case. The full top-quark-mass extraction

was repeated again with selections of only wp and only un permutations. The resulting shifts

were indeed higher for the wp and un category, meaning that the cp permutations behave better

with respect to the systematical variations. To explain the overall better result when we select

also non cp permutations, we have to look at the signs of the top-quark-mass shifts. For some

of the systematic variations the shifts of the cp and wp or un permutations have a different sign.

Thus having a selection that combines cp, wp and un permutation leads to a partial cancellation

of the shifts and an overall smaller systematic uncertainty as observed for the Pgof selection.

To support this explanation, the 1D shifts were reconstructed using the permutation fractions

and the shifts that we got for the cp, wp, un only selections. The shifts measured for the cp,

wp and un only selections were combined using a weight derived from the expected statistical

uncertainty of the 1D top-quark-mass measurement determined in the pseudo experiments31:

wi =

1
σi

∑ j
1

σ j

i, j ∈ [cp, wp, un] .

As can be seen in table (7), this reconstruction of the 1D shifts works for a top-quark-mass

extraction on the baseline selection and to a certain degree also for the Pgof > 0.2 and the

NNoutput > 0.411 case. The deviations between the measured and the reconstructed 1D shifts

for the Pgof > 0.2 and the NNoutput > 0.411 cases are to be expected. The cp, wp and un only

31σ is the width in the top-quark-mass distribution for 1D masses extracted out of pseudo experiments, that

emulate the real experiment with the number of tt̄ events expected in the 2016 data.

60



selection include also permutation outside the Pgof > 0.2 and the NNoutput > 0.411 selection,

while those selections influence more then the composition of cp, wp and un permutations.

Table 7: Shifts in the top-quark-mass extraction between a default sample with a generator top-quark

mass of 172.5 GeV and JSF=1.00 and several systematic samples. The systematic samples represent

the biggest contributers to systematic uncertainty in the top-quark-mass measurement with the ideogram

method. The shifts for the 1D mass extraction case are shown for three different selections. Those

include the baseline selection (top), the Pgof > 0.2 (middle) and the NNoutput > 0.411 selection (bottom)

as well cp, wp, un only selections based on the baseline selection, the Pgof > 0.2 and the NNoutput >

0.411 selection. Also reconstructed values for the 1D shifts based on the shifts for the cp, wp and un-

only selections and weights given by statistical uncertainty on the top-quark-mass extraction in those

categories wi =
1
σi

∑ j
1

σ j

i, j ∈ [cp, wp, un] are shown. The line for the uncertainty on the chosen Monte

Carlo generator is marked for the baseline selections, to show how the partial cancellation of the top-

quark-mass shifts works.

shifts [GeV] (baseline) cp wp un 1D rec. 1D

FSR -0.5 -0.93 -0.73 -0.59 -0.62

ISR 0.11 -0.22 0.24 0.11 0.12

JEC Flavour -0.32 -0.45 -0.52 -0.38 -0.34

ME Gen. 0.51 0.26 -2.58 -0.19 -0.18

CR def/“gluon move” (erd on) 0.25 0.24 0.22 0.24 0.23

CR def/“QCD inspired” (erd on) -0.24 0.54 0.05 -0.1 -0.22

CR def ERD off / def ERD on 0.45 -0.58 0.67 0.4 0.45

JEC (Quad sum) (0.78) (0.93) (1.06) (0.85) (0.82)

B jet modl. (Quad sum) (0.04) (0.36) (0.67) (0.14) (0.12)

weight wi 0.689 0.093 0.218

shifts [GeV] (Pgo f > 0.2) cp wp un 1D rec. 1D

FSR -0.5 -0.93 -0.73 -0.56 -0.55

ISR 0.11 -0.22 0.24 0.1 0.13

JEC Flavour -0.32 -0.45 -0.52 -0.35 -0.34

ME Gen. 0.51 0.26 -2.58 0.17 0.23

CR def/“gluon move” (erd on) 0.25 0.24 0.22 0.25 0.21

CR def/“QCD inspired” (erd on) -0.24 0.54 0.05 -0.15 -0.22

CR def ERD off / def ERD on 0.45 -0.58 0.67 0.39 0.47

JEC (Quad sum) (0.78) (0.93) (1.06) (0.82) (0.81)

