Semiconductor-Detectors

Motivation

- ~ 1950: Discovery that pn-- junctions can be used to detect particles.
- Semiconductor detectors used for energy measurements (Germanium)
- Since ~ 30 years: Semiconductor detectors for precise position measurements.
- precise position measurements possible through fine segmentation (10-- 100µm)
- multiplicities can be kept small (goal:<1%)
- Technological advancements in production technology
- developments for micro electronics

ZEUS MVD 2000

Large Silicon Systems

ATLAS

Strips: 61 m² of silicon, 4088 modules, 6x10⁶ channels

Pixels: 1744 modules, 80 x 10⁶ channels

CMS

the world largest silicon tracker 200 m² of strip sensors (single sided) 11 x 10⁶ readout channels

~1m² of pixel sensors, 60x10⁶ channels

ALICE

Pixel sensors Drift detectors Double sided strip detectors

LHCb VELO: Si Strips

Pros/Cons of semiconductors as detection material

- Semiconductor detectors have a high density
- Large energy loss over short distance: thin detectors
- Diffusion effect is smaller than in gas detectors resulting in achievable position resolution of less than 10 µm
- Low ionization energy (few eV per e hole pair) compared to gas detectors (20 - 40 eV per e - ion pair) or scintillators (400 - 1000 eV to create a photon)
- Typically no internal amplification, i.e. small signal with a few exceptions (getting more common)
- High cost per surface unit silicon, read out chips, cooling
 High number of readout channels Large power consumption → cooling

Energy bands

- In free atoms the electron energy levels are discrete.
- In a solid, energy levels split and form nearly - continuous bands

- Large gap: the solid is an insulator
- No gap: it is a conductor
- Small band gap: semiconductor
- For silicon, the band gap is 1.12 eV, but it takes 3.6 eV to ionize an atom
 → rest of the energy goes to phonon excitations (heat).

Band Model for Elements IV (Example for Si)

Each atom has 4 closest neighbors, the 4 electrons in the outer shell are shared and form covalent bonds.

- At low temperature all electrons are bound
- At higher temperature, thermal vibrations break some of the bonds
- free e- cause conductivity (electron conduction)
- The remaining open bonds attract other e- → the "holes" change position (hole conduction)

Intrinsic Carrier Concentration

- Due to the small band gap in semiconductors, electrons already occupy the conduction band at room temperature.
- Electrons from the conduction band may recombine with holes.
- A thermal equilibrium is reached between excitation and recombination : charge carrier concentration $n_e = n_h = n_i$

intrinsic carrier concentration:

$$n_{i} = \sqrt{N_{C} N_{V}} \cdot \exp\left(-\frac{E_{g}}{2kT}\right) \propto T^{\frac{3}{2}} \cdot \exp\left(-\frac{E_{g}}{2kT}\right) \qquad \begin{array}{c} \text{factor } 2 \\ \text{every } \Delta T \\ = 8^{0} \text{ K} \end{array}$$

- In ultra- pure silicon the intrinsic carrier concentration is **1.45**·10¹⁰ cm⁻³.
- With approximately 10²² Atoms/cm³ about 1 in 10¹² silicon atoms is ionized

(Ge: $n_i = 2.4 \ 10^{13} \text{ cm}^{-3} \text{ at } 300 \text{ K}$)

(*) Nc and Nv are the density of states in the valence and conduction band, respectively

Elemental Semiconductors

Germanium: Needs cooling due to small band gap of 0.66 eV (liquid N² at 77 K) mainly used in nuclear physics: Very good energy resolution!

Silicon:Can be operated at room temperature (band gap of 1.12 eV)Synergies with micro electronics industryStandard material for detectors in high energy physics

Diamond (CVD * or single crystal): Allotrope of carbon Large band gap of 5.5 eV (requires no depletion zone) Very radiation hard Disadvantages: low signal and high cost

(*) CVD: Chemical Vapor Deposition

Material Properties

	Si	Ge	GaAs	CdTe	Diamant	SiC
band gap	1.12	0.67	1.42	1.56	5.48	2.99
energy for e - hole pair [eV]	3.6	2.9	4.2	4.7	13.1	6.9
e- for MIP (300µm)	24000	50000	35000	35000	9300	19000
Ζ	14	32	31+33	48+52	6	14+6

Why is silicon used more often ?

