

Physik V Beschleuniger

Christian Sander Institut für Experimentalphysik

WS 2014/15

- 1. Einleitung
- 2. Kosmische Höhenstrahlung
- 3. Teilchenbeschleuniger
 - a. Linearbeschleuniger
 - b. Zyklotron
 - c. Synchrotron
- 4. Einschub: Wirkungsquerschnitt und Luminosität
- 5. Wichtige Beschleunigerexperimente
- 6. Zusammenfassung

Quellen:

- J. Haller, Physik V, Uni Hamburg, WS 2012/13
- R. Klanner & W. Scobel, Physik V, Uni Hamburg, WS 2005/06
- U. Uwer, Einführung in die Kern- und Teilchenphysik, Uni Heidelberg, WS 2006/07
- K. Wille, Physik der Teilchenbeschleuniger und Synchrotronstrahlungsquellen, Teubner, 1992
- Bergmann & Schäfer, Lehrbuch der Experimentalphysik Band 4: Bestandteile der Materie, Walter de Gruyter, 2003

Warum hohe Schwerpunktsenergie?

• Heisenberg: $\Delta x \cdot \Delta p \sim \hbar$

höhere Energie/Impuls \rightarrow bessere Ortsauflösung heutige Beschleuniger $\Delta x \sim 10^{-18} \cdots 10^{-19}$ m

• Einstein: $E = mc^2$

höhere Energie/Impuls \rightarrow Produktion schwerer Teilchen, z. B. top-Quark mit $m = 172 \text{ GeV}/c^2$

Kenngrößen von Beschleunigern:

- Strahl- E_{beam} oder Schwerpunktsenergie $E_{\text{CMF}} = \sqrt{s} = \sqrt{4E_AE_B} = 2E$
- Strahlintensität: Luminosität → Reaktionsrate
- Strahlqualität: Impulsschärfe, zeitliche Stabilität, ...
- Projektilart: e, p, HI, kurzlebige Teilchen ("radioactive beams")

Kosmische Höhenstrahlung

Kosmische Höhenstrahlung

KH Quelle hochenergetischer Strahlung entdeckt 1912: V. Hess, NP1936

- Intensität ionisierender Strahlung nimmt mit Höhe zu
- Nachweis durch Entladung von Elektroskop
- primär: ~1000 Teilchen m⁻² s⁻¹

Zusammensetzung der primären Strahlung

Ballon-Experiment von Hess

• 85% Protonen, 12% α , 2% Elektronen, 1% andere Kerne

Photoplatten in großer Höhe → Entdeckung neuer Teilchen

• z. B. 1947: Entdeckung des Pions

Fälschlicherweise interpretiert als "double meson tracks"

heute: $\pi^- = \overline{u}d \rightarrow \mu^- \overline{\nu}_\mu$ $\pi^+ = u\overline{d} \rightarrow \mu^+ \nu_\mu$

Beschleunigung kosm. Teilchen

Niedere Energien: Sonnenwind (Tag)

Hohe Energien: nicht-solarer Ursprung (Tag/Nacht)

- Beschleunigung durch mehrmaliges Streuen geladener Teilchen an nichtrelativistischen Gaswolken (Fermi-Beschleunigung 2. Art):
 - stat. Prozess \rightarrow Beschleunigung (aber ineffektiv; ~ β^2 und $\beta \approx 10^{-4}$)
- Beschleunigung in Schockwellen von Supernova-Überresten (Fermi-Beschleunigung 1. Art):
 - Teilchen können beim mehrmaligen Passieren von Schockwelle (Plasmaschicht mit umgebenden turbulenten *B*-Feldern) effektiv Energie gewinnen (~ β^1)
 - Vorhersage: Spektralindex $\gamma \ge 2$ ($\varphi \sim E^{-\gamma}$)
 - Höchstenergien (~10¹⁶ eV) beschränkt durch typische Lebensdauer der Schockwellen (~10⁵ a)
 - Höchste Energien ~10^{18...19} eV dadurch nicht erklärbar (extra-galaktischen Ursprungs?)