B jet modl. (Quad sum) (0.04) (0.36) (0.67) (0.04) (0.07)

weight 0.819 0.077 0.104

shifts [GeV] (NNoutput> 0.411) cp wp un 1D rec. 1D

FSR -0.5 -0.93 -0.73 -0.54 -0.46

ISR 0.11 -0.22 0.24 0.11 0.08

JEC Flavour -0.32 -0.45 -0.52 -0.34 -0.34

ME Gen. 0.51 0.26 -2.58 0.26 0.2

CR def/“gluon move” (erd on) 0.25 0.24 0.22 0.25 0.17

CR def/“QCD inspired” (erd on) -0.24 0.54 0.05 -0.18 -0.29

CR def ERD off / def ERD on 0.45 -0.58 0.67 0.42 0.5

JEC (Quad sum) (0.78) (0.93) (1.06) (0.81) (0.84)

B jet modl. (0.04) (0.36) (0.67) (0.04) (0.03)

weight 0.878 0.043 0.079

These results show that there is no improvement in the systematic uncertainty of the top-quark-

mass measurement to be gained from enhancing the fraction of correctly paired permutations.

Nonetheless, the results give a deeper understanding of the connections between the permuta-
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tion types and the systematic uncertainties and possibly offer new optimization potential since

a selection with a optimized composition of the three permutation types might give a better

result. The composition would then be a optimizable parameter like the hybrid weight in the

determination of the hybrid mass.

6.3.3 Comparing the neural network approach and previous 2016 analysis

The tested working point on the neural network output NNoutput > 0.411 did not result in a

better systematic uncertainty. In section 6.3.2 we understood why a purified selection of cor-

rectly paired permutations did not lead to an improved uncertainty, but we also saw that the

uncertainty is closely connected to the composition of cp, wp and un permutations. Therefore,

the full top-quark-mass extraction was performed multiple times to optimize the selection with

the NNoutput variable. The mass extraction procedure including the determination of the per-

mutation fractions, the template generation, the template calibration and the calculation of the

systematic shifts for the hybrid mass was performed at four different working points. Assum-

ing the correlation between systematic uncertainty and the cut value of the NNoutput can be

described by a quadratic function, the results of the four working points can then be used to

determine the optimal cut value for the NNoutput. To get comparable results with the results of

the lepton+jets analysis, also the hybrid weight has to be optimized as well, requiring additional

mass extractions for different hybrid weights. The result of the overall systematic uncertainty

can be seen in figure (37).
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Figure 37: The systematic uncertainties of the top-quark-mass measurement for four different working-

points on the neural network output. A quadratic fit was performed to find the optimal cut value at 0.108.

The quadratic fit lead to an expected optimal cut value of NNoutput > 0.108. If we again perform

the top-quark-mass extraction for this selection and optimize the hybrid weight to whyb =0.214,

62



we get a systematic uncertainty of 0.56 GeV and a expected statistic uncertainty of 0.09 GeV.

In this determination of the systematic uncertainty, some32 of the smaller contributors to the

systematic uncertainty of the Pgof > 0.2 selection were neglected. Therefore the result is to be

taken with the necessary caution, since the neglected uncertainty sources might have a bigger

contribution for the NNoutput selection. The complete list of systematic uncertainties for the

NNoutput > 0.108 selection can be found in table (8). The same table for the Pgof > 0.2 selec-

tion can be found in table (9). For the Pgof>0.2 selection a systematic uncertainty of 0.63 GeV

and a expected statistical uncertainty of 0.1 GeV was achieved, in agreement with the original

lepton+jets analysis using all uncertainty sources. Therefore the NNOutput can in fact be used

as a better selector than the Pgof with regard to the systematic uncertainty.

Table 8: Final systematic uncertainties for the top-quark-mass extraction in tt̄ events with the muon+jets

final state for a selection with the NNoutput > 0.108

Uncertainty δm1D [GeV] δm2D [GeV] δmhyb [GeV]

Experimental uncertainties:

JEC 0.81 0.1 0.11

Jet energy resulution 0.03 0.07 0.05

b tagging 0.01 0.03 0.02

Pileup 0.01 0.07 0.05

Modelling uncertainties:

JEC Flavour 0.34 0.44 0.42

b-jet modelling 0.04 0.06 0.06

ME/PS matching 0.04 0.08 0.06

ME generator 0.21 0.10 0.09

ISR PS scale 0.05 0.05 0.05

FSR PS scale 0.57 0.38 0.17

pt 0.01 0.01 0.01

Underlying event 0.09 0.07 0.06

Color reconnection 0.70 0.27 0.27

total systematic uncertainty 1.31 0.68 0.56

32The uncertainty on the non tt̄ background, the PDF uncertainties, the uncertainty on the renormalization and

factorization scale, the uncertainty due to early resonance decays and the method calibration.
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Table 9: Systematic uncertainties in the muon+jets top-quark-mass analysis for a selection with Pgof >

0.2

Uncertainty δm1D [GeV] δm2D [GeV] δmhyb [GeV]

Experimental uncertainties:

JEC 0.82 0.1 0.19

Jet energy resulution 0.03 0.08 0.05

b tagging 0.02 0.04 0.04

Pileup 0.02 0.09 0.06

Modelling uncertainties:

JEC Flavour 0.35 0.43 0.4

b-jet modelling 0.05 0.07 0.06

ME/PS matching 0.05 0.10 0.08

ME generator 0.08 0.33 0.25

ISR PS scale 0.09 0.06 0.07

FSR PS scale 0.59 0.24 0.10

pt 0.02 0.02 0.02

Underlying event 0.08 0.07 0.06

Color reconnection 0.69 0.33 0.30

total systematic uncertainty 1.30 0.72 0.63

To improve the trust in this result and to gain understanding about the physical background of

this improvement we can look at how the input distributions of the neural network changed due

to the selection NNoutput > 0.108 and how they compare to those of the Pgof>0.2 selection.

In the following figures (38,39,40) the distributions can be seen for the most influential inputs

mreco
W , mfit

t and Pgof. The other input distributions can be found in the appendix (section 9.1).

When we look at these control distributions we can see that the distributions for the network

selection look very similar to those of the Pgof selection. Only in the mfit
t distribution one can see

that the network selection cuts away most of the tail in the mass distribution while in the other

distributions the network selection seems to be looser than the Pgof > 0.2 selection allwoing for

more wp and un permutations. Despite this, no obvious differences between the distributions

of the Pgof and the NNoutput selection can be seen in the 1D distributions of the network input

variables.
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Figure 38: The mfit
t distribution for the baseline selection (left), the Pgof selection (middle) and the best

neural network selection (right).
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Figure 39: The Pgof distribution for the baseline selection (left), the Pgof selection (middle) and the best

neural network selection (right).

 [GeV]reco
Wm

0 100 200 300

 P
e

rm
u

ta
ti
o

n
s
 /

 5
 G

e
V

0

20

40

60

80

100

3
10×

 correcttt
 wrongtt
 unmatchedtt

Data

Single t
W+jets
Z+jets
QCD multijet
Diboson

+jetsµ = 13 TeV, s,  -1Private work, 35.9 fb

 [GeV]reco
Wm

0 100 200 300

 P
e

rm
u

ta
ti
o

n
s
 /

 5
 G

e
V

0

10000

20000

30000

40000

50000

60000

70000  correcttt
 wrongtt
 unmatchedtt

Data

Single t
W+jets
Z+jets
QCD multijet
Diboson

+jetsµ = 13 TeV, s,  -1Private work, 35.9 fb

 [GeV]reco
Wm

0 100 200 300

 P
e

rm
u

ta
ti
o

n
s
 /

 5
 G

e
V

0

10000

20000

30000

40000

50000

60000

70000  correcttt
 wrongtt
 unmatchedtt

Data

Single t
W+jets
Z+jets
QCD multijet
Diboson

+jetsµ = 13 TeV, s,  -1Private work, 35.9 fb

Figure 40: The mreco
W distribution for the baseline selection (left), the Pgof selection (middle) and the best

neural network selection (right).
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7 Outlook

7.1 Proof of principle: An evolutionary learning approach

We now used a neural network to manipulate the permutation fractions in the lepton+jets anal-

ysis with the goal to improve the systematic uncertainty of the top-quark-mass measurement.

This worked and we found out that the permutation fractions have a strong influence on the sys-

tematic uncertainty of the mass extraction method. A more direct approach would be to directly

train a network to make an event selection that reduces the systematic uncertainty. This idea

has a few technical problems. Most learning algorithms are gradient based, trying to compute

a gradient on a certain loss function to find weight updates that reduce the loss and therefore

move closer to fulfill the learning goal. The systematic uncertainty of the top-quark-mass mea-

surement is a complex quantity that takes around 2-3 days to compute for one event selection33.

