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Zusammenfassung

Es gibt derzeit noch keine vollstaendige, selbst-konsistente, theoretische
Beschreibung von kuehlen Winden, die ihre beobachteten grundlegenden
Eigenschaften beschreiben kann. Um weitere Fortschritte bei der Suche nach
einer theoretischen Beschreibung zu ermoeglichen, sind detaillierte Kennt-
nisse der Struktur von Atmosphaeren kuehler Winde erforderlich.

In dieser Arbeit ist das ”hot-wind” Modul von PHOENIX, ein hochent-
wickelter universeller Sternatmosphaerencode, modifiziert worden um damit
kuehle Winde modellieren zu koennen.

Im modifizierten Code wird das radiale Gitter, das fuer den hydrody-
namischen Teil der Atmosphaere benutzt wird, dynamisch angepasst. Damit
wird erreicht, dass der Druck auf einen Bereich beschraenkt wird, der durch
die Drucktabellen von PHOENIX unterstuetzt wird. Diese Tabellen werden
werden fuer kuehle Atmosphaeren benoetigt. Hiermit wird auch fuer Winde
mit niedriger Massenverlustrate an deren Fuss eine Bedingung erfuellt, durch
die das optische-Tiefen-Gitter, dass fuer den hydrostatischen Teil der Atmo-
sphaere generiert wird, brauchbare Schrittweiten bekommt. Ausserdem wird
jetzt in der Atmosphaeren-Konstruktionsphase der Anfangszustand wieder-
hergestellt, wenn eine Iteration mit einem ungeeigneten Gitter ausgefuehrt
wurde. So koennen weitere Iterationen mit einer unverdorbenen Struktur
weiterrechnen.

Mit dem modifizierten Code koennen kuehle Winde gerechnet werden,
fuer Parameterbereiche die mindestens 3200 < Teff < 4400 K, 10−12 <
Ṁ < 10−6 M�/yr and 10 < v∞ < 120 km/s umfassen, ohne dass eine
Feinbestimmung weiterer Parameter notwendig waere.

Die synthetischen Spektren, die man mit PHOENIX berechnet, zeigen die
charakteristischen beobachtete Eigenschaften von kuehlen Winden.

Es wird gezeigt, dass sich die obigen Parameterbereiche und die Genauig-
keit der Modelrechnungen mit zwei Methoden verbessern lassen: eine ver-
feinerte Temperaturkorrektur-Methode und ein adaptiertes radiales Gitter.

Mit der Implementation dieser zusaetzlichen Verbesserungen und den
vollstaendig ”metal line-blanketing” NLTE Berechnungen bietet PHOENIX

die Moeglichkeit sehr genaue Modelle fuer kuehle Winde zu berechnen.



Abstract

For cool winds no complete self-consistent theoretical description has yet
been established which is able to reproduce the most basic observational
findings. Further progress in finding a theoretical description of the driv-
ing mechanism requires a detailed knowledge of the structure of cool-wind
atmospheres.

In this work the hot-wind module of PHOENIX, an advanced general-
purpose stellar atmosphere code, has been modified to allow for cool-wind
modelling.

In the modified code the radial grid used for the hydrodynamical part of
the atmosphere is dynamically adjusted. This way a pressure range is ob-
tained that can be handled with PHOENIX’s pressure tables that are needed
for cool atmospheres. In addition, winds with low mass loss rates at their
bottom now provide a basis on which the optical depth grid, generated for
the hydrostatic region, has feasible step widths. Furthermore, during the
atmospheric construction the initial structure is restored after an iteration
with an unsuitable grid. This provides subsequent iterations with an un-
marred structure.

With the modified model, cool-winds can be computed without fine tun-
ing for parameter ranges of at least 3200 < Teff < 4400 K, 10−12 < Ṁ <
10−6 M�/yr and 10 < v∞ < 120 km/s.

The synthetic spectra obtained with PHOENIX show the characteristic
observational features of cool-wind spectra.

It is shown that two methods will further improve the above parameter
ranges and the accuracy of the model: a more sophisticated temperature
correction method and an adapted radial grid.

With the implementation of these additional improvements, together
with the support for full metal-line-blanketing NLTE computations, PHOENIX
will give the opportunity to obtain most accurate cool-wind models.
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1 Introduction

A stellar wind is a continuous outflow of material from a star. All stars are
found to loose mass during a major fraction of their lives. The solar wind
is a well-known phenomenon indirectly causing the northern light1. The
solar wind was not observationally confirmed until 1962 by the Mariner 2
interplanetary probe. The crucial evidence for the existence of cool stellar
winds, which this work is about, was found by Deutsch 1956 [Deu56]. A
reason the cool type stellar wind could be found earlier than the solar wind
is that the mass loss rate for cool winds is typically a factor of 107 larger
than for the solar type winds. The large amounts of mass the star looses
through this strong wind (up to half of the initial stellar mass) plays a major
role for the evolution of the star.

But the origin of the cool winds has not yet been established since 1956.
In order to find a theoretical self-consistent description a detailed knowledge
of the structure of the wind is required. This must be achieved by perfecting
the analysis of the observational spectra. The ”reverse engineering” of cool-
wind spectra is very intricate and model atmosphere calculations are used
to find estimations for the structures of cool winds.

PHOENIX is a highly sophisticated general-purpose stellar atmosphere
code that is capable of calculating expanding atmospheres. It has been used
for hot-wind2model calculations, but not previously for cool winds. High
precision cool wind modelling with PHOENIX could yield very tight parame-
ter ranges to narrow down the ”ansatz” for the theoretical description of the
cool-wind driving mechanism. During the course of this work the PHOENIX

wind model has been modified in order to allow for cool-wind calculations.
With the modified code the cool-wind models are found to reproduce the
critical observational characteristics of cool-wind spectra.

In the following chapter a general theoretical description of winds is given
as well as the main properties of stellar winds and especially cool winds. In
chapter 3 the way the wind model atmospheres are constructed is explained.
This chapter also shows how PHOENIX calculates radiative transfer and how
the constructed atmosphere is refined iteratively. The modifications made
to the original wind model are described in chapter 4. Chapter 5 shows the
results of cool-wind model calculations with the modified model. In chapter
6 these results are discussed and solutions for the remaining limitations are
proposed as well as some concepts for further research in cool wind modelling
with PHOENIX .

