Ausgabe: 20.10.2015 Fällig am: 27.10.2015

Diskussion: 30.10.2015

Institut für Experimentalphysik

Exercises to Advanced Particle Physics

WS 15/16

Roman Kogler, Peter Schleper

Sheet 1

Aufgabe 1: Lorentz Transformation

6 Punkte

a) Zeigen Sie, dass aus der Bedingung

$$x'^{\mu}x'_{\mu} = x^{\alpha}x_{\alpha}$$

mit der Lorentz-Transformation $x'^{\mu} = \Lambda^{\mu}{}_{\alpha} x^{\alpha}$ die Gleichung

$$\Lambda^{\mu}{}_{\alpha}g_{\mu\nu}\Lambda^{\nu}{}_{\beta} = g_{\alpha\beta}$$

folgt.

Tipp: Verwenden Sie dafür die Identität $x^{\mu}x_{\mu} = x^{\mu}g_{\mu\nu}x^{\nu}$.

b) Zeigen Sie mit Hilfe der Bedingung aus Beispiel a, nämlich

$$\Lambda^{\mu}{}_{\alpha}g_{\mu\nu}\Lambda^{\nu}{}_{\beta} = g_{\alpha\beta},$$

dass jede Lorentz-Transformation $\Lambda^{\mu}_{\ \nu}$ eine Inverse hat und geben Sie dessen Forman.

Tipp: Zeigen Sie, dass $(\Lambda^{-1})^{\mu}_{\ \alpha}\Lambda^{\alpha}_{\ \nu}=\delta^{\mu}_{\nu}$ gilt.

Aufgabe 2: Zweikörperzerfall

10 Punkte

Ein Teilchen X mit der Masse M habe den Viererimpuls

$$p^{\mu} = \begin{pmatrix} E \\ p_x \\ 0 \\ 0 \end{pmatrix}.$$

Es zerfällt in zwei Teilchen A und B mit Massen m_a und m_b und Dreierimpulsen $\vec{p_a}$ und $\vec{p_b}$ $(X \to A + B)$.

- a) Geben Sie die Matrix Λ der Lorentz-Transformation in das Ruhesystem des Teilchens X an. Zeigen Sie, dass diese Transformation funktioniert indem Sie den Vektor p'^{μ} ausrechnen.
- b) Zeigen Sie, dass die Energie der ausgehenden Teilchen durch die Formel

$$E_a = \frac{M^2 + m_a^2 - m_b^2}{2M},$$

mit einem äquivalenten Ausdruck für E_b , gegeben ist.

Tipp: Nutzen Sie Energie- und Impulserhaltung im Ruhesystem des Teilchens X.

c) Zeigen Sie, dass der Impulsbetrag der auslaufenden Teilchen A und B im Ruhesystem des Teilchens X durch

$$|\vec{p}_a| = |\vec{p}_b| = \frac{\sqrt{\lambda(M^2, m_a^2, m_b^2)}}{2M}$$

gegeben ist. Die sogenannte Dreiecksfunktion λ ist definiert durch:

$$\lambda(x, y, z) = x^2 + y^2 + z^2 - 2xy - 2xz - 2yz.$$

d) Beachten Sie, dass $\lambda(a^2, b^2, c^2) = (a+b+c)(a+b-c)(a-b+c)(a-b-c)$. Es kann also $|\vec{p}_a|$ gleich null werden wenn $M = m_a + m_b$, und kann sogar imaginär werden wenn $M < (m_a + m_b)$. Erklären Sie!

Bonus

Aufgabe 3: $H \rightarrow \gamma \gamma$ Zerfall

6 Punkte

Nehmen Sie nun an, dass das Teilchen X aus Aufgabe 2 das Higgs Teilchen H mit einer Masse von 125 GeV ist. Wir betrachten uns den Zerfall in zwei Photonen, $H \to \gamma \gamma$, also $m_a = m_b = m_\gamma = 0$.

- a) Nehmen Sie an, dass die beiden Photonen in der x-y-Ebene im H-Ruhesystem zerfallen. Der Winkel zwischen dem Vektor \vec{p}_a und der x-Achse im Ruhesystem sei ϕ' . Wie groß sind $|\vec{p}_a|$ und $|\vec{p}_b|$ in diesem System? Transformieren Sie nun \vec{p}_a in das Laborsystem und geben Sie den Ausdruck für ϕ im Laborsystem an.
- b) Berechnen Sie nun den Öffnungswinkel α der beiden Photonen im Laborsystem. Bei welchem Wert von ϕ' wird dieser minimal?