

type of interactions for charged and neutral particles Difference "scale" of processes for electromagnetic and strong interactions

- Detection of charged particles(Ionization, Bremsstrahlung, Cherenkov ...)
- Detection of γ -rays (Photo/Compton effect, pair production)
- Detection of neutrons (strong interaction)
- Detection of neutrinos (weak interaction)

Mind: a phenomenological treatment is given, no emphasis on derivation of the formulas, but on the meaning and implication for detector design.

Interactions of charged particles

Three type of electromagnetic interactions:

- 1. Ionization (of the atoms of the traversed material)
- 2. Emission of Cherenkov light
- 3. Emission of transition radiation

1) Interaction with the atomic electrons. The incoming particle loses energy and the atoms are <u>excited</u> or <u>ionized</u>

2) Interaction with the atomic nucleus. The particle is deflected (scattered) causing <u>multiple scattering</u> of the particle in the material. During this scattering a <u>Bremsstrahlung</u> photon can be emitted. 3) In case the particle's velocity is larger than the velocity of light in the medium, the resulting EM shockwave manifests itself as <u>Cherenkov Radiation</u>. When the particle crosses the boundary between two media, there is a probability of the order of 1% to produce an X ray photon, called <u>Transition radiation</u>.

Bethe - Bloch formula

energy loss of a heavy particle through many scatterings on electrons in material

electrons at rest, β = initial velocity of heavy particle,

T = energy transfer to electron, 4-momentum transfer:

$$Q^2 = -(e - e')^2 = 2m_e c^2 T$$

Rutherford cross section in rest frame of electron:

$$\frac{d\sigma}{dQ^2} = 4\pi \,\alpha^2 \,Z^2 \,(\hbar c)^2 \frac{1}{\beta^2} \frac{1}{Q^4}$$

with electron spin, recoil: Mott cross section

$$\frac{d\sigma}{dT} = 2\pi \alpha^2 Z^2 (\hbar c)^2 \frac{1}{\beta^2 m_e c^2} \frac{1}{T^2} \left(1 - \beta^2 \frac{T}{T_{max}} \right)$$
Butherford

Energy loss of heavy particle after scattering (Tmin from ionization)

$$-\left\langle \frac{dE}{dx} \right\rangle = n_e \int_{T_{min}}^{T_{max}} T \, \frac{d\sigma}{dT} \, dT \qquad -\left\langle \frac{dE}{dx} \right\rangle = 2\pi \, \alpha^2 \, Z^2 \, (\hbar c)^2 \frac{1}{\beta^2 \, m_e c^2} n_e \left(\ln \frac{T_{max}}{T_{min}} - \beta^2 \right)$$

Peter Schleper, Universität Hamburg 3

Bethe - Bloch formula

$1/\beta^2$ -dependence:

Remember:

$$\Delta p_{\perp} = \int F_{\perp} dt = \int F_{\perp} \frac{dx}{v}$$

i.e. slower particles feel electric force of atomic electron for longer time ...

Relativistic rise for $\beta \gamma > 4$:

High energy particle: transversal electric field increases due to Lorentz transform; $E_y \rightarrow \gamma E_y$. Thus interaction cross section increases ...

Corrections:

low energy : shell corrections high energy : density corrections

Density correction [saturation at high energy] Density dependent polarization effect ...

Shielding of electrical field far from particle path; effectively cuts of the long range contribution ... More relevant at high γ

Shell correction [small effect]

For small velocity assumption that electron is at rest breaks down, Capture process is possible

Minimum ionization: ca. 1 - 2 MeV/g cm-2

i.e. for a material with $\rho = 1$ g/cm³

dE/dx = 1-2 MeV/cm

Example : Iron: Thickness = 100 cm; ρ = 7.87 g/cm3 dE \approx 1.4 MeV g -1 cm2 * 100 cm * 7.87g/cm3 = 1102 MeV

A 1 GeV Muon can traverse 1m of Iron

The energy loss as a function of momentum $p = mc\beta\gamma$ is dependent on the particle mass

By measuring the particle momentum (deflection in a magnetic field) and the energy loss one gets the mass of the particle, i.e. particle ID

(at least in a certain energy region)

Dependence on absorber thickness

- Bethe-Bloch equation describes the mean energy loss
- layer of material with thickness x
 - → energy distribution of the δ-electrons and the fluctuations of their number (nδ) cause fluctuations of the energy losses ΔE

Energy loss at small momenta

Energy loss at small momenta

UH

Mean particle range

Integrate over energy loss from the total energy T to zero

$$R(T) = \int_0^T \left[-\frac{dE}{dx} \right]^{-1} dE$$

More often use empirical formula

Example:

Proton with p = 1 GeV Target: lead with $\rho = 11.34$ g/cm³

R/M = 200 g cm⁻² GeV⁻¹ → R = 200/11.34/1 cm ~ 20 cm