VHI Very High Energetic Cosmic Rays

0 E > 57 EeV

★ Aktive Galaxienkerne → Hinweis auf Korrelation mit UHE CR

Energiespektrum

 $\Phi \propto E^{-2.7}$

"Knie" bei ~1...10 TeV

 Ursache: schwerere Kerne werden dominant

"Knöchel" bei ~2 EeV

 Ursache: extragalaktische Komponente

Greisen-Sazepin-Kusmin (GZK) cutoff

> • Ursache: resonante Streuung mit Mikrowellenhintergrundstrahlung, z. B. $\gamma + p \rightarrow \Delta^+ \rightarrow p + \pi^0$

Teilchenschauer

Reaktion (hadronische Wechselwirkung von Kernen) in der oberen Atmosphäre (~20 km)

Typische Schauerentwicklung (**Zusammensetzung am Boden**):

- Elektomagnetische Komponente: Photonen und Elektronen (~80%+~18%)
- Myonen (~1.7%)
- Hadronen (~0.3%)

Typische "Tiefe" der maximalen Schauerentwicklung ~log *E*

Vergleich mit Kalorimetern in HEP-Experimenten

Nachweis Kosmischer Strahlung

 z. B. mit Piere-Auger Experiment (Argentinien)

10

Teilchenbeschleuniger

Linearbeschleuniger

- Teilchenbeschleuniger nutzen Lorentzkraft $\vec{F} = q \cdot (\vec{v} \times \vec{B} + \vec{E})$
- Energiegewinn $\Delta E = q \int_{\vec{r}_1}^{\vec{r}_2} (\vec{v} \times \vec{B} + \vec{E}) d\vec{r} = q \cdot U$
 - Kein Energiegewinn durch Magnetfeld ($d\vec{r} \parallel \vec{v}$), aber Bahnablenkung und Strahlfokussierung
 - Beschleunigung durch E-Feld
- Statischer Beschleuniger: Braun'sche Röhre (1897)

Energiegewinn eU beschränkt durch Überschlage bei hohen U (~10 MV)

VHI Van-der-Graaff-Beschleuniger (1930)

- - Hohlkugel ist mit Teilchenquelle leitend verbunden
 - Potentialdifferenz bis zu 2 MV (mit Isoliergas: 10 MV)
 - Ströme begrenzt auf 0.1 … 1mA (Ladung muss durch Band nachgeliefert werden)
 - Statischer Beschleuniger
 - Wird auch als Ionenbeschleuniger eingesetzt

Tandembeschleuniger (1936)

- Weiterentwicklung des Van-der-Graaff-Beschleunigers
- "Umladen" der Ionen erlaubt 2-malige Nutzung der Beschleunigerstrecke
- Mehrfach geladene Ionen → Beschleunigung auf bis zu ~1000 MV
- Statische Beschleuniger sind immer durch Spannungsüberschläge limitiert

Stripperfolie

Prinzip: mehrfache Nutzung der Beschleunigungsspannung (Ising, 1925) Erste Realisierung: Wiederöe, 1928

- Driftröhren abwechselnd mit HF-Quelle verbunden; typ. Frequenz $f_{HF} \sim 10 \text{ MHz}$
- Wechselspannung $U_{HF}(t) = U_0 \sin (2\pi f_{HF} t)$; typ. Spannung $U_0 \sim 10-300 \text{ kV}$
- Beschleunigung zwischen Driftröhren; wenn innerhalb der Röhren → Umpolen
- Energiegewinn nach *i*-ter Röhre: $E_i \sim i \ e \ U_0 \sin \phi_s$; optimal für $\phi_s = \pi/2$
- Prinzipiell können beliebig hohe Energien erreicht werden (keine Überschläge)
- Beachte: Driftröhren müssen mit zunehmender Energie länger werden (Flugzeit durch Röhre muss T/2 sein)
 Ionenquelle
 Driftröhren