It is not an event based quantity and therefore difficult to use directly in a loss function. The

neural network we used in the last sections had approximately 200000 parameters and therefore

one would need to know for approximately 200000 weight changes how the systematic uncer-

tainty would change to compute a gradient. A task that is simply not feasible. To possibly solve

this, non gradient based machine learning methods were studied. A promising one is evolution-

ary training [57]. Evolutionary learning resembles a more sophisticated random based learning

method. The idea is to create a population of random variants of a neural network model by

adding noise to a base network. Those models are then evaluated and given a score how well

they performed in the task they are trained to do. In the case of the context of this thesis, this

score would represent how well a network based selection reduces the systematic uncertainty,

thus giving high scores to models that resulted in low systematic uncertainty. After evaluating

the different models, they will be combined to a new model based on their score, that is the base

model for a new population of random models in the next epoch. For the actual implementation

of this approach in the context of the top-quark-mass analysis the algorithm described in [57] is

used:

Algorithm 1 Simple evolutionary learning

1: Input: Learning rate α ,noise standard deviation σ , intial parameters θ0, population size n

2: for t = 0,1,2, ... do

3: Sample random updates ε1, ..,εn ∼ N(0, I)

4: Compute returns Fi = F(θt +σεi) for i = 1, ...n

5: Set θt+1← θt +α 1
nσ ∑

n
i=1 Fiεi

6: end for

In every time step t random noise εi is created for the weights of every population member

1, ...,n. Using the base weights of the current timestep θt and the noise scaled with respect

33Corresponding to ≈ 18000 h of CPU time.
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to the given noise standard deviation σ , network models are created and evaluated by the call

to F(θ + σεi). Evaluated in our case means that the top-quark-mass analysis is being run

on permutations that pass a selection based on the output of the newly created network. A

permutation passes if the network output is higher than 0.5 using a network with a sigmoid

activation function in the output layer. The return value F is the negative logarithm of the

systematic uncertainty. This score function− ln(err/2) punishes hight uncertainties and rewards

low uncertainties. For this first test, the described algorithm is slightly modified based on an

algorithm used in the python package evostra [50] was used. There, the scores Fi are rescaled

before combining the weight updates, giving more gradient looking like update steps.

Fi =
Fi−1/2∑Fi

RMS(Fi−1/2∑Fi)
.

Since the usual estimation of the systematic uncertainties takes 2-3 days, a simplified and au-

tomated version of the top-quark-mass analysis was designed, trading the number of created

pseudo experiments and therefore accuracy on the uncertainty estimation for a faster runtime

of around 12-24h34. This allowed for the creation and evaluation of ≈ 5 neural networks in

parallel. If an epoch is aimed to be run in around 2 days, this gives around 10-15 networks per

epoch. Since only one direction in the weight space can be explored per population member,

the used NN had to be much simpler than the network used in section 6.3. A network with only

two hidden layers with ten nodes each and a total of 7 inputs was chosen. The fitted top mass

mfit
t , the reconstructed W mass mreco

W and the fit probability Pgof were included, since they had

a strong influence on the training for the network aimed at the permutation classification task.

Also the azimuthal distances ∆ϕ between the b jets and the muon, as well as between the b jets

themselves and between the bb system and the reconstructed neutrino were included to provide

some information about the event topology. A schematic of the used network can be seen in

figure (41).

34Corresponding to a CPU time of ≈ 1000 h.
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hidden layers: hi+1 = f (wi ·hi +bi), 2 × 10 nodes
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Figure 41: The schematic neural network layout used with the evolutionary training algorithm for the

reduction of systematic uncertainties.