1The aurora is believed to be produced by an electric current that is driven by a
”dynamo effect” between the solar wind and the earth’s magnetosphere (two electric con-
ductors at relative motion). It is not produced by solar wind particles guided by the
Earth’s field lines to the top of the atmosphere [Wik06].

2Hot winds are yet another class of stellar winds, different from cool-winds and solar
type winds. The characteristics of the different classes are discussed in the next Chapter.
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2 Stellar wind basics

Almost all stars are losing mass in the form of stellar winds through a ma-
jor fraction of their lives. But the mechanisms that drive the winds vary
for different classes of stars. A number of mechanisms have been proposed
to drive gas out of the gravitational potential well of the star. Therefore,
at first a physical description for an idealised simple wind will be set up.
Then, the nature of the winds will be compared to the theoretical model,
in order to draw some conclusions about the driving mechanisms involved.
Thereafter, the observational methods to detect winds are described includ-
ing the fundamental difficulties. Finally, a collection of empirical velocity
fields found in the literature is examined in order to find a basis for the
modelling process presented in chapter 3.

2.1 General theoretical description

For a time-independent stellar wind with constant mass loss rate, the amount
of material passing through any sphere of radius r is constant

Ṁ(r) = 4πr2ρ(r)v(r) = Ṁ (1)

Since the wind is stationary ∂v(r, t)/∂t = 0, the wind velocity v(r, t) = v(r)
is a function of r only. The total derivative of v(r, t) can be written as

dv(r, t)

dt
=
∂v(r, t)

∂t
+
∂v(r, t)

∂r

dr(t)

dt
= v(r)

dv

dr
(2)

Suppose the gas of the wind is subjected to the inward directed gravity and
the outward directed gas pressure force and an arbitrary force f per unit of
mass. The equation of motion is then

v
dv

dr
+

1

ρ

dp

dr
+
GM∗
r2

= f (3)

The first term on the left is the acceleration of the gas, which is produced by
the gas pressure (second term), the gravity (third term) and the arbitrary
force f . When the gas is assumed to behave like an ideal gas, the gas
pressure is

p = RρT/µ (4)

where R is the gas constant, ρ the density and µ the mean molecular weight
expressed in units of mH , which here is assumed to be constant throughout
the wind. The isothermal speed of sound is given by

v2
t ≡ p/ρ = RT/µ (5)
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The force due to the pressure gradient can be written as

1

ρ

dp

dr
=
v2
t

ρ

dρ

dr
+

dv2
t

dr
= −v2

t

d ln v

dr
+

dv2
t

dr
− 2v2

t

r
(6)

In the last step d ln ρ = −d ln v − 2d ln r is used, which follows from the
continuity equation (1). Substituting equation (6) into (3) yields

1

v

dv

dr
=

(
2v2
t

r
− dv2

t

dr
− GM∗

r2
+ f

)(
v2 − v2

t

)−1
(7)

This equation is called the momentum equation. It describes the motion of
the gas in a steady (time independent), radial, spherical symmetric stellar
wind. The next step is to further idealise the model to extract the most
basic properties of stellar winds.

2.1.1 Isothermal wind without additional forces

Let us first consider the most simple case of an isothermal wind T (r) = T
without extra forces f = 0. The first term on the right of Eq. (6) vanishes.
Equation (7) then becomes

1

v

dv

dr
=

(
2v2
t

r
−
v2
g

2r

)
(
v2 − v2

t

)−1
(8)

where the third term in the numerator on the right of Eq. (7) is rewritten
using the gravitational escape velocity

v2
g ≡

2GM∗
r

(9)

This momentum equation has a singularity at the point rs where v(rs) =
vt, this is called the sonic point. There is another special point in the
momentum equation that is called the critical point. At this point we have

vt = vg(rc)/2 (10)

and the numerator of Eq. (8) equals zero. rc = GM∗/2v2
t is the critical

distance. In this case of an isothermal wind without extra forces there is
only a solution to the momentum equation if the sonic point coincides with
the critical point.

The solutions of this momentum equation are plotted in figure 1. Curve
1 is the critical solution. It is transonic: it starts subsonic and ends super-
sonic. Curve 2 also passes through the critical point, but does not fulfill the
boundary condition that the wind velocity should approach zero for small
values of r. Curve 3 remains subsonic everywhere. This is not the kind
of wind we try to describe, as observations show winds with a supersonic
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Figure 1: Solutions of the momentum equation for isothermal simple winds.
It shows the velocity structure of an isothermal wind with gas pressure and
gravity forces only. The radius is in units of critical radius, rc, the velocity in
units of the isothermal speed of sound, vt, here denoted by a. Curve 1 is the
unique transonic solution with increasing velocity through the critical point
where the wind velocity equals the isothermal speed of sound. (from [LC99])

terminal velocity (see page 11-13 for the properties of such winds). Curve
4 again has an unphysical supersonic starting velocity. Curve 5 and 6 are
mathematical solutions which do not have a physical meaning.

Solving equation (8) analytically [Par58] and using the condition for the
critical point v(rc) = vt yields

v

vt
=
(rc
r

)2
exp

(
−2rc

r
+

3

2
+

v2

2v2
t

)
(11)

The initial velocity v0 at the base of a gravitationally bound wind r0 with
v2

0 � v2
t can now be expressed as

v0

vt
=

(
v2
g0

4v2
t

)2

exp

(
−
v2
g0

2v2
t

+
3

2

)
(12)

where vg0 = vg(r0) is the gravitational escape velocity at the base of the
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wind. The mass loss rate is determined by this base velocity through the
mass continuity equation Ṁ = 4πf ∝ v0. If the stellar atmosphere is
strongly gravitationally bound at its base, v2

g0 � 2v2
t , then the mass loss

rate is dominated by the exponential term of Eq. (12). So an increasing
atmospheric temperature leads to strong increase of Ṁ . If the atmosphere
is not strongly gravitationally bound v2

g0 & 2v2
t holds. The second term in

the exponent of Eq. (12) exceeds the first, so that influence of the quadratic
factor increases. And since the quadratic dependency is much weaker than
the exponential the dependence of the mass flux on the atmospheric tem-
perature then is much weaker

2.1.2 Adiabatic wind

The model restrictions of the previous paragraph are eased to obtain a more
general model: the temperature is variable and forces additional to the
gravity and the pressure gradient force are accounted for. A useful way to
set up this model is to use the energy per unit mass, e(r), which is the sum
of the kinetic and gravitational energies, and the enthalpy [LC99].