HF-Linearbeschleuniger

Problem: Instabilität von $U_0 \rightarrow$ Phasenschlupf von Bewegung und HF-Spannung (Verlust der Synchronität)

Е

synchron

 $\beta < 1$

Lösung: Phasenfokussierung

 Prinzip: Arbeitspunkt nicht bei φ_s = π/2 sondern früher → effektive Beschleunigungsspannung U_s < U₀

- Andere Teilchen werden auf Sollbahn zurück gedrängt:
 - Teilchen mit zu viel Energie trifft früher ein und sieht kleinere Spannung
 - Teilchen mit zu wenig Energie trifft später ein und sieht größere Spannung
 - → Teilchen führen Schwingungen um Sollphase ϕ_s aus
 - → Kein kontinuierlicher Teilchenstrahl, sondern Pakete ("Bunches")

Wanderwellenbeschleuniger

Driftröhren-HF-Beschleuniger begrenzt durch Länge der Driftröhren (z. B. bei $f_{HF} = 10 \text{ MHz}$ und $v = c \rightarrow l_i \sim 15 \text{ m}$)

Heute: Ausnutzen der Ausbreitung von em-Wellen in Hohl-/Wellenleitern

- Longitudinale Wellen möglich: E-Feld parallel (!) zur Ausbreitungsrichtung
- Viele mögliche Moden: hier wichtig TM₀₁ (*B*-Feld transversal, *E*-Feld longitudinal)

Einfachste Realisierung: metallische Dose

- Einkopplung der Welle mit Induktionsschleife oder "Klystron" (typisch: f_{HF} ~ 500 MHz)
- Problem: im Hohlleiter: v_{phase} > c! Teilchen mit c: erst beschleunigt, dann abgebremst
- Lösung durch Runzelröhre
 - Irisblenden verringern Phasengeschwindigkeit
 - Abstand wird an Geschwindigkeit angepasst
 - Teilchen können auf Wellenberg reiten (→ Wanderwellenbeschleuniger)

Hohlraumresonatoren (Cavities)

Wellenleiter ``leitend abgeschlossen" → Reflexion → Erzeugung von stehenden Wellen bei bestimmten Resonanzfrequenzen

- Fast alle moderne Kavitäten folgen diesem Prinzip
 - LHC: 5 MV/m, 400 MHz (Supraleitung zur Verringerung der Verluste)
 - International Linear Collider (ILC): 1.3 GHz
- Erreichbare Strahlenergien bei Linearbeschleunigern

Beschleuniger	Länge	Feldgradient	Strahlenergie	
SLC (bis 1997) 3 km		~15 MV/m	45 GeV	
ILC (geplant)	2 × 16.5 km	bis 40 MV/m	$2 \times 500 \text{ GeV}$	

Linearbeschleuniger: Energie-Erhöhung immer durch Verlängerung möglich, aber sehr teuer und geogr. nicht realisierbar

Zyklotron (1930 / 32)

Kreisbeschleuniger: Mehrfache Nutzung von Cavitäten

Erster Kreisbeschleuniger: Zyklotron von Lawrence & Livingston

- Zwei U-förmige Vakuumkammern ("DEEs") in senkr. B-Feld
- HF-Spannung zwischen DEEs beschleunigt Ionen aus zentraler Quelle
- Ionen beschreiben Halbkreis $\frac{mv^2}{r} = qvB \rightarrow r = \frac{mv}{qB}$
- Zeit für halben Umlauf unabhängig von r

$$\frac{T}{2} = \frac{\pi r}{v} = \frac{\pi m}{qB}$$

- HF kann so gewählt werden, dass Teilchen zwischen DEEs beschleunigt werden \rightarrow "Zyklotronfrequenz" f_{HF} $2\pi f_{\text{HF}} = \omega_{\text{HF}} = \frac{q}{m} \cdot B$
- Spiralbahn nach außen; maximale Energie begrenzt durch Größe / Radius

$$E_{\max} = \frac{mv^2}{2} = \frac{q^2}{2m} \cdot (R \cdot B)^2$$

UH Zyklotron

Klassisches Zyklotron:

