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Tracking and Vertex Reconstruction 
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Fixed Target Experiments
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Magnets for 4π Detectors
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The CMS Tracker

• 10 barrel layers
• 9+3 endcap layers (next slide)
• radius 1.1 m, length 5.8 m
• 200 m2 active silicon (largest 

silicon tracker ever built)
• acceptance up to |η|<2.5
• 500 people, 15 years design 

development and construction

strip module in CMS
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The CMS Tracker

endcap (TEC) 
“petal”

front back
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The Helix Equation

An Introduction to Charged Particles Tracking – Francesco Ragusa 10

The Helix Equation
The helix is described in parametric form

λ is the dip angle
h =±1 is the sense of rotation on the helix
The projection on th x-y plane is a circle

xo and yo the coordinates at s = 0

Φo is also related to the slope of the 
tangent to the circle at s = 0
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Uncertainty on Momentum Measurement

An Introduction to Charged Particles Tracking – Francesco Ragusa 20

Momentum Measurement: Sagitta

To introduce the problem of momentum

measurement let’s go back to the sagitta

a particle moving in a plane perpendicular 
to a uniform magnetic field B

the trajectory of the particle is an arc of 
radius R of length L

assume we have 3 measurements: y1, y2, y3

the error on the radius is related to the 

sagitta error by

important features

the percentage error on the momentum 

is proportional to the momentum itself

the error on the momentum is inverse-
ly proportional to B

the error on the momentum is inverse-
ly proportional to 1/L2

the error on the momentum is propor-

tional to coordinate measurement error
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Momentum Resolution

An Introduction to Charged Particles Tracking – Francesco Ragusa 25

Momentum Resolution
We stress again that a good momentum 
resolution call for a long track

any trick that can extend the track length
can produce significant improvements on  
the momentum resolution
the use of the vertex can also improve
momentum resolution:

the common vertex from which all the 
tracks originate can be fitted
the point found can be added to every 
track to extend the track length at 
Rmin → 0

the position of the beam spot can also be 
used as constraint
Extending Rmax can be very expensive

2 2
1p

p L
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Tracking in a Magnetic Field

An Introduction to Charged Particles Tracking – Francesco Ragusa 21

Tracking In Magnetic Field
The previous example showed the basic 
features of momentum measurement
Let’s now turn to a more complete trea-
tement of the measurement of the char-
ged particle trajectory
We have already seen that for an homo-
geneus magnetic field the trajectory 
projected on a plane perpendicular to the 
magnetic field is a circle

for not too low momenta we can use a 
linear approximation

we are led to the parabolic approximation
of the trajectory

let’s stress that as far as the track pa-
rameters is concerned the dependence is 
linear
The parameters a,b,c are

intercept at the origin
slope at the origin
radius of curvature (momentum)
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The previous example showed the basic 
principle of a track fit.
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Quadratic Fit

An Introduction to Charged Particles Tracking – Francesco Ragusa 22

Quadratic Fit
Assume N detectors measuring the y
coordinate [Gluckstern 63]

The detectors are placed at positions
xo, …, xn, …, xN

A track crossing the detectors

gives the measurements y0, …,yn, …, yN

Each measurement has an error σn

Using the parabola approximation, the track 
parameters are found by minimizing the χ2

However we can use the matrix formalism
developed for the straight line:

let’s recall the solution
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Quadratic Fit

The result is [4: Avery 1991, Blum-

Rolandi 1993 p.204, Gluckstern 63]

The quantities Fij are the determinants

of the 2x2 matrices obtained from the 

3x3 matrix F by removing row i, column j

The covariance matrix

The result can be found in [Blum-Rolandi, 

p. 206]

To get some idea of the covariance 

matrix let’s first compute it by setting 

the origin at the center of the track

with this choice one can “easely” find
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Momentum Resolution
The covariance matrix is 

we are mostly interested on the error on 
the curvature

it can be shown that the error on the 
curvature do not depend on the position of 
the origin along the track

Let’s recall from the discussion on the 
sagitta

also recall that

and finally the momentum error

the formula shows the same basic features
we noticed in the sagitta discussion
we have also found the dependence on the 
number of measurements (weak)
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Momentum Resolution
The covariance matrix is 

we are mostly interested on the error on 
the curvature

it can be shown that the error on the 
curvature do not depend on the position of 
the origin along the track

Let’s recall from the discussion on the 
sagitta

also recall that

and finally the momentum error

the formula shows the same basic features
we noticed in the sagitta discussion
we have also found the dependence on the 
number of measurements (weak)
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We had the momentum resolution: 
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Magnetic Spectrometer Resolution

Momentum measurement 
uncertainty:

Good 
momentum resolution:

- large path length L
- large magnetic field B
- good Sagitta measurement

s

R
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L

Uncertainty σs depends on number and spacing of track point 
measurements; for equal spacing and large N:

see: Glückstern, NIM 24 (1963) 381 or

	 Blum & Rolandi, Particle Detection ...

Multiple scattering
contribution:

16 27. Passage of particles through matter

Eq. (27.14) describes scattering from a single material, while the usual problem
involves the multiple scattering of a particle traversing many different layers and
mixtures. Since it is from a fit to a Molière distribution, it is incorrect to add the
individual θ0 contributions in quadrature; the result is systematically too small. It
is much more accurate to apply Eq. (27.14) once, after finding x and X0 for the
combined scatterer.