e(r) =
v(r)2

2
− GM∗

r
+

γ

γ − 1

RT

µ
(13)

In this expression γ is the ratio of specific heats γ = cp/cv . The enthalpy
is the sum of the internal energy of the gas and the potential for work
by adiabatic expansion. For an ideal gas, these are 2/3RT/µ and RT/µ
respectively, yielding a value of γ = 5/3. Energy can be added to the wind
if form of work done by a force or in the form of heat:

d

dr

(
v2

2
− GM∗

r
+ v2

t

γ

γ − 1

)
=

de(r)

dr
= f + q (14)

with f the force per unit of mass and q the gradient of the heat addition
per unit mass. This can be rewritten to

dv2
t

dr
=
γ − 1

γ

(
f + q − GM∗

r2
− vdv

dr

)
(15)

Insterting (15) into the momentum equation (7) and using 2GM∗/r = v2
g

one obtains after multiplying the result with γ

1

v

dv

dr
=

(
2v2
s

r
−
v2
g

2r
+ f − (γ − 1)q

)
(
v2 − v2

s

)−1
(16)

Here vs =
√
γv2

t is the adiabatic speed of sound. There are three differ-
ences between this adiabatic momentum equation (16) and the isothermal
momentum equation (8). Firstly, f 6= 0. Secondly, the isothermal speed of
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sound vt is replaced with the adiabatic version vs. Thirdly, the presence of
a temperature gradient results in an additional pressure-gradient-like term
−(γ−1)q in the momentum equation. This extra term produces an inwards
directed force for a positive energy input q > 0, because the energy input
heats the gas which reduces the outward temperature gradient and thus the
outward force of the pressure gradient.

This momentum equation (16) has a singularity at the point where
v(r) = vs, this is called the sonic point. The numerator on the right hand
side of the momentum equation is zero for γ = 5/3, when

e(rc)

rc
+ f(rc)−

2q(rc)

3
= 0 (17)

in which e(r) is defined by Eq. (13). This is the critical point of the adiabatic
wind. If f and q are independent of dv/dr like in the isothermal case the
sonic point will coincide with the critical point. In general, however, f and
g depend on dv/dr, which will produce additional terms on the left hand
side of Eq. (16) so that the sonic and critical points no longer coincide.

Although equation (17) is a local condition, it depends on the energy
and momentum input throughout the subsonic region because of the term
e(rc)/rc.

2.2 What mechanism is driving the wind?

The phenomenon that stars loose mass is ”ubiquitous across the Hertzsprung-
Russell diagram”3 , but their properties vary fundamentally. Stellar winds
can be roughly divided into three classes: Hot star winds, coronal winds
and cool non-coronal winds. These three classes are found in three disjunct
regions in the Hertzsprung-Russell diagram, shown in figure 2. It is stressed
that this classification is based on the differences in driving mechanism be-
tween the classes. The winds could equivalently be classified after observa-
tional characteristics [LH79] but such classifications have no application in
the scope of this work.

2.2.1 Hot star winds

Hot star winds are found at the early type stars, earlier than B3. They
typically have massive and high-velocity winds. Hot stars emit the bulk of
their radiation in the ultraviolet where their outer atmospheres have many
absorption lines. The opacity in absorption lines is much larger than the
opacity in the continuum. The opacity of one strong line can easily be a
factor of 106 larger than the opacity for electron scattering. Due to the
Doppler shift from the high wind velocities, the atoms can be accelerated

3Deutsch 1968. Deutsch found the crucial evidence for mass loss from red giants 1956.
The solar wind was observationally confirmed by the Mariner 2 interplanetary probe 1962.
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Figure 2: The locations of mass losing stars in the Hertzsprung-Russell dia-
gram. The three classes of winds lie in the three shaded regions. The regions
vary in the mechanism that drives the wind of a star in that region. (From
[Ben05])

through the almost undiminished continuum radiation. This makes radiative
acceleration due to spectral lines in the atmospheres of hot luminous stars
a very efficient mechanism.

The main properties of this class of mass losing stars are:

1000 . v∞ . 1500 km/s

10−8 . Ṁ . 10−4M�/yr

2 . log g . 4

The basic mechanism that drives the hot winds is the radiation pressure on
atomic lines. In principle this mechanism functions like an adiabatic wind
with a pressure gradient force and gravity as only forces as described in
section 2.1.2. To the gas pressure gradient the radiation pressure gradient is
added. A more elaborate description of radiation driven winds can be found
in [CAK75] [KPPA89] [Lam97].
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2.2.2 Coronal winds

Main sequence stars later than about F0 V (and stars that have evolved off
the main sequence and that have spectral types between F5 IV and about
K1 III) are found to have tenuous, hot coronal winds. Whereas the tem-
perature in the photosphere is about 6000K, in the outer layers of the at-
mospheres the temperature rises to several 106K. This region is called the
corona. The temperature rise above the photosphere is due to the dissipa-
tion of mechanical energy or the reconnection of magnetic field lines that
originate from the convection zone below the photosphere. Trapped coronal
gas is heated until the thermal pressure approximately equals the magnetic
pressure. The thermal pressure gradient induced by these processes is large
enough to drive a Parker4-type wind.

The main properties of this class of mass losing stars are:

v∞ ≈ 500 km/s

Ṁ ≈ 10−14M�/yr

log g ≈ 4.5

The basic mechanism that drives the coronal winds is the thermal pres-

sure gradient. This mechanism functions like an adiabatic wind with gas
pressure and gravity as only forces (see section 2.1.2). However, there are
some additional complications, like viscosity and thermal conduction, which
transports heat from high temperature regions to low temperature regions.
Other minor forces may play a role in the coronal holes, which are regions
of lower temperatures and higher mass flux. For a more detailed description
of coronal winds see [Bra70] [Par71] [LC99].

2.2.3 Cool winds

Evolved stars, later than about K1 of luminosity class III or higher, have
cool, low-velocity, massive winds:

vg0 � v∞ ≈ 40km/s

10−8 . Ṁ . 10−4.5M�/yr

0.5 . log g . 3

The mechanism of the previous class of winds, the thermal pressure
gradient induced in the hot corona, can not be used to explain these winds.