- Festes *B*-Feld
- Feste HF-Frequenz
- Umlauffrequenz konstant für nicht-relativistische Teilchen
- Beschleunigung von p, d, α auf maximal ~22 MeV / e
- Hohe Energien: $m' = \gamma m$

Synchro-Zyklotron:

- HF-Frequenz wird während der Beschleunigung synchron heruntergefahren → höhere Energien
- Nur kurze Strahlpulse möglich

Lawrence (1937) in Brookhaven

CERN's erster Beschleuniger: Synchro-Zyklotron mit 600 MeV (1957)

Synchrotron (1945)

- Für relativistische Teilchen im *B*-Feld gilt: $r = \frac{mv^2 \cdot c^2}{evB \cdot c^2} = \frac{vE}{eBc^2} = \frac{eE}{eBc^2}$
- Stärke der Magnetfelder technisch begrenzt (~ T)
 → Radius wächst linear mit Energie
- Außerdem: Magnete die gesamte Fläche abdecken sind nicht ideal

Idee des Synchrotron: Dipol-Magnete nur in engem Bereich um Teilchen-Sollbahn

- Beachte: f
 ür konst. Radius muss man das *B*-Feld "synchron" mit *E* hochfahren ("Ramp")
- Komponenten des Synchrotron: Dipole, Beschleunigungsstrecke(n), Fokussiermagnete (notwendig, weil Teilchen sehr oft umlaufen)

- Technische Herausforderung: B-Feld, das bei B = 0 beginnt und dann linear hochgefahren wird → Synchrotrone können nicht von E = 0 an beschleunigen → Vorbeschleuniger notwendig
 - Einspeisung in Umlaufbahn durch "Kicker"-Magnet
 - wenn E_{ini} noch nicht relativistisch (d. h. v_{ini} < c), dann muss auch die HF nachgefahren werden, bis Teilchen hochrelativistisch sind

 /
 /
/
Z
n
n

In der Realität dauert das "Hochfahren" länger, da auf die Strahlqualität geachtet werden muss

Speicherring

Große Ähnlichkeit zu Synchrotron, aber Speicherung des Strahls bei fester Energie

- Nach "Ramp": konstantes B-Feld
- Speichern über mehrere Stunden \rightarrow Hochvakuum (10⁻⁷ pa)
- Collider → Gegenläufige Strahlen (bei z. B. e⁺e⁻ in gleicher Röhre)

Typischer Betrieb:

- Erst "Ramp" → Synchrotron
- Dann Speicherring
- Evtl. Beschleunigung zum Ausgleich von *E*-Verlusten durch z. B. Synchrotronstrahlung (siehe später)

Fokussierung um Reaktionsrate zu erhöhen

Synchrotronstrahlung

Beschleunigte Ladungen sind Quellen von em-Strahlung Teilchen auf Kreisbahn, z. B. Speicherring

- Im Ruhesystem der Teilchen: Zentrifugalkraft → Dipolstrahlung
- LT ins Laborsystem → "Verzerrung" zu Strahlkegel in Bewegungsrichtung
- Abgestrahlte Leistung (E-Dynamik): $P = \frac{2\alpha}{3R^2}\beta^4\gamma^4 = \frac{2\alpha}{3R^2}\left(\frac{E}{m}\right)^4$
- ΔE pro Umlauf (für e⁻): $\Delta E = \frac{2\pi R}{c}P = \frac{4\pi\alpha}{3cR} \left(\frac{E}{m_e}\right)^4 = 8,85 \cdot 10^{-5} \frac{E^4 [\text{GeV}^4]}{R[\text{km}]} \text{MeV}$

z. B. bei LEP (E = 104 GeV, R = 4.3 km) $\rightarrow \Delta E = 2.4 \text{ GeV}$

Stochastische Kühlung

Anti-Teilchen werden typisch in "Fixed-Target"-Kollisionen erzeugt → starke Streuung der Impulse

