Hadron Calorimeters

Hadronic Showers

- Extra complication: *The strong interaction* with detector material
- Importance of calorimetric measurement
 - Charged hadrons: complementary to track measurement
 - Neutral hadrons: the only way to measure their energy
- In nuclear collisions numbers of secondary particles are produced
 - Partially undergo secondary, tertiary *nuclear reactions* → formation of hadronic cascade
 - Electromagnetically decaying particles (π , η) initiate EM showers
 - Part of the energy is absorbed as nuclear binding energy or target recoil (*Invisible energy*)
- Similar to EM showers, but much more complex
 - → need simulation tools (MC)
- Different scale: hadronic interaction length

Hadronic Interactions

- Multiplicity scales with E and particle type
- ~ 1/3 π⁰ → γγ produced in charge exchange processes: $\pi^+p \rightarrow \pi^0n$ / $\pi^-n \rightarrow \pi^0p$
- Leading particle effect: depends on incident hadron type e.g fewer π^0 from protons, barion number conservation

Hadronic Interactions

2nd stage: spallation

Intra-nuclear cascade

Fast hadron traversing the nucleus frees protons and neutrons in number proportional to their numerical presence in the nucleus.

Some of these n and p can escape the nucleus

For $^{208}_{82}$ Pb ~1.5 more cascade n than p

dominating momentum component along incoming particle direction

- The nucleons involved in the cascade transfer energy to the nucleus which is left in an excited state
- 3^d stage: Nuclear de-excitation
 - Evaporation of soft (~10 MeV) nucleons and α
 - + fission for some materials

The number of nucleons released depends on the binding E (7.9 MeV in Pb, 8.8 MeV in Fe)

Mainly neutrons released by evaporation \rightarrow protons are trapped by the Coulomb barrier (12 MeV in Pb, only 5 MeV in Fe)

Hadronic Showers

Shower development:

- 1. p + Nucleus \rightarrow Pions + N^{*} + ...
- 2. Secondary particles ...

undergo further inelastic collisions until they fall below pion production threshold

3. Sequential decays ...

 $\pi_0 \rightarrow \gamma\gamma$: yields electromagnetic shower Fission fragments $\rightarrow \beta$ -decay, γ -decay Neutron capture \rightarrow fission Spallation ...

Typical transverse momentum: pt ~ 350 MeV/c

Substantial	Cascade energy distribution: [Example: 5 GeV proton in lead-scintillator calorimeter]	
electromagnetic fraction \dots $f_{em} \sim \ln E$ [variations significant]	lonization energy of charged particles (p,π,μ) Electromagnetic shower (π ⁰ ,η ⁰ ,e) Neutrons Photons from nuclear de-excitation Non-detectable energy (nuclear binding, neutrinos)	1980 MeV [40%] 760 MeV [15%] 520 MeV [10%] 310 MeV [6%] 1430 MeV [29%]
		5000 MeV

Hadronic vs Electromagnetic Showers

Hadronic vs. electromagnetic interaction length:

$$\begin{array}{c} X_0 \sim \frac{A}{Z^2} \\ \lambda_{\rm int} \sim A^{1/3} \end{array} \end{array} \longrightarrow \begin{array}{c} \lambda_{\rm int} \\ \overline{X_0} \sim A^{4/3} \end{array}$$

 $\lambda_{\mathrm{int}} \gg X_0$ [$\lambda_{\mathrm{int}}/X_0 > 30$ possible; see below]

Typical Longitudinal size: $6 \dots 9 \lambda_{int}$ [95% containment] Typical Transverse size: one λ_{int} [95% containment]

[EM: 15-20 X₀]

[EM: 2 R_M; compact]

Hadronic calorimeter need more depth than electromagnetic calorimeter ...