Lynch and Dahl have extended this phenomenological approach, fitting
Gaussian distributions to a variable fraction of the Molière distribution for
arbitrary scatterers [35], and achieve accuracies of 2% or better.

x

splane
yplane

Ψplane

θplane

x /2

Figure 27.9: Quantities used to describe multiple Coulomb scattering. The
particle is incident in the plane of the figure.

The nonprojected (space) and projected (plane) angular distributions are given
approximately by [33]
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where θ is the deflection angle. In this approximation, θ2
space ≈ (θ2

plane,x + θ2
plane,y),

where the x and y axes are orthogonal to the direction of motion, and
dΩ ≈ dθplane,x dθplane,y. Deflections into θplane,x and θplane,y are independent and
identically distributed.
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Examples:

Argus:

ATLAS:

σpt/pt = 0.0092 + (0.009 pt)2

σpt/pt = 0.0012 + (0.0005 pt)2

[ATLAS nominal; TDR]

For 
momentum p:
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• classification or pattern recognition problem
• multiple ambiguous hypotheses possible
• supposed to be conservative (discarded hypothesis cannot be 

recovered later) 

Track Finding
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examples for “global“ track finding approaches

•global track fit
★taking into account all possible combinations of hits
★number of possible combinations from thousands of hits is immense, 

track candidates need to be validated → computationally too 
expensive

•conformal mapping:
★circles (tracks) through the origin in a 2D x-y-coordinate system map 

to straight lines in u-v system by the transformation  
 
 
where the circle equation is given by 

★scan along azimuthal angle to find accumulation of hits along the 
straight line (peaks in the histogram indicate tracks)

★works for high-pt tracks passing close to the origin

 13

Track Finding
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Conformal Mapping Example

14.04.2009 Page 7 David Münchow 

Conformal Mapping    

• Real space • Conformal space 

• Angle preserving, not length preserving
• Reference point must be on the circle
• Re-iterate with each hit point as seed
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example for “local“ track finding approaches

•track road:
★ initiated with a set of measurements  

that could come from the same particle 
★ use a model (shape of the trajectory)  

to interpolate between the 
measurements and create a  
“road” around the trajectory

★ measurements inside the  
road boundaries constitute the track 
candidate 

★ subsequent track fit can evaluate the 
correctness

444 15 Data analysis

incident
particle road

track point

mirror hity

x1 x2 x3 x4 x

Fig. 15.3. Track finding with the road method and straight line fit. Due to the
left–right ambiguity of drift chambers, two coordinates per hit are reconstructed:
one being the true track point, the other a mirror hit.

or
η⃗ = y⃗ − ϵ⃗ = X · a⃗ , (15.5)

where a1 is the slope and a2 is the axis intercept. The matrix X contains
the coordinates xi in the first and values 1 in the second column. For
independent measurements the covariance matrix Cy is diagonal:

Cy =

⎛

⎜⎜⎝

σ2
1 0 0 0
0 σ2

2 0 0
0 0 σ2

3 0
0 0 0 σ2

4

⎞

⎟⎟⎠ =: G−1
y . (15.6)

One obtains the values of a⃗ by the least-squares method, minimising

χ2 = ϵ⃗TGyϵ⃗ , (15.7)

which follows a χ2 distribution with 4 − 2 = 2 degrees of freedom:

a⃗ = (XTGyX )−1XTGyy⃗ , (15.8)

and the covariance matrix for a⃗ is given by

Ca = (XTGyX )−1 =: G−1
a . (15.9)

As shown in Fig. 15.3, several track candidates may be fitted to the data
points, because of hit ambiguities. To resolve these, the χ2 can be trans-
lated into a confidence limit for the hypothesis of a straight line to be true

Track Finding
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six iterations:
• propagate seed outwards and search  

for new hits
• unambiguously assigned hits are  

removed from the list
• filter track collection to remove  

fakes or bad tracks
• repeat with remaining hits

differences in seeding:
• first two iterations: pixel pairs or pixel 

triplets,  pt>0.9GeV
• third iteration: pixel triplets, low momentum 

tracks
• fourth iteration: pixel + strip layers as seeds 

(find displaced tracks)
• fifth, sixth iterations: strip pairs (for tracks 

lacking pixel hits)

Iterative Tracking in CMS
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two main steps:
•vertex finding 
•vertex fitting

similar problem of “classification”  
or pattern recognition
•find points in space where tracks originate  
(and associated uncertainties)

•example: proton collisions,  
decays of long-lived particles

Vertex Finding
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• need to identify all proton-proton interactions from one bunch crossing
• identify points along the beam line where tracks are intersecting 
• simplest algorithm: cluster finding

Vertex Finding
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•a helix is fully defined with 5 
parameters. In CMS the parameters 
are chosen for practical reasons as:
‣ transverse momentum: pt
‣azimuthal angle: ϕ
‣polar angle: cotθ = tanλ
‣ transverse impact parameter at the 
point of closest approach to PV: d0
‣ longitudinal impact parameter: z0

Track Reconstruction Performance