- Silicon is the only material which can be produced in larger areas in high quality
- compare band gap to kT = 0.026 eV at room temperature \rightarrow dark current under control
- high density compared to gases: $\rho=2.33$ g/cm⁻³
- good mechanical stability
- large charge carrier mobility
- fast charge collection δt~10ns
- radiation tolerant

Constructing a Detector

• mean ionization energy $I_{\theta} = 3.62 \text{ eV}$,

• mean energy loss per flight path of a mip dE/dx = 3.87 MeV/cm

Signal of a mip in detector:
$$\frac{dE/dx \cdot d}{I_0} = \frac{3.87 \cdot 10^6 \,\text{eV/cm} \cdot 0.03 \,\text{cm}}{3.62 \,\text{eV}} \approx 3.2 \cdot 10^4 \,\text{e}^-\text{h}^+\text{-pairs}$$

Intrinsic charge carrier in a volume of same thickness and $A=1cm^2$ (T=300 K):

$$n_i dA = 1.45 \cdot 10^{10} \text{ cm}^{-3} \cdot 0.03 \text{ cm} \cdot 1 \text{ cm}^2 \approx 4.35 \cdot 10^8 \text{ e}^{-}\text{h}^{+}\text{-}\text{ pairs}$$

Result: The number of thermally created e– h+ --pairs (noise) is four orders of magnitude larger than the signal

Doping Silicon

- ... single occupied level (electron)
- ... single empty level (hole)

p--type:

- → In a p --type semiconductor, positive charge carriers (holes) are obtained by adding impurities of acceptor ions (eg . Boron (type III)).
- → Acceptors introduce energy levels close to valence band thus 'absorb' electrons from VB, creating holes (EF closest to VB)

Holes are the majority carriers.

Doping Silicon

- ... single occupied level (electron)
- ... single empty level (hole)

n--type:

- → In an n --type semiconductor, negative charge carriers (electrons) are obtained by adding impurities of donor ions (eg . Phosphorus (type V))
- → Donors introduce energy levels close to conduction band thus almost fully ionized (EF closest to CB)

Electrons are the majority carriers.

pn Junction

- At interface of an p-- type and n-type semiconductor the difference in the Fermi levels causes diffusion of excessive carries to the other material until thermal equilibrium is reached. At this point the Fermi levels are equal.
- The remaining ions create a space charge region and an electric field stopping further diffusion.
- The stable space charge region free of charge carries is called depletion zone.

 \rightarrow larger depletion zone \rightarrow suppress current across the junction

Depth of the Depletion Layer I

Poisson-Equation for the potential U(x) (1-dimensional for simplicity):

$$\frac{d^{2}U(x)}{dx^{2}} = \frac{-\rho(x)}{\varepsilon\varepsilon_{0}}$$

with $E_{x} = -dU/dx \rightarrow \frac{dEx(x)}{dx} = \frac{\rho(x)}{\varepsilon\varepsilon_{0}}$

$$\rho(x) = \begin{cases} eN_D & f\ddot{u}r - a < x \le 0\\ -eN_A & f\ddot{u}r & 0 < x \le b \end{cases}$$

Asymmetric double layer with N_D, N_A density of donor- and acceptor impurities.

Assumption: $N_D >> N_A$ and a<b Boundary conditions for electric field:

> Γ (1) $E_{r}(-a)=0$

1. Integration of Po equation with above conditions

$$= E_{x}(b)$$
bisson
bi

Depth of the Depletion Layer II

Boundary condition for the potential:

$$U(-a) = 0$$
 und $U(b) = -U_0$ \leftarrow applied voltage

2. Integration:

$$U(x) = \begin{cases} -\frac{eN_D}{2\varepsilon\varepsilon_0}(x+a)^2 & f\ddot{u}r - a < x \le 0\\ +\frac{eN_A}{2\varepsilon\varepsilon_0}(x-b)^2 - U_0 & f\ddot{u}r \ 0 < x \le b \end{cases}$$

