

Bethe-Bloch formula needs modification Incident and target electron have same mass me Scattering of identical, undistinguishable particles

$$-\left\langle \frac{dE}{dx} \right\rangle_{Ionization} \propto \ln(E)$$

Dominating process for $E_e > 10-30$ MeV is not anymore ionization but

Bremsstrahlung: photon emission by an electron accelerated in
Coulomb field of nucleus[radiative losses]

$$\left\langle \frac{dE}{dx} \right\rangle_{Brems} \propto \frac{E}{m_2}$$

energy loss proportional to $1/m^2 \rightarrow$ mainly relevant for electrons (or ultra-relativistic muons)

Bremsstrahlung

 $X_0 = radiation length in [g/cm^2]$

$$X_{0} = \frac{A}{4\alpha N_{A} Z^{2} r_{e}^{2} \ln \frac{183}{Z^{1/3}}}$$

After passage of one X_0 electron has lost all but (1/e)th of its energy (63%)

 $E_c = critical energy$

Total energy loss for electrons

Energy loss summary

Energy Loss by Photon Emission

Ionization is one way of energy loss emission of photons is another...

Optical behavior of medium is characterized by the (complex) dielectric constant ε

Re $\sqrt{\varepsilon}$ = n Refractive index

Im ε = k Absorption parameter

Cherenkov radiation

Polarization of atoms by charged particle No destructive interference if v >speed of light in medium Velocity of the particle: v Velocity of light in a medium of refractive index n: c/n

Threshold condition for Cherenkov light emission:

$$v_{th} \geq \underline{G}_{n} \Longrightarrow \beta_{th} \geq \frac{1}{n}$$

Bct

 $\frac{c}{n}$

 $\frac{\left\langle \frac{dE}{dx} \right\rangle_{Cherenkov}}{\left\langle \frac{dE}{dx} \right\rangle_{Cherenkov}} \propto z_2 \sin_2 \theta_c \qquad \cos\theta = \frac{1}{n\beta} \qquad \begin{array}{c} \text{for water } \theta_{\text{ cmax}} = 42 \circ \\ \text{for neon at 1 atm } \theta_{\text{ cmax}} = 11 \text{ mrad} \end{array}$

Energy loss by Cherenkov radiation very small w.r.t. ionization (< 1%)

Typically O(1-2 keV / cm) or O(200-1000) visible photons / cm

Visible photons: $E = 1 - 5 \text{ eV}; \lambda = 300 - 600 \text{ nm}$

In a Cherenkov detector the produced photons are measured

Number of emitted photons per unit of length: · wavelength dependence $\sim 1/\lambda^2$

$$\frac{d^2N}{d\lambda dx} = \frac{2\pi\alpha z^2}{\lambda^2} \left(1 - \frac{1}{\beta^2 n^2(\lambda)}\right) = \frac{2\pi\alpha z^2}{\lambda^2} \sin^2\theta_0$$

[for typical Photomultiplier] $\frac{dN}{dx} = \int_{250}^{550 \text{ nm}} d\lambda \frac{d^2N}{d\lambda dx}$

$$=475 z^2 \sin^2 \theta_C$$
 photons/cm

energy dependence ~ constant $\frac{dN}{dE}$ $\frac{d^2 N}{dE dx} = \frac{z^2 \alpha}{\hbar c} \left(1 - \frac{1}{\beta^2 n^2(\lambda)} \right) = \frac{z^2 \alpha}{\hbar c} \sin^2 \theta_C$ $\frac{d^2 N}{dE dx} = 370 \ \sin^2 \theta_C \ {\rm eV^{-1}} \ {\rm cm^{-1}}$ $\approx \text{const}$

Detection of Cherenkov radiation

Parameters of Typical Radiator

Medium	n	β _{thr}	θ _{max} [β=1]	Nph [eV ⁻¹ cm ⁻¹]
Luft	1.000283	0.9997	1.36	0.208
Isobutan	1.00127	0.9987	2.89	0.941
Wasser	1.33	0.752	41.2	160.8
Quartz	1.46	0.685	46.7	1 96.4

Cherenkov radiation - application

Asymptotic value for $\beta = 1$: $\cos \theta_{max} = 1/n$; $N_{\infty} = x \cdot 370 / cm (1 - 1/n^2)$

Peter Schleper, Universität Hamburg 25

Transition Radiation

Transition radiation occurs if a relativist particle (large γ) passes the boundary between two media with different refraction indices (n $1 \neq$ n 2) [predicted by Ginzburg and Frank 1946; experimental confirmation 70ies]

Effect can be explained by re-arrangement of electric field:

particle

A charged particle approaching a boundary created a magnetic dipole with its mirror charge

> mirror charge

The time-dependent dipole field causes the emission of electromagnetic radiation

Energy radiated from a single boundary:

 $S = \frac{1}{3}\alpha z^2 \gamma \hbar \omega_P \quad (\hbar \omega_P \approx 20 \,\text{eV})$

- Typical emission angle: $\Theta = 1/\gamma$
- Energy of radiated photons: $\sim \gamma$
- · Number of radiated photons: $\sim z^2$
- Effective threshold: $\gamma > 1000$

Use stacked assemblies of low Z material with many transitions +

Transition radiation detectors

- \cdot straw tubes with xenon-based gas mixture
- 4 mm in diameter, equipped with a 30 μm diameter gold-plated W-Re wire

39

$$I(\mathbf{x}) = I_0 e^{-\mu \mathbf{x}}, \ \mu = \frac{N}{A} \sum_{i=1}^3 \sigma_i$$

 $\lambda = 1 / \mu$ Mean free path / absorption length

Interactions of photons with matter

Interactions of photons with matter

Electron

0

From energy conservation:

Photoelectric effect

$$E_e = E_{\gamma} - E_N = hv - I_b$$

 $\sigma_{ph} = \alpha \pi a_{B} Z^{0} I_{0}$

 $I_{\rm b}$ = Nucleus binding energy introduces strong Z dependence

Cross-section largest for $E_{\gamma} \approx$ K-shell energy Strongest E dependence for $I_0 < E_v < m_e c^2$

E-dependence softer for $E_{\gamma} > m_e c^2$

$$\sigma_{ph} = 2\pi r_e^2 \alpha^4 Z^5 (mc)^2 / E_{\gamma}$$

Compton scattering

Best known electromagnetic process (Klein–Nishina formula)

UHI Ľ

Compton scattering

Important for single photon detection; if photon is not completely absorbed a minimal amount of energy is missing (Compton rejection in PET)

Pair production

for
$$E_{\lambda} >> m_e c^2$$
 $\sigma_{\text{pair}} = 4\alpha r_e^2 Z^2 \left(\frac{7}{9} \ln \frac{183}{Z^{1/3}} - \frac{1}{54}\right)$ [cm²/atom]

Using as for Bremsstrahlung the radiation length

	ρ [g/cm ³]	X ₀ [cm]
H ₂ [fl.]	0.071	865
С	2.27	18.8
Fe	7.87	1.76
Pb	11.35	0.56
Luft	1.2·10 ⁻³	30 · 10³

Interactions of photons with matter

Electromagnetic interactions