4Parker was the first who proposed a hydrodynamic model. That model is still used
for these winds, in which material flowed out of the sun as a natural consequence of the
million degree temperature of the corona [Par58].
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They are found to be far more massive than the coronal winds. And as the
densities are much higher, the cooling process is more efficient. The heating
process cannot compete with the cooling and no corona is developed. The
mechanism of the hot winds is not applicable either, since the radiative flux
is low and highly exitated atoms are absent. A number of other mechanisms
have been proposed to drive gas out of the gravitational potential well of
the star:

• sound waves from photospheric convection
• radiation pressure on dust grains
• atmospheric extension caused by shockwaves that originate from pul-

sations
• alfvén waves

but no mechanism nor a combination of mechanisms are known to be able
to produce the observed effects [LB91] [Har96]. As will be shown in the next
paragraph, it is natural that of all three types of wind this type is not yet
fully understood.

2.3 Why the driving mechanism for cool winds is unknown

There are three reasons why for cool winds no mechanism has been found to
meet the observational constraints. In order to identify the three problems,
first the energy needed to drive the wind is considered. According to Eq. (13)
the energy of the wind at radius r is

e(r) =
1

2

(
v2 − v2

g +
2γ

γ − 1
v2
t

)
(18)

The energy required to drive the wind from the base r0 to r∞ is

E0,∞ = e(r∞)− e(r0) ≈ 1

2

(
v2
∞ + v2

g0

)
(19)

which says that it is needed to lift the mass transported by the wind out of
the stellar gravitational field and to accelerate the wind to its asymptotic
velocity v∞. For the approximation in Eq. (19) the following assumptions
were used (they can be made for all three types of wind without loss of
generality)

v2
g0 � v2

0 +
2γ

γ − 1
v2
t0

v2
∞ �

2γ

γ − 1
v2
t∞ (20)

v2
∞ � v2

g∞

These assumptions mean that the expanding atmosphere is gravitationally
bound to the star and subsonic at the base r0 and is highly supersonic at
large distances, where the wind has achieves its asymptotic velocity.
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At this point discrepancies arise between the three classes of winds. In
the massive winds from early-type stars, for which v2

∞ � v2
g0, virtually

all of the driving energy of the wind goes into accelerating the flow to its
asymptotic velocity. In solar-type winds, for which v2

∞ ≈ v2
g0, comparable

parts of the winds’s driving energy go into lifting the expanding atmosphere
out of the stellar gravitational field and into accelerating it to the asymptotic
flow velocity.

In the massive winds from low-gravity, late-type stars, for which v2
∞ �

v2
g0, almost all of the driving energy of the wind goes into lifting the expand-

ing atmosphere out of the gravitational field. Here the first problem arises.
For this implies, when considering the origin of the stellar wind one is dealing
with only a small fraction of the total required energy (v2

∞/(v
2
∞+v2

g0)). One
can thus expect to learn relatively little about the overall mass loss mech-
anism responsible for the mass loss, i.e. the forces that act in the subsonic
region.

The energy required to drive the wind from the sonic point rs to r∞ is

Es,∞ =
1

2

(
v2
∞ + v2

gs −
[

2γ

γ − 1
+ 1

]
v2
ts

)
(21)

Generally in cool winds the adiabatic sound speed in the sonic point is not
very high because of the low temperature of the wind, therefore the following
approximation can be made

v2
g0 �

∣∣∣∣v2
gs −

(
2γ

γ − 1
+ 1

)
v2
ts

∣∣∣∣ (22)

Comparing (21) to (19) with the above approximation leads to the conclusion

E0,∞ � Es,∞ (23)

A large fraction of the energy required to drive the wind must be added in the
region of subsonic flow, and the small fraction added to the supersonic flow is
tightly constrained by the required low asymptotic flow velocity. This is the
second problem. For this constraint implies that the parameters of a wind
model must be finely tuned. Fine tuning also complicates the application of
the model to a broad range of stars. A solution to this problem could be a
sort of atmospheric self-regulation mechanism that provides a physical basis
for the fine tuning [HM85].

The third problem is related to the form of energy added to the wind. As
mentioned before, a dense wind has an enormous cooling capacity through
the emission of electromagnetic radiation. Therefore, the energy added to
the wind must come in the form of momentum addition rather than heat ad-
dition, which is another restriction on the mechanism responsible for driving
the wind.
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2.4 Observing cool winds

There are two different ways to observe cool winds. The first method makes
use of spectra of single stars, the second of spectra of binary systems con-
taining a cool giant and a white dwarf.

2.4.1 Single star spectra

The structure of the wind of a single star can be examined from high res-
olution UV spectra. These contain many emission lines from singly ionised
metal lines Fe II, Mg II, S II, C II and Al II. The formation depths of these
lines span the range from the lower chromosphere to the regime of the ter-
minal wind velocity, through the variety of optical thickness and excitation
temperature.

The shape of the emergent line profile depends upon the local velocity
fields in the line-forming regions. The location of the line forming region
is determined by the optical thickness, which is the monochromatic line
extinction coefficient αλ, defined on page 28, integrated from the stellar
radius R∗ to the detector

τ?λ =

r∞∫

R∗

αλdr (24)

in which the stellar radius usually is defined as the radius r at which the
optical depth (defined on page 28) τλ equals unity for some wavelength λ in
the optical range of the spectrum.

R∗ = r(τλ = 1) (25)

In figure 3 seven emission lines are shown for three cool stars with a
stellar wind. The C II 2325.4Å line is formed in the chromosphere of the
star. The wind does not influence the form of this line significantly because
it is optically thin (see the text to figure 3) for this line. The Mg II 2802.7Å
emission line is much broader and shows a self-reversed core, caused by
absorption in the wind that is opaque in this line. The centre of the self-
reversed core is blue shifted from the centre of the emission line formed in
the chromosphere. The amount of this blue shift can be used to measure
the asymptotic wind velocity. The five Fe II lines between the C II and the
Mg II lines have optical thicknesses in the range between the C II and Mg
II lines. As the line opacity increases, the emission component broadens in
width and a self-reversal appears, which increases in strength and extends
to higher blueshifts for higher opacity lines. β Gru has a denser wind than
α Tau, as the effect of the self absorption for the β Gru lines is stronger
than for the same lines in the α Tau spectrum. In α Boo the velocity of
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Figure 3: Typical line profiles of Fe II, C II, and Mg II in the spectra of
two red giants( α Boo and α Tau) and a supergiant (β Gru), plotted against
the Doppler shift. ”Increasing optical depth” in this graph means increasing
optical thickness τ?