- Pakete nehmen ein großes Volumen VPR im Phasenraum ein
- Satz von Liouville: VPR bei Wirkung von konservativen Kräften ist konstant

Prinzip der stochastischen Kühlung: van der Meere (1968, NP 1984)

- "Pick-Up"-Detektor misst die Position einzelner Teilchen
- "Kicker"-Magnet korrigiert die Bahn einzelner Teilchen auf die Sollbahn (1. Ordnung)
 → Kühlung
- Korrektur durch nicht konservative Kraft
- Kicker-Impulse andere Teilchen heben sich im Mittel auf (Korrekturen 2. Ordnung → heizen den Strahl auf)
- Geschickte Wahl der Impulsstärke: Kühlung überwiegt die Erhitzung
- Typische Dauer des Kühlung: Sekunden bis Minuten

Einschub: Wirkungsquerschnitt und Luminosität

Wirkungsquerschnitt

• Die Rate an Ereignissen eines bestimmten Prozesses dN/dt ist proportional zum Wirkungsquerschnitt σ

$$rac{dN}{dt} \propto \sigma$$

- Wirkungsquerschnitte enthalten die Informationen über die fundamentale Physik des betrachteten Prozesses (Stärke der Wechselwirkung, Kinematik, Dynamik …)
- Die Berechnung von Wirkungsquerschnitten ist störungstheoretisch möglich (siehe später: Feynman-Diagramme und Feynman-Regeln)
- Anschaulich entspricht der Wirkungsquerschnitt der effektiven Querschnittsfläche bei einem bestimmten Streuprozess
- Einheit 1 barn (eine "Scheune") = 10^{-24} cm²

 Weiterer Proportionalitätsfaktor: Luminosität L ("Leuchtkraft") des Experiments

$$\frac{dN}{dt} = L \cdot \sigma$$

- Einheit [cm⁻² s⁻¹]
- Typische Beschleuniger: 10³⁰ … 10³⁴ cm⁻² s⁻¹
- Für Speicherring:

$$L = N_b \cdot f \cdot \frac{n_1 n_2}{4\pi \sigma_x \sigma_y} \leftarrow$$
Querschnittsfläche der Strahlpakete

- *n*₁ / *n*₂: Teilchen in kollidierenden Paketen
- N_b: Anzahl der Umlaufenden Pakete
- *f*: Umlauffrequenz
- σ_x / σ_y : Ausdehnung der Teilchenbündel in *x* und *y*-Richtung

Integrierte Luminosität

- Luminosität L wird oft auch "instantane" Luminosität genannt
- Wichtig für eine längere Laufzeit ist die "integrierte" Luminosität

$$L_{\rm int} = \int L dt$$

• Mit Lint erhält man die erwartete Anzahl von Ereignissen

$$N = \sigma \cdot L_{\rm int}$$

- Einheit [pb⁻¹], [fb⁻¹], [ab⁻¹]
- Um rel. statistischen Fehler zu reduzieren → hohe L_{int}

$$\frac{\Delta\sigma}{\sigma} = \frac{\Delta N}{N} = \frac{\sqrt{N}}{N} = \frac{1}{\sqrt{N}}$$

 Ziel: Hohe Luminosität und lange Datennahme

Strahlparameter

- Hohe Luminositäten und lange Laufzeiten werden durch eine gute Strahlqualität und gutes Vakuum erreicht
- Luminosität: $L = N_b \cdot f \cdot \frac{n_1 n_2}{4\pi \sigma_x \sigma_y} = N_b \cdot f \cdot \frac{n_1 n_2}{4\epsilon \beta^*}$

mit Emittanz *ɛ* (Maß für Phasenraumvolumen)

- norm. Emittanz $\varepsilon_n = \varepsilon_{\gamma}$ ist Erhaltungsgröße wenn nur beschleunigt wird (Liouville)
- ε ist limitiert durch Injektor und Vorbeschleunigung

und ^{3*} (Maß für die Fokussierung am Wechselwirkungspunkt: Abstand vom IP bei dem Strahl die doppelte Breite hat)

$$\beta^* = \frac{\pi \sigma^2}{\epsilon}$$

- Parameter sind nicht unabhängig voneinander!
- Strahl nimmt an Intensität ab durch Teilchenkollisionen und Wechselwirkungen mit Gas → typische Lebensdauern ~40h

