Tracking and Vertex Reconstruction

The determination of the momentum of charged particles can be performed by
measuring the bending of a particle trajectory (track) in a magnetic field
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Fixed Target Experiments

Momentum determination
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Magnets for 41T Detectors

Solenoid Toroid
+ Large homogeneous field inside + Field always perpendicular to p
- Weak opposite field in return yoke + Rel. large fields over large volume
- Size limited by cost + Rel. low material budget
- Relatively large material budget - Non-uniform field

- Complex structural design

Examp'les: Example:
*Delphi: SC,1.2T,52m,L74m *ATLAS: Barrel air toroid, SC, ~1 T, 9.4
L3:NC,05T,11.9m,L11.9m m, L24.3 m

‘CMS: SC,4T,59m,L125m
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The CMS Tracker

* |0 barrel layers

e 9+3 endcap layers (next slide)

e radius I.l m,length 5.8 m

e 200 m? active silicon (largest
silicon tracker ever built)

® acceptance up to |N|<2.5

* 500 people, 15 years design
development and construction

strip module in CMS

——

Roman Kogler Instrumentation and Analysis Methods SS 2017 4



The CMS Tracker
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The Helix Equation

_p, (GeV)

0.3B(T")

The helix is described in parametric form
Rom> =
rs) =z, + R COS(CI)O + hsigs)\) — COS(I)()]
ys) =1y, + R sin(CIDO + hS(;;S)\) — sin®,

2(8) = 2z, + ssin A

A is the dip angle
h =41 is the sense of rotation on the helix

The projection on th z-y plane is a circle

v

(z —x, + Rcos®, > + (y — y, + Rsin®, )*> = R?

x, and y, the coordinates at s =0 Rsin®, \ | Reos ®,

& is also related to the slope of the
tangent to the circle at s =10
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Uncertainty on Momentum Measurement

To introduce the problem of momentum
measurement let's go back to the sagitta

a particle moving in a plane perpendicular
to a uniform magnetic field B

g oy _ ol
~ 0.3B p R

the trajectory of the particle is an arc of
radius R of length L

L s = R(1—cosa)
200 = —
R Ra2 I?
PN TSR
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Momentum Resolution

We stress again that a good momentum
resolution call for a long track

any trick that can extend the track length
can produce significant improvements on
the momentum resolution

the use of the vertex can also improve
momentum resolution:

the common vertex from which all the
tracks originate can be fitted

the point found can be added to every

track to extend the track length at
R_. —0

the position of the beam spot can also be
used as constraint

Extending R___ can be very expensive
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The previous example showed the basic for not too low momenta we can use a

principle of a track fit. linear approximation
Let's now turn tfo a more complete trea- y =1, + \/ R? — (z — =z, )2 -
tement of the measurement of the char- 5 R?> >> (z-z,)
ged particle trajectory — Rl1— (2 —,)

Y=Y T 2
We have already seen that for an homo- 2R

geneus magnetic field the trajectory B T2 x, 9
projected on a plane perpendicular to the y=|¥% +L1- R - 7 :
magnetic field is a circle

we are led to the parabolic approximation

(y—vy, ) +(z—1z,)?° = R of the trajectory
b:@ y = a+ br + cz’
dx =0

let's stress that as far as the track pa-
rameters is concerned the dependence is
linear

The parameters a,b,c are

intercept at the origin
slope at the origin
radius of curvature (momentum)




Quadratic Fit

Assume N detectors measuring the y
coordinate [Gluckstern 63]

A The result is [4: Avery 1991, Blum-
/3/"/ Rolandi 1993 p.204, Gluckstern 63]
/a/c a4 — ZynGn b — ZynGn c = ZynGn
—_ Y - = — —2
/E i i i i ZG’I”L anGn anGn
Nvo| || |Yn
> and finally the momentum error
Lo L, xN
0
The detectors are placed at positions ]23 =3 3; 2 NEIGY
b SO S P :
A track crossing the detectors the formula shows the same basic features

. th R we noticed in the sagitta discussion
ives the measurements y,, ..,Y,, -,
9 Yoo e¥n N we have also found the dependence on the

Each measurement has an error o, number of measurements (weak)

Using the parabola approximation, the track

parameters are found by minimizing the y?2 O — 180N
N
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Tracking resolution and multiple scattering

2
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Track Finding

1k
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* classification or pattern recognition problem
* multiple ambiguous hypotheses possible

e supposed to be conservative (discarded hypothesis cannot be
recovered later)
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examples for “global™ track finding approaches

*global track fit
Y% taking into account all possible combinations of hits
Y number of possible combinations from thousands of hits is immense,
track candidates need to be validated = computationally too
expensive

econformal mapping:

Y circles (tracks) through the origin in a 2D x-y-coordinate system map

to straight lines in u-v system by the transformation
T Y

U = m UV = m
where the circle equation is given by (z —a)® + (y — b)? = 72 = a® + 1?

Y% scan along azimuthal angle to find accumulation of hits along the
straight line (peaks in the histogram indicate tracks)

% works for high-pt tracks passing close to the origin



- Real space - Conformal space

Real Space Conformal Space
X [em][ x‘O.G_
40 -
30 D.4-
201 I
- 0.2
10 I :
:_ ........................... | \h" ‘
oF | ~Ve
: o A
10— i _ )
-205— -0.2—
-301 I
- 0.4
-40__Il|I|Il|I‘ll|I‘llllllllllllllllllllll _IIIIIIIIIIII|IIIIIIIII|IIII|IIIIIIIIIIIIIIIII
30 -20 -10 0 10 20 30 40 -04 -03 -02 014 O 01 02 03 04
y [cm] V'

* Angle preserving, not length preserving
* Reference point must be on the circle
* Re-iterate with each hit point as seed




example for “local” track finding approaches

etrack road:

* initiated with a set of measurements
that could come from the same particle ]
* use a model (shape of the trajectory) ;
to interpolate between the }
measurements and create a - T,

“road” around the trajectory i
* measurements inside the yI
road boundaries constitute the track

incident
particle

e T T

track point

udl
[ 1 _eieene

mirror hit

|

| {

| __road

candidate

* subsequent track fit can evaluate the
correctness



six iterations:

* propagate seed outwards and search
for new hits

e unambiguously assigned hits are
removed from the list

* filter track collection to remove
fakes or bad tracks

e repeat with remaining hits

differences in seeding:

* first two iterations: pixel pairs or pixel
triplets, p>0.9GeV

* third iteration: pixel triplets, low momentum
tracks

* fourth iteration: pixel + strip layers as seeds
(find displaced tracks)

e fifth, sixth iterations: strip pairs (for tracks
lacking pixel hits)




Vertex Finding

1 ' 1 0.02
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O  Secondary Vertex ol
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similar problem of “classification
or pattern recognition
*find points in space where tracks originate two malin steps:
(and associated uncertainties) evertex finding
e example: proton collisions, evertex fitting
decays of long-lived particles
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* need to identify all proton-proton interactions from one bunch crossing
* identify points along the beam line where tracks are intersecting
e simplest algorithm: cluster finding

CMS Expertmenl at‘LHC \CERN_ ;
Data recprded: Thu‘Apr 505:47:32" 2012 CEST
Run/Event: 190401) f12545076

tumi section:\75 :
‘Orblr}Crossmg 19495846 [ 1347

S\ 3




Track Reconstruction Performance

T o0
ea helix is fully defined with 5 53 | o iy
parameters. In CMS the parameters <
are chosen for practical reasons as:
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