λ
, defined in equation 24.

The terminal velocities of the stellar winds are determined from the Mg II lines
and shown in the graphs as dotted lines. The Mg II lines are optically very thick
so they are formed throughout the wind up to the regions of the asymptotic
velocity. The C II line is optically very thin and is almost untouched by the
wind. This line is used to find the center of the Doppler shift, due to the stellar
radial velocity. The Fe II lines have thicknesses between those of Mg II and C
II and can be used to determine the velocity in the lower regions, close to the
stellar surface. (From [JJ91])
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the wind is high enough so that all the emission lines of FeII are essentially
unaffected by the presence of absorbing material in the wind.

By extracting the wind velocities for various heights above R∗ the veloc-
ity field can be reconstructed. Another example of the variation the in line
profile appearance with optical thickness found in the spectra of a the two
red (super)giants γ Cru and λ Vel is shown in figure 4. The absorption core
is stronger shifted with increasing optical line thickness.

Although this example of figure 4 illustrates the observational effect of
higher blueshift at increasing formation height, the accurate reconstruction
of a velocity field involves detailed model calculations [CRH+99]. And be-
cause of the large number of parameters (e.g. temperature-, density-, and
velocity-structure and metallicity) fits usually are not unique. Thus this
method is prone to large inaccuracies.

Another problem with the observation of winds from single stars is that
the emission lines in the UV are surrounded by numerous atomic lines so that
high resolution spectra are needed to discern the specific lines and extract
their profile. But cool giants are weak UV sources, so that only the closest
brightest stars provide sufficient flux.
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Figure 4: Typical emission line profiles that show a wind absorption core of
a few singly ionised metal lines in the spectra of the two red supergiants γ Cru
and λ Vel, plotted against the Doppler shift. In the left pane the line ID’s are
specified, in the right pane τ values are given. τ here stands for an estimated
value5 for the optical thickness τ?

λ
defined in Eq. (24).

An arrow marks the apparent absorption core center, which is more blue shifted
with increasing optical thickness. The shape of the thin lines, like C II 2325.4Å,
comes mainly from the chromosphere, whereas the forming regions of the op-
tically thicker lines extend to the outer layers of the wind. (From [BH97])

5The purpose of these values is to give an indication of the wind opacity for the absorp-
tion lines, as the actual opacity depends on the specific density and temperature structures.
A rough approximation for the optical thickness of the wind τ ?λ can be made assuming an
isothermal homogeneous wind with temperature T using the formula [CRH+99]

τ =
λ0

1000
gf exp

„

−∆El

kT

«

where λ0 is the rest wavelength of the line in Å, g is the statistical weight, f is the oscillator
strength, ∆El is the excitation of the lower energy level, k is the Boltzmann constant.
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Figure 5: The spectral composition of a binary system. Although the G6
primary has a greater luminosity than the A1 companion, the UV spectrum is
dominated by the companion. UV spectral lines are important for probing the
wind, therefore the higher UV Luminosity of binaries is a great observational
advantage over single stars. (From [BBB+01])

2.4.2 Binary systems

An alternative method to measure wind structures has been found by Deutsch
(1956). It uses binary systems consisting of a cool supergiant primary that
eclipses its dwarf companion. The secondary is much smaller than the pri-
mary and can be treated as a point source. The binaries are observed at high
spectral resolution in the UV. The dwarfs are much brighter UV sources than
the red supergiants, see figure 5, which makes them easier to detect than
single red supergiants, and there is no need to deal with the disentangling
of composite spectra.

Spectra taken at different orbital phases contain different spatial infor-
mation, originating from different lines of sight through the primary’s cir-
cumstellar shell, from the secondary on outward (see figure 6). When the
secondary is in front of the primary the influence of the wind is at a min-
imum (the wind is far more extended than the binary separation). The
spectrum changes when the secondary moves towards eclipse. For example,
a resonance line appears in minimum absorption and gets stronger towards
eclipse. During total eclipse the line turns into emission, as the photons
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Figure 6: The actual and apparent orbit of the binary system ζ Aur. The
line of sight, plotted as a dotted arrow, has its origin at the hot companion
and is altered on its way to through the circumstellar envelope of the primary
to the observer. Multiple high-resolution spectra for different orbital phases
allow a reconstruction of the inner wind region through a kind of tomographic
inversion. In the orbit of the companion the events are shown for two series of
observations, one with the Hubble Space Telescope and the Goddard High Res-
olution Spectrograph and the other with the Very Large Array radio telescope.
(From [HBB+05])
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Figure 7: In a binary system the secondary moves with supersonic velocity
through the circumstellar envelope of the primary. This produces a shockwave,
that is expected have a considerable effect on the structure of the envelope.
(From [Cha81])

from the hot star are scattered in the expanding envelope of the cool star.
From the changes in the spectrum the structure of the inner part of the

wind region can be deduced. The outer regions, outside the orbit of the
secondary, are reconstructed using the same methods as for single stars.
Near eclipse, the secondary provides an opportunity to probe deep into
the chromosphere. As explained in section 2.3, the wind acceleration in
the subsonic region, at close distance to the primary, is responsible for the
strength of the wind Ṁ . Having tight observational constraints for the wind
parameters is essential for finding a proper theoretical description of the
wind driving mechanism.

But besides these advantages there is also a complication associated with
the binary method. The question is to what extent the atmosphere and
the wind (extended atmosphere) of the primary are influenced by the hot
companion. The cool giant’s atmosphere should be radiatively heated and
gravitationally perturbed. The wind should be thinned out through accre-
tion of matter on the secondary. The supersonic movement of the secondary
through the wind should create a highly ionising shockwave, as shown in
figure 7, and the secondary itself could also have a wind. The interaction of
the two stellar winds should affect the velocity field considerably [HW82].

The precise impact of these influences is not known. There is only an
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Figure 8: A collection of velocity profiles for different types of stars. The
dotted lines are for single stars (α Ori [HA84] and α TrA [HDJB85]). The
dashed line is a best fit for the symbiotic binary EG And [Vog91]. It contains
a plus at the point where a power function changes into an exponential. The
solid lines are for the binary systems 32 Cyg [Baa92] and ζ Aur which has two
curves, one from 1994 [KB94] and an improved version from 1996 [BKR+96].
Winds from the single stars seem to be stronger accelerated at a shorter range
than those of the stars in binaries.

observational indication that at least the chromosphere of the primary is
not strongly influenced by the secondary: the line profiles and fluxes of
intrinsic chromospheric lines seem to show that chromospheres of supergiants
in binaries are similar to those of single stars [Ben05].