Wichtige Beschleunigerexperimente (Auswahl)

- e⁺e⁻ Speicherring
- √s = 90 ... 208 GeV
- Laufzeit:1992 bis 2000
- Nur eine Strahlröhre
- Vorbeschleuniger u. a. SPS
- Limitiert durch Beschleunigungsleistung zur Kompensation der Synchrotron-Strahlung (P_{RF} ~30 MW)
- Vier Experimente (ALEPH, OPAL, DELPHI, L3)
- Physik-Ziel: Präzisionsmessungen der elektroschwachen Wechselwirkung; Higgs-Suchen, Suchen nach Neuer Physik …
- LEP-Tunnel dient heute als LHC-Tunnel

SLAC - Linear Collider

• Ein Detektor: SLAC Large Detector

KEKB/PEP-II

- e⁺e⁻ Speicherring
- √s = 10.6 GeV
 - ≈ Y(4s)-Resonanz (aber auch andere Resonanzen)
 - Ziel: Produktion und Untersuchung von B-Hadronen
- PEP-II (SLAC)
 - 1999 bis 2008
 - 9.0 GeV (e⁻) und 3.1 GeV (e⁺)
 → Asymmetrischer Detektor (BaBar)
- KEKB (Japan)
 - 1998 bis 2009
 - 8.0 GeV (e⁻) und 3.5 GeV (e⁺)
 → Asymmetrischer Detektor (BELLE)
- Beide Beschleuniger und Detektoren werden derzeit für noch höher Luminositäten optimiert

DESY

- e[±]p Speicherringe (2 Strahlröhren)
- √s = 314 GeV
 - 27 GeV (e^{\pm}) und 900 GeV (p)
 - Supraleitende Dipol-Magneten im *p*-Ring (*B*-Feld der Dipole limitiert die Protonenengie)
 - Physik-Ziele: Messung der Strukturfunktion des Protons; tief-inelastische Streuung; Suche nach Neuer Physik
 - Laufzeit: 1991 bis 2007
- 4 Detektoren:
 - H1
 - ZEUS
 - (HERMES)
 - (HERA-B)
- Vorbeschleuniger: u. a. PETRA

- *pp*-Speicherring
- √s bis zu 1.96 TeV (512 980 GeV Strahlenergie im Laufe der Jahre)
- Datennahme: 1983 bis 2011
- Vorbeschleuniger: "Recycler" mit ~150 GeV
- Physik-Ziele:
 - Top-Quark (Entdeckung 1995)
 - Higgs-Suchen
 - Suche nach Neuer Physik
- 2 Detektoren: CDF und DZERO

‡ Fermilab

Large Hadron Collider

pp-Speicherring; $\sqrt{s} = 14$ TeV (Design)

2010 & 2011: √s = 14 TeV; 2012: √s = 8 TeV; Laufzeit bei 13/14 TeV bis ~2035

Vier große Experimente: ATLAS, CMS, LHCb und ALICE

Überblick: Beschleuniger

	Energie [GeV]	√s [GeV]	Datennahme	L [10	L	Laboratory
LEP	e-e+: bis 104 × 104	bis 208	1992 bis 2000	~100	~160 (4 Exp.)	CERN
SLAC	e-e+: 45 × 45	~91	1992 bis 1998	~30	~20	SLAC
PEP II	e-e+: 9.0 × 3.1	~10.6	1999 bis 2008	~12000	~450000	SLAC
KEK-B	e-e+: 8.0 × 3.5	~10.6	1998 bis 2009	~17000	~1040000	KEK
HERA	ep: 27 × 900	~320	1991 bis 2007	~50	~600 (2-4 Exp.)	DESY
Tevatron	p-anti-p: 980 × 980	~1960	1983 bis 2011	~200	~10000 (2 Exp.)	Fermilab
LHC	pp: 3500 × 3500 4000 × 4000 6500 × 6500	~7000 ~8000 ~13000	2010 bis 2011 2012 ab 2015	~5000 ~8000 ~20000	10000 (2-4 Exp.) 40000 (2-4 Exp.) —	CERN
ILC	e-e+: 500 × 500	1000	2026 (?)	~20000	—	?