A first test showed that a pretraining was needed since a completly randomly initialized network

was not allowing enough permutations to pass the selection. The network was pre trained for a

few epochs on a classification task separating again correctly paired permutations from non cp

permutations, before running 5 epochs of the evolutionary learning approach with populations

of 10 | 10 | 14 | 9 | 9 networks. Despite the fact that the network still includes≈ 250 parameters,

an improvement of the systematic uncertainty could be seen during the training. The resulting

learning curve can be seen in figure (42).
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Figure 42: Learning curve of the neural network trained for the reduction of systematic uncertainty with

an evolutionary learning approach. The combined systematic uncertainty of most contributors to the

overall uncertainty estimated by the short analysis can be seen for the network model obtained from pre

training (base) and after multiple epochs of evolutionary training (epoch0-epoch4).
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For the learning process a noise standard deviation of σ = 0.01 and a learning rate of α =

0.001 was used and was kept constant over the whole learning process. Even without optimizing

the learning rate and the noise spread an incremental learning process can be observed. The best

uncertainty observed was in the range of 300 MeV. However this result has to be taken with

caution, since the uncertainties seen in figure (41) are those received in the simplified analysis.

It was found that the templates used in the simplified analysis lead to significant differences

in the result for the systematic uncertainty achieved with the final networks when compared

to the full analysis, that only lead to an systematic uncertainty of ≈ 700 MeV. Therefore, the

result achieved with this training is not yet directly applicable. Nonetheless it can be concluded

that the training algorithm itself achieved a learning process for a complicated problem in a

technically feasible manner. To validate the possible usage of a evolutionary training method in

the context of systematic-uncertainty optimization, the training itself needs to be repeated with

full treatment of systematic uncertainties including an adapted template extraction.

7.2 Further Ideas

A permutation selection that is independent from systematic variations, possibly achieved with

adversarial neural networks was also discussed during the time of my thesis. However since

the top-quark-mass measurement presented in this work is not event based, it is unclear if this

would lead in fact to lower systematical uncertainties. The systematic uncertainties are given

by shifts in the extracted top-quark-mass under systematical variations. This means that the

extracted templates point to a different top-quark mass before and after a systematical variation.

Therefore the systematical uncertainties arise from the description power of the templates when

used on MC permutations after undergoing systematical variations.

If now the templates would be constructed so that they describe permutations independent from

systematical variations, per construction the systematical uncertainties would be low. For this

approach the systematical variations would need to be done for all 5×7 MC samples used in the

current template creation and calibration. However the success of this approach will be limited

if this results in loosend templates that do not describe the top-quark-mass dependence of the

described distributions in a sufficient way only leading to a trade of between calibration and

systematical uncertainty. Therefore the template creation could possibly be assisted or replaced

by neural networks.
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8 Summary

In this thesis two different approaches to reduce the systematic uncertainty of the top-quark-

mass measurement with the help of neural networks were shown. The first approach focused on

the three different permutation types found in the lepton+jets based top-quark-mass extraction.

There are correctly paired permutations where all four leading jets of the tt̄ event are assigned

correctly, wrongly paired permutations where the two b-jets are interchanged and unmatched

events, where at least one of the four leading jets does not originate from a top-quark decay.

A deep neural network was successfully trained to classify jet permutations in the tt̄ system

as correctly paired, wrongly paired or unmatched permutations. With the help of this neural

network, the tuning of the permutation fractions in the selection for the mass measurement is

possible.

This thesis has shown that an enrichment of correctly paired permutations does in fact not lead

to a smaller systematic uncertainty. Permutations of the other permutation types are reacting

differently to the variations in the estimation process for the systematic uncertainty. This leads

to a stabilization of the measured top-quark mass against systematic variations depending on the

permutation type fractions in the event selection of the mass measurement. The strong influence

of the permutation type event composition on the systematic uncertainty then could be used to

find a selection that reduces the systematic uncertainty in the top-quark-mass measurement in

the µ+jets channel to 0.56 GeV without loosing statistical accuracy. Compared to the result for

the Pgof>0.2 selection this is an reduction of the systematic uncertainty of 12.5 % or 70 MeV.

The second approach is based on a randomized learning technique called evolutionary learn-

ing and was used to train a neural network directly as a selector that reduces the systematic

uncertainty. The first test of this approach included a unfitting template extraction, so that the

otherwise promising results are not yet directly applicable. Nontheless the tests performed for

this thesis suggest that evolutionary learning in general is a technically feasible method, moti-

vating further studies.
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9 Appendix

Muon and electron definition

Muon Definition The selected muons have to pass the following requirements[27]:

• The muon fired a single muon trigger HLT_IsoMu24_v* or HLT_IsoTkMu24_v*

• pT > 26 GeV and |η | < 2.4

• PFMuon ID tight, that means:

– Selected muon is a global muon, reconstructed in both tracker and muon system

– Found valid hits in at least 5 tracker layers, 1 pixel layer and at least one valid hit in

the muon system were found the muon system

– Global track fit resulted in a χ/ndf < 10

– The impact parameter with regard to beam spot | dB | is < 0.02 cm

– The distance to the primary vertex in z direction smaller than 0.5 cm

• The muon has to be isolated in a cone of ∆R < 0.4 :

PF-based combined relative isolation with ∆β correction ( ∑ pT (ch.had from PV) +

max( ∑ ET (neut.had) + ∑ ET (photon) - 0.5 · ∑ pT (ch. had from PU), 0))/pT ( µ )

(sumChargedHadronPt+max((sumNeutralHadronEt+sumPhotonEt-0.5*sumPUPt),

0.0))/pT < 0.15

Electron Definition: The selected electrons have to pass the following requirements[27]:

• The electron fired the single electron trigger HLT_Ele32_eta2p1_WPTight_Gsf_v*

• ET > 34 GeV and |η | < 2.1

• The supercluster η hast to be < 1.4442 or > 1.5660 to exclude the transition region be-

tween detector barrel and endcap

• The impact parameter with regard to beam spot | dB | has to be < 0.02 cm

• The impact parameters have to be: d0 < 0.05 cm and dz < 0.1 cm in the barrel region and

d0 < 0.1 cm and dz < 0.2 cm in endcap region

• The electrons fulfill tight cut-based ID

• Photon conversion is vetoed

• The electron has to be isolated in a cone of ∆R < 0.4 :

chargedHadronIso+max((neutralHadronIso+photonIso-0.5*puChargedHadronIso),

0.0))/pT < 0.1
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9.1 Input distributions of the neural network selector
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Figure 43: E of the 1st reconstructed light jet, for the baselineselection(left), the Pgof > 0.2 selection

(center) and the final NNoutput > 0.108 selection
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Figure 44: px of the 1st reconstructed light jet, for the baselineselection(left), the Pgof > 0.2 selection

(center) and the final NNoutput > 0.108 selection
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Figure 45: py of the 1st reconstructed light jet, for the baselineselection(left), the Pgof > 0.2 selection

(center) and the final NNoutput > 0.108 selection
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Figure 46: pz of the 1st reconstructed light jet, for the baselineselection(left), the Pgof > 0.2 selection

(center) and the final NNoutput > 0.108 selection.
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Figure 47: pT of the 1st reconstructed light jet, for the baselineselection(left), the Pgof > 0.2 selection

(center) and the final NNoutput > 0.108 selection.
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Figure 48: η of the 1st reconstructed light jet, for the baselineselection(left), the Pgof > 0.2 selection

(center) and the final NNoutput > 0.108 selection.
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Figure 49: ϕ of the 1st reconstructed light jet, for the baselineselection(left), the Pgof > 0.2 selection

(center) and the final NNoutput > 0.108 selection.
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Figure 50: Mass of the 1st reconstructed light jet, for the baselineselection(left), the Pgof > 0.2 selection

(center) and the final NNoutput > 0.108 selection.
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Figure 51: E of the 2nd reconstructed light jet, for the baselineselection(left), the Pgof > 0.2 selection

(center) and the final NNoutput > 0.108 selection.
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Figure 52: px of the 2nd reconstructed light jet, for the baselineselection(left), the Pgof > 0.2 selection

(center) and the final NNoutput > 0.108 selection.
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Figure 53: py of the 2nd reconstructed light jet, for the baselineselection(left), the Pgof > 0.2 selection

(center) and the final NNoutput > 0.108 selection.
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Figure 54: pz of the 2nd reconstructed light jet, for the baselineselection(left), the Pgof > 0.2 selection

(center) and the final NNoutput > 0.108 selection.
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Figure 55: pT of the 2nd reconstructed light jet, for the baselineselection(left), the Pgof > 0.2 selection

(center) and the final NNoutput > 0.108 selection.
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Figure 56: η of the 2nd reconstructed light jet, for the baselineselection(left), the Pgof > 0.2 selection

(center) and the final NNoutput > 0.108 selection.
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Figure 57: ϕ of the 2nd reconstructed light jet, for the baselineselection(left), the Pgof > 0.2 selection

(center) and the final NNoutput > 0.108 selection.
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Figure 58: Mass of the 2nd reconstructed light jet, for the baselineselection(left), the Pgof > 0.2 selection