Some numerical values for materials typical used in hadron calorimeters

	λ _{int} [cm]	X ₀ [cm]
Szint.	79.4	42.2
LAr	83.7	14.0
Fe	16.8	1.76
Pb	17.1	0.56
U	10.5	0.32
Q	38.1	18.8

Material Dependence

 $\lambda_{\rm int}~({
m g~cm^{-2}}) \propto {
m A}^{1/3}$

Hadron showers are much longer than EM ones – how much, depends on Z

Longitudinal Shower Development

Electromagnetic Fraction

Electromagnetic \rightarrow ionization, excitation (e±)

 \rightarrow photo effect, scattering (γ)

Hadronic

- \rightarrow ionization (π ±, p)
- \rightarrow invisible energy (binding, recoil)

Electromagnetic Fraction

The origin of the non-compensation problems

Charge conversion of $\pi^{+/-}$ produces electromagnetic component of hadronic shower (π^0) e = response to the EM shower component

h = response to the non-EM component

Response to a pion initiated shower:

$$\pi = f_{em}e + (1 - f_{em})h$$

Comparing pion and electron showers:

$$\frac{e}{\pi} = \frac{e}{f_{em}e + (1-f_{em})h} = \frac{e}{h} \cdot \frac{1}{1 + f_{em}(e/h-1)}$$

Calorimeters can be:

- Overcompensating e/h < 1
- Undercompensating e/h > 1
- Compensating e/h = 1

e/h and e/π

e/h: not directly measurable \rightarrow give the degree of non-compensation e/ π : ratio of response between electron-induced and pion-induced shower

$$\frac{e}{\pi} = \frac{e}{f_{em}e + (1-f_{em})h} = \frac{e}{h}\frac{1}{1 + f_{em}(\underline{e/h}-1)}$$

e/h is energy independent e/π depends on E via $f_{em}(E) \rightarrow$ non-linearity

 $f_{em}(E)$ approximately follows a power law:

$$f_{\rm em} \approx 1 - \left(1 - \frac{1}{3}\right)^n \approx 1 - \left(\frac{E}{E_0}\right)^{k-1}$$

Approaches to achieve compensation: $e/h \rightarrow 1$ right choice of materials or $f_{em} \rightarrow 1$ (high energy limit)

Hadronic Response

- Energy deposition mechanisms relevant for the absorption of the non-EM shower energy:
- Ionization by charged pions f_{rel} (Relativistic shower component).
- spallation protons f_p (non-relativistic shower component).
- Kinetic energy carried by evaporation neutrons f_n

1_{nv}

• The energy used to release protons and neutrons from calorimeter nuclei, and the kinetic energy carried by recoil nuclei do not lead to a calorimeter signal. This is the invisible fraction f_{inv} of the non-em shower energy

The total hadron response can be expressed as:

$$h = f_{rel} \cdot rel + f_p \cdot p + f_n \cdot n + f_{inv} \cdot rel + f_p + f_n + f_{inv} = 1$$

Normalizing to mip:

$$\frac{e}{h} = \frac{e/mip}{f_{rel} \cdot rel/mip + f_p \cdot p/mip + f_n \cdot n/mip}$$

The e/h value can be determined once we know the calorimeter response to the three components of the non-em shower

Hadronic Shower Energy Fractions

Fluctuations

- Same types of fluctuations as in EM showers, plus:
- 1) Fluctuations in visible energy (ultimate limit of hadronic energy resolution)
- 2) Fluctuations in the EM shower fraction, f_{em}
 - Dominating effect in most hadron calorimeters (e/h >1)
 - Fluctuations are asymmetric in pion showers (one-way street)
 - Differences between p, π induced showers No leading π^0 in proton showers (barion # conservation)

$$E_{p} = f_{em}e + (1 - f_{em})h$$

$$h = f_{rel} \cdot rel + f_{p} \cdot p + f_{n} \cdot n + f_{inv} \cdot inv$$

Sampling Fluctuations

FIG. 4.15. The energy resolution and the contribution from sampling fluctuations to this resolution measured for electrons and hadrons, in a calorimeter consisting of 1.5 mm thick iron plates separated by 2 mm gaps filled with liquid argon. From [Fab 77].

A Typical Calorimetric System

Typical Calorimeter: two components ...

Schematic of a typical HEP calorimeter

The CMS and ATLAS Calorimeters

5 cm brass / 3.7 cm scint. Embedded fibres, HPD readout

CMS

14 mm iron / 3 mm scint. sci. fibres, read out by phototubes

ATLAS

The CMS and ATLAS Calorimeters

ATLAS LAR + Tile for pions: $\frac{\sigma(E)}{E} = \frac{42\%}{\sqrt{E}} \oplus 2\%$