2.5 Empirical velocity structures

The stars that feature cool stellar winds can clearly be divided into single
stars and binaries. The wind structures that have been measured so far
do show substantial differences, but also within these two classes. Besides
being a binary or a single star there are apparently other stellar properties
that affect the structure of the wind. In figure 8, six velocity structures
are shown. All of these are results from semi-empirical model calculations.
The two dotted curves show the most rapid acceleration and belong to non-

binary stars. Such a rapid acceleration is confirmed for a number of single
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stars, like α Boo, HD 6833 [DSL92] and six hybrid stars6 [BM86]. For all
these single stars, it is found that within one stellar radius distance from
the star the wind is accelerated to half of its asymptotic velocity

v(r = R) = v∞/2 for some R∗ < R < 2R∗ (26)

The dashed curve of EG Andromedae shows fast acceleration too, but at
a larger distance from the star (∼ 3.75R∗) than for the single stars. EG And
is a symbiotic binary7. The accretion of matter has an obvious influence on
the wind in addition to the effects mentioned in the previous paragraph.
The wind velocity is below 10% of the terminal velocity at a distance of up
to about 3.5R∗. It is not clear from the source of this velocity field [Vog91]
how R∗ is defined. Possibly, the whole velocity field has to be shifted to the
left to correct for an offset in R∗.

The three solid curves show velocity fields for winds from binary stars

and exhibit a slower acceleration. Generally, all measured velocity fields of
binary stars show a gradual acceleration

v(r = R) = v∞/2 for R ≈ 4R∗ (27)

different from the fields of single stars, see Eq. (26).
However, comparing velocity fields with a normalised radial distance, as

in figure 8, can be misleading, as the wind acceleration mechanism is not
proven to scale with R∗. Therefore, curves for super giants would appear
much steeper than curves for similar winds from giants. In some cases
the stellar radius was not accurately known when modelling the wind. For
example, in 1981 the wind of α TrA has been determined for two cases of
stellar parameters, R∗ = 157R� and R∗ = 277R� [HDR81]. In 1985 for
the same star a value of R∗ = 97R� has been used [HDJB85]. But as the
velocity fields are results from model calculations that depend on R∗, one
can not simply rescale the field with a factor R∗,new/R∗,old.

Furthermore, the uncertainties in these curves are considerable. And as
the observational data get better, the models allow a more precise determi-
nation of the wind velocity. An example is shown in figure 8, in which there
is a curve for ζ Aur from 1994 and an improved one that was made two
years later.

6Hybrids are cool giants and supergiants featuring ”warm” emission lines in their UV
spectra and massive cool winds. With the term warm is meant a temperature of 4.2 .
log T . 5.2. In the sun such temperatures occur in the transition region between the
chromosphere and the ”hot” corona (log T ≈ 6). Hybrids do not emit detectable X-ray
flux, so obviously there is a negligible amount of ”hot” gas in the atmosphere.

7Symbiotic binaries are long period binary systems with three typical constituents:
a cool component, a hot component and a gaseous nebula surrounding the binary. In
the type considered here a white dwarf accretes matter lost as stellar wind by a cool
(super-)giant.
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2.5.1 The β-Law

A common velocity parametrisation used to fit the data is the β power-law

v(r) = v0 + (v∞ − v0)
(

1− r0

r

)β
(28)

Usually r0 is taken to be the stellar radius R∗8 and v0 a small fraction of
the asymptotic velocity. Often the simpler form

v(r) = v∞

(
1− R∗

r

)β
(29)

is used, which is a good approximation except for radii very close to R∗.
This β-law originates from the line driven winds from hot stars, where

the analytic solution is a β-law9 with β = 1/2.
The curves for α TrA, 32 Cyg and ζ Aur (94) in figure 8 are β-laws with

β = 1.0, β = 2.5 and β = 3.5 respectively. The curve for ζ Aur (96) consists
of two consecutive β-laws, the first is for R∗ < r < 5R∗ and has β = 3.5,
the second is for r > 5R∗ and has β = 1.5 [BKR+96]. This steeper slope
at a larger distance from the star is supported by the observations from EG
And, shown in that same figure 8.

2.6 Why modelling cool winds with PHOENIX

A complete self-consistent theoretical description for the mechanism driv-
ing cool winds has not been established yet. Therefore, the observational
constraints on the theory need to be improved to provide a better basis
for theoretic considerations. The processes that are involved in forming the
spectrum take place in different stationary and expanding regions. An accu-
rate reconstruction of the physical conditions at these locations is required
to further increase the amount of information that can be obtained from the
spectra. This implies, that model atmosphere calculations need to be most
rigorous and realistic.

One of the most advanced model atmospheres that is capable of calculat-
ing expanding atmospheres is PHOENIX [HB98]. PHOENIX is a general-purpose
state-of-the-art stellar atmosphere code with the following features:

1. 1D spherical symmetric radiative transfer
2. expanding media
3. the radiative transfer equation is solved using operator splitting
4. the NLTE rate equations are solved using operator splitting techniques

8Formally this is not correct, because r0 is the radius at which the wind has a velocity
v0, whereas R∗ is defined via the optical depth (Eq. (25)).

9in the assumption that the radiation pressure is much larger than the gas pressure,
which is a rather good approximation for typical hot winds.
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5. usage of four atomic databases with NLTE transitions: CHIANTI Ver-
sion 3 and 4, APED (ATOMDB) and the Kurucz database

6. line blanketing and background opacities are included by design
7. over 650 species in the EOS including atoms, ions, molecules and grains
8. dynamical opacity sampling (dOS) of about 42 Million atomic lines

and over 550 Million (and growing) molecular lines (more than 10GB
worth of data)

9. spectra can be calculated for any desired resolution (standard are
20000 to 500000 wavelength points spread from the UV to the radio)

PHOENIX has been used to model hot winds before [Auf00], but not for
cool winds. In the following chapter some aspects of PHOENIX are explained
which are important for the cool wind modelling process.
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3 The PHOENIX code for expanding atmospheres

The modelling process for cool winds can be divided into three steps. At
first, an initial atmospheric structure is setup. Then, the radiation transport
is calculated. Finally, the constructed atmosphere is corrected for deviations
from the conservation of energy. In this section, first the two latter (general)
modelling steps are explained (the radiative transport and the temperature
correction method), so an atmospheric structure is assumed to be already
available. Afterwards the (wind specific) atmosphere setup process is de-
scribed. For this step a piece of code is used written for the construction of
hot-wind atmospheres [Auf00].