Jenseits des LHC - CLIC

Compact Linear Collider Study

- e⁺e⁻ Linearbeschleuniger
- neuartiges Beschleuniger-Konzept
- Limitierung von supraleitenden Kavitäten: 60 MV/m
- Kavitäten bei Raumtemperatur erlauben höhere Gradient (obwohl weniger Leistungseffizient)
- Keine konventionelle RF-Quelle (12 GHz) kann Leistung für CLIC bereitstellen
- Hochstrom-Niederenergie "Drivebeam" (DB)
- DB arbeitet als RF-Quelle um Niederstrom-Hochenergie Hauptstrahl zu beschleunigen
 → "Energietransformator"
- Hauptstrahl bis 1.5 TeV → √s = 3 TeV (~50 km)
- Zeitskala: nicht vor 2035 (???)

LEP3, DLEP, TLEP

LEP3:

- Motiviert durch m_h = 126 GeV → e⁺e⁻ Collider im LHC-Tunnel
- Assoziierte Higgs-Produktion: Z + h

DLEP (double LEP):

- Neuer Tunnel mit doppeltem LHC-Radius
- geringere Synchrotron-Verluste

TLEP (triple LEP):

- Neuer Tunnel mit dreifachem LHC-Radius
- noch geringere Synchrotron-Verluste
- √s bis 350 GeV (Top-Anti-Top-Schwelle)

Vorteil Ring- vs. Linearbeschleunigers:

- Mehrere Wechselwirkungs-Punkte
- Höhere L_{int} wegen Wiederverwendung der Strahlen
- Tunnel könnte ~100 TeV pp-Beschleuniger Platz bieten
- Zeitskala: nicht vor 2035 (???)

	LEP2	LEP3	DLEP	TLEP
√s [GeV]	209	240	240	350
Circumference [km]	26.7	26.7	53.4	80
Beam current [mA]	4	7.2	14.4	5.4
#Buches/beam	4	4	60	12
#e/beam [10	2.3	4.0	16.0	9.0
SR power/beam [MW]	11	50	50	50
Inst. Lumi [10	1.25	107	144	65
#Interaction Points	4	2	2	2

Zusammenfassung

Zusammenfassung

Kosmische Höhenstrahlung

- Entdeckt von V. Hess (1912)
- Direkte und indirekte Messung des Spektrums
 - Starker Abfall bis hin $zu E = 10^{20} eV$
 - Knie, Knöchel, GRZ-Cutoff

Beschleunigung geladener Teilchen mit E-Feldern

- Elektrostatische Beschleuniger (Van-de-Graaff, Tandem)
 - Begrenzt durch Spannungs-Überschläge
- HF-Wechselspannung in Driftröhren
 - Mehrmalige Nutzung der Spannung U
- Höchste Energien durch longitudinale *E*-Felder in Wellenleitern
 - Stehende Wellen in Hohlraumresonatoren, Kavitäten

Kreisbeschleuniger nutzen Beschleunigungsstrecke mehrmals

- Zyklotron: festes B-Feld, Umlaufzeit unabhängig von Radius, Zyklotronfrequenz für nicht-rel. Teilchen.
- Synchrotron: B-Feld nur auf Soll-Umlaufbahn (z. B. Vakuumröhre), synchrones Hochfahren des B-Feldes mit der Energie nötig
- Speicherringe: Synchrotrone, die Teilchen bei konstanter Energie über Stunden speichern.
 - Beispiele: LEP, Tevatron, HERA, LHC (läuft gerade)