(center) and the final NNoutput > 0.108 selection.
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Figure 59: E of the 1st b-jet, for the baselineselection(left), the Pgof > 0.2 selection (center) and the final

NNoutput > 0.108 selection.
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Figure 60: px of the 1st b-jet, for the baselineselection(left), the Pgof > 0.2 selection (center) and the

final NNoutput > 0.108 selection.
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Figure 61: py of the 1st b-jet, for the baselineselection(left), the Pgof > 0.2 selection (center) and the

final NNoutput > 0.108 selection.
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Figure 62: pz of the 1st b-jet, for the baselineselection(left), the Pgof > 0.2 selection (center) and the final

NNoutput > 0.108 selection.
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Figure 63: pT of the 1st b-jet, for the baselineselection(left), the Pgof > 0.2 selection (center) and the

final NNoutput > 0.108 selection.

reco

B1
η

2− 1− 0 1 2

 P
e

rm
u

ta
ti
o

n
s
 /

 0
.2

 

0

20

40

60

80

100

3
10×

 correcttt
 wrongtt
 unmatchedtt

Data

Single t
W+jets
Z+jets
QCD multijet
Diboson

+jetsµ = 13 TeV, s,  -1Private work, 35.9 fb

reco

B1
η

2− 1− 0 1 2

 P
e

rm
u

ta
ti
o

n
s
 /

 0
.2

 

0

5000

10000

15000

20000

25000  correcttt
 wrongtt
 unmatchedtt

Data

Single t
W+jets
Z+jets
QCD multijet
Diboson

+jetsµ = 13 TeV, s,  -1Private work, 35.9 fb

reco

B1
η

2− 1− 0 1 2

 P
e

rm
u

ta
ti
o

n
s
 /

 0
.2

 

0

5000

10000

15000

20000

25000

30000
 correcttt
 wrongtt
 unmatchedtt

Data

Single t
W+jets
Z+jets
QCD multijet
Diboson

+jetsµ = 13 TeV, s,  -1Private work, 35.9 fb

Figure 64: η of the 1st b-jet, for the baselineselection(left), the Pgof > 0.2 selection (center) and the final

NNoutput > 0.108 selection.
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Figure 65: ϕ of the 1st b-jet, for the baselineselection(left), the Pgof > 0.2 selection (center) and the final

NNoutput > 0.108 selection.
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Figure 66: Mass of the 1st b-jet, for the baselineselection(left), the Pgof > 0.2 selection (center) and the

final NNoutput > 0.108 selection.
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Figure 67: E of the 2nd b-jet, for the baselineselection(left), the Pgof > 0.2 selection (center) and the

final NNoutput > 0.108 selection.
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Figure 68: px of the 2nd b-jet, for the baselineselection(left), the Pgof > 0.2 selection (center) and the

final NNoutput > 0.108 selection.
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Figure 69: py of the 2nd b-jet, for the baselineselection(left), the Pgof > 0.2 selection (center) and the

final NNoutput > 0.108 selection.
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Figure 70: pz of the 2nd b-jet, for the baselineselection(left), the Pgof > 0.2 selection (center) and the

final NNoutput > 0.108 selection.
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Figure 71: pT of the 2nd b-jet, for the baselineselection(left), the Pgof > 0.2 selection (center) and the

final NNoutput > 0.108 selection.
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Figure 72: η of the 2nd b-jet, for the baselineselection(left), the Pgof > 0.2 selection (center) and the

final NNoutput > 0.108 selection.
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Figure 73: ϕ of the 2nd b-jet, for the baselineselection(left), the Pgof > 0.2 selection (center) and the

final NNoutput > 0.108 selection.
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Figure 74: Mass of the 2nd b-jet, for the baselineselection(left), the Pgof > 0.2 selection (center) and the

final NNoutput > 0.108 selection.
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Figure 75: The b-tag value of the 1st b-jet, for the baselineselection(left), the Pgof > 0.2 selection (center)

and the final NNoutput > 0.108 selection.
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Figure 76: The b-tag value of the 2nd b-jet, for the baselineselection(left), the Pgof > 0.2 selection

(center) and the final NNoutput > 0.108 selection.
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Figure 77: The invariant mass of the bb system, for the baselineselection(left), the Pgof > 0.2 selection

(center) and the final NNoutput > 0.108 selection.
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