3.1 Radiative transfer

Before discussing how radiation is transported through an atmosphere and
how the transport equation can be solved numerically, some definitions of
radiation related quantities are given.

3.1.1 Basic definitions

The definitions given here comprise only some of the most important radia-
tion quantities, namely those which are needed for the following sections. It
is mainly a summary of [RL79]. Another useful description of the processes
that form and affect the light a star emits is given in [Rut95].

Intensity The specific intensity (or surface brightness) Iν is the propor-
tionality coefficient in:

dEλ ≡ Iλ(~r,~l, t)(~l, ~n) cos θ dAdtdλdΩ (30)

with dEν the amount of energy transported through the area dA at the
location ~r, with ~n the normal to dA, between times t and t + dt, in the
frequency band between ν and λ + dλ, over the solid angle dΩ around the
direction ~l with polar coordinates θ and φ. This is the monochromatic
intensity. The total intensity I =

∫∞
0 Iν dλ.

Emissivity The contribution of the local monochromatic emissivity ηλ
(defined per cm3) to the intensity of the beam is

dIλ(s) ≡ ηλ(s) ds (31)

where s measures the geometrical path length along the beam in cm.
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Extinction coefficient The monochromatic extinction coefficient χλ spec-
ifies the energy fraction taken from a beam per unit path length (actually a
geometrical cross-section per unit volume (cm2· cm−3 = cm−1)).

dIλ ≡ −χλIλ ds (32)

Source function The source function is the ratio of the previous two
quantities

Sλ ≡ ηλ/χλ (33)

Optical depth The optical depth is defined as

dτλ ≡ −χλ ds (34)

This definition is valid for any line of sight. In this work, however, the radial
optical depth is used

τλ(r) =

∞∫

r

χλ(r) dr (35)

which measures the optical depth along the radial line of sight from τλ = 0
at the observer’s eye located at r = ∞ through the center of the star at
r = 0.

The radiative transfer equation The rate of change of the intensity of
a beam is given by the combined effects of emission (Eq. (31)) and extinction
(Eq. (32))

dIλ
ds

= ηλ − χλIλ (36)

This basic equation expresses that photons do not decay spontaneously so
that the intensity along a ray does not change unless photons are added to
the beam or taken from it.

3.1.2 The spherical symmetric radiative transfer equation

The radiative transfer equation (36) for the case of a spherically symmet-
ric atmosphere (SSRTE) for a co-moving frame can be written as [MW84]
[HB98]

αr
∂Iλ
∂r

+ αµ
∂Iλ
∂µ

+ αλ
∂

∂λ
(λIλ) + 4αλIλ = ηλ − χλIλ (37)
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with the three functions to ease the notation

αr = γ(µ+ β)

αµ = γ(1− µ2)

[
1 + βµ

r
− γ2(µ+ β)

∂β

∂r

]

αλ = γ

[
β(1− µ2)

r
+ γ2µ(µ+ β)

∂β

∂r

]

and the following variables

Iλ(r, µ) : specific intensity
r : radial coordinate
µ : cosine of the direction angle, µ = cos θ
v : velocity, β = v/c, γ2 = 1/(1 − β2)

χλ(r) : extinction coefficient, χ = κ+ σ + σlϕl(λ), with κ the absorp-
tion coefficients, σ the scattering coefficients for continuum pro-
cesses, σl the line scattering coefficients and ϕl the line profile
function.

ηλ(r) : emissivity

On the right hand side of Eq. (37), ηλ contains contributions from scat-
tering terms of the continuum and spectral lines.

ηλ = κλBλ(T ) + σλJλ +
∑

lines

σlλ

∫ ∞

0
ϕ(λ)Jλ dλ (38)

κλ : absorption coefficient
σλ : scattering coefficient for continuum processes

σl(λ) : line scattering coefficient
ϕl(λ) : line profile function
Sλ : source function
Jλ : mean intensity

The mean intensity Jλ is the zeroth angular moment of Iν

Jλ =
1

2

∫ 1

−1
dµIλ (39)

The basic problem of radiative transfer is that the evaluation of a particular
Iλ(τλ, µ) requires Sλ, and therefore Jλ, and therefore Iλ in many directions,
and therefore Sλ at many locations and many wavelengths. With equation
(38) the SSRTE becomes an integro-differential equation. It is time inde-
pendent and the velocity field is monotonic. Thus the SSRTE becomes a
boundary value problem in spatial coordinates and an initial value prob-
lem in wavelength coordinates. The SSRT equation (37) is solved with the
Accelerated Lambda Iteration (ALI) method as described in [Hau92] and
[HB04].
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3.1.3 The Accelerated Lambda Iteration

In order to solve the radiative transfer problem Jλ is calculated via the
source function Sλ by a formal solution of the SSRTE by using the so called
Lambda operator Λλ

Jλ = ΛλSλ (40)

The usual Lambda iteration method

Jnew = ΛSold (41)

Snew = (1− ε)Jnew + εB (42)

fails in the case of large optical depths and small ε (thermal coupling param-
eter, B is the Planck function). The range of the Lambda operator is only in
the order of ∆τ ∼ 1. At large optical depths, the mean intensity calculated
with the Lambda iteration must be Jλ = Bλ +O(e−τλ) and the convergence
is infinitely slow. If there are high opacities in certain wavebands, Jλ is
equal Bλ and the convergence is too slow again.

Therefore, an approximate Lambda Operator Λ∗ is used, which is defined
by

Λ = Λ∗ + (Λ− Λ∗) (43)

Thus equation (40) can be written as

Jnew = Λ∗Snew + (Λ− Λ∗)Sold (44)

and from equation (42) then follows

[1− Λ∗(1− ε)] Jnew = Jfs − Λ∗(1− ε)Jold (45)

where Jfs = ΛSold is the formal solution. With equations (43) - (45) new
values of the mean intensity Jnew can be obtained and with equation (42)
the new source function can be calculated. The new problem is to compute
the approximate Lambda Operator Λ∗.