Use $N_D a = N_A b$ and continuity at x=0:

$$b(a+b) = \frac{2\varepsilon\varepsilon_0 U_0}{eN_A}$$

For the strongly asymmetric case $(N_D >> N_A)$ b>>a (b: thickness of p-doped layer)

$$\rightarrow$$
d=a+b~b \rightarrow
 $d = \sqrt{\frac{2\varepsilon\varepsilon_0 U_0}{eN_A}}$

The pn-Junction: Electric Field

The highest field strength is then at x=0:

① ... donator

— conduction electron

concentration of free charge carriers

electric potential

Width of the depletion zone: Example

Effective doping concentration in typical silicon detector with p+-n junction

- N_a = 10¹⁵ cm⁻³ in p+ region
- N_d = 10¹² cm⁻³ in n bulk.
- > Without external voltage:
 - = W_ρ = 0.02 μm
 - = W_n= 23 μm
- > Applying a reverse bias voltage of 100 V:
 - $W_{p} = 0.4 \, \mu m$
 - W_n = 363 μm

Width of depletion zone in n bulk:

$$W \approx \sqrt{2\varepsilon_0 \varepsilon_r \mu \rho} V$$

with
$$\rho =$$

$$\rho = \frac{1}{e \mu N_{eff}}$$

p ⁺	N _a ≈ 10 ¹⁵ cm ⁻³
n	
	$N_d \approx 10^{12} \text{ cm}^{-3}$

Full Depletion Voltage and Doping Concentration

The capacitance vs. voltage characteristic of a diode can be used to determine the doping concentration of the detector material

A = area $C = A \sqrt{rac{\epsilon q_e N}{2(V_b + V_{bi})}}$ $N = dopant concentration V_b = bias voltage$ V_{bi} = built-in voltage

from this measurement the dopant concentration as a function of the diode depth is determined

the dopant concentration defines the electric field in the diode

$$E(x) = \frac{q_0}{\epsilon \cdot \varepsilon_0} \cdot \int N(x) \cdot dx$$

Position Resolution -- Strip Detector

- Charge carrier drift to electrodes and induce signal
- By segmenting the implant we can reconstruct the position of the traversing particle in one dimension

Example : p+ --in--n strip sensor:

- Strips are (f.e.) Boron implants (p-- type)
- Substrate is Phosphorous doped (~2-- 10 k Ω cm) and ~300 \mum thick, V_{dep}< 200V
- Backside Phosphorous implant to establish ohmic contact and to prevent early breakdown
- Highest field close to the collecting electrodes where most of the signal is induced
- Deposition of SiO2 with a thickness of 100–200 nm between p+ and aluminum strip
- AC coupling blocks leakage current from the amplifier

Problem: Radiation Damage

- Radiation damage the silicon on atomic level significantly leading to macroscopic effect.
- Bulk effects: displacement damage and built up of crystal defects due to Non Ionizing Energy Loss (NIEL) (main problem for sensors). unit : 1MeV equivalent neutron/cm² (up to 10¹⁵ n_{eq}/cm²)

Defects composed of: Vacancies and Interstitials

Compound defects with impurities possible!

Surface effects: Generation of charge traps due to ionizing energy loss (Total ionizing dose, TID)
 (main problem for electronics).
 unit : Rad (up to 100 MRad)

very complex topic

25

n)

Radiation Damage: Bulk Defects

Consequences of Radiation Damage

- 1) direct excitation now possible ⇔ higher leakage current ⇔ more noise
- 2) can also contribute to space charge \Rightarrow higher V bias necessary for full depletion
- 3) "charge trapping", causing lower charge collection efficiency ♀ lower signal

Counter measures

- Geometrical: develop sensors that can withstand higher depletion voltages
- Thinner sensors (but FE electronics with higher sensitivity needed)
- Environment: sensor cooling $(-10 ... 20^{\circ} C)$
- Oxigen-- rich Si can help: depletion voltage 27