3.1.4 Computation of the approximate Lambda Operator

For a fast computation of equation (45) the calculation and structure of
Λ∗ should be simple. Fastest convergence is obtained with Λ = Λ∗ but to
construct Λ is more time consuming than to construct a simpler Λ∗. The
diagonal or tri-diagonal form of the exact Λ matrix is optimal for a fast
convergence and computation of Λ∗.

The formal solution is performed along characteristic rays [OK87]. Along
the characteristic rays the SSRT Eq. 37 has the form [Mih80]

∂I

∂s
+ αλ

∂λI

∂λ
= η − (χ+ 4αλ)I (46)
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where s is the geometrical path length along a ray. In an expanding medium
the characteristic rays are curved. Before the SSRTE can be solved these
have to be calculated. The source function is interpolated piecewise linearly
or parabolically along each ray. For the specific intensity I(τi) the following
expressions are obtained along a ray k

Ik(τki ) = Ik(τki−1) exp(τki−1 − τki ) +

τki∫

τki−1

Ŝ(τ) exp(τ − τki )dτ (47)

Iki ≡ Iki−1 exp(−∆τki−1) + ∆Iki (48)

τki is the optical depth along the ray k with i as the running index of the
optical depth points. With τ1 = 0 and τki−1 ≤ τki it follows for the calculation
of τk:

∆τki−1 = (χ̂i−1 + χ̂i)|ski−1 − ski |/2 (49)

χ̂i = χi+4αλ,i is the effective extinction coefficient at point i and |ski−1−ski |
is the geometrical path length between point i and i− 1 along the ray k.

For ∆Iki the following expression applies

∆Iki = αki Ŝi−1 + βki Ŝi + γki Ŝi+1 (50)

αki , β
k
i , and γki are interpolation coefficients. When computing this coeffi-

cients it has to be distinguished between parabolic and linear interpolation
of the source function Ŝ. The expressions for the coefficients can be found
in equations (23) to (25) in [Hau92] and in [HB04].

The Λ∗ operator can be split up into two parts

Λ∗ = Λt + Λc (51)

Λt is the part for rays tangential to the core and Λc for core intersecting
rays. Equations to compute the parts of Λt and Λc are in equations (27) to
(32) of [Hau92]. With these equations it follows for the expression of the
full Λ-matrix

Λij =
∑

k

(∑

l

wkl,jλ
k
l,j +

∑

l′

wk2(k+1)−l′,jλ̂
k
2(k+1)−l′,j

)
(52)

wki,j are the angular quadrature weights, {l} is the set {i ≤ k + 1}, and

{l′} is the set {i > k + 1}. The coefficients λkl,j and λ̂kl,j depend on the

interpolation coefficients αki , β
k
i , and γki . How many coefficients have to

be computed depends on the bandwidth of the Λ-matrix. The CPU time
required for a computation of the full Λ-matrix can be reduced with a smaller
bandwidth.
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3.2 The temperature correction method

At the end of each iteration the temperature structure is checked to satisfy
the energy conservation, equation (72). In order to correct the deviations
from exact energy conservation a temperature correction procedure is ap-
plied. In the calculation of expanding atmospheres a generalization of the
Unsöld-Lucy temperature correction scheme to spherical geometry is used
[HBBA03].

The Unsöld-Lucy correction works on the principle that the ratios of
mean opacities κP , κJ and κF depend much less on changes in the temper-
ature structure than the integrated properties of the radiation field Jλ, Fλ
and Kλ. To obtain radiative equilibrium, the Planck function B has to be
corrected

∆B(r) =
1

κP
{κJJ − κPB + Ṡ/(4π)} − {2(H(τ = 0)−H0(τ = 0))

− 1

fqr2

R∫

r

qr′2χF (H(r′)−H0(r′))dr′} (53)

with

κP =



∞∫

0

κλBldλ


 /B

κJ =



∞∫

0

κλJldλ


 /J

χF =



∞∫

0

χλFldλ


 /F

as the wavelength-averaged absorption and emission coefficients. B is the
Planck function, J is the mean intensity, and F is the radiation flux. H =
F/4π, H0(τ) is the target luminosity, and q is the sphericity factor

q =
1

r2
exp




r∫

rcore

3f − 1

r′f
dr′


 (54)

where rcore is the inner radius. R is the outer radius of the atmosphere.
f(τ) = K(τ)/J(τ) is the Eddington factor with K = 1

2

∫
µ2Idµ as the

second angular moment of the intensity I. Ṡ is the sum over all additional
sources of energy, e.g. mechanical energy. The first term of equation (53) is
dominant in the outer parts of the atmosphere and the second term in the
inner parts.
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Once ∆B is known, the temperature correction follows from the Stefan-
Boltzmann law

∆T (r) =
dT

dB
∆B =

∆B(r)

4σSBT 3(r)r2
(55)

where σSB is the Stefan-Boltzmann constant.

3.3 The hot-wind model: construction of the extended at-

mosphere

PHOENIX contains a wind model that was constructed by J. Aufdenberg
[Auf00] for the purpose of modelling hot-winds.

The gas escaping from a star in an ideal case is treated as a hydrodynamic
flow, satisfying the conservation of mass, momentum, and energy. But in
sections 2.2.3 and 2.3 the problems have been shown inherent in constructing
a self consistent theoretical model based on

1. the two fundamental equations: the continuity equation (1) and the mo-
mentum equation (16)

2. the lower boundary conditions ρ0, v0, vg0 and T0

that is to satisfy the upper boundary conditions at r∞. Now as no self-
consistent model is known that produces results in agreement with the most
basic observational data one has to fall back on semi-empirical models.

In the model the atmosphere is strictly divided into a hydrodynamic
(wind) region and a hydrostatic region.

3.3.1 Wind region

In a semi-empirical model the momentum equation is not used to calculate
the velocity structure, so momentum conservation is no longer enforced. But
mass and energy conservation is yet presumed. The continuity equation

Ṁ(r) = 4πr2ρ(r)v(r) = Ṁ (56)

represents mass conservation, and is used to fix the density structure

ρ(r) =
Ṁ

4πr2v(r)
(57)

in which v(r) is an empirical velocity field, a β-law is the best candidate at
present (see section 2.5)

v(r) = v∞

(
1− R∗

r

)β
(58)
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In contrast to Eq. (28) this common form of the β-law that is implemented
in the model requires that r > R∗ for the base of the hydrodynamic region,
to prevent ρ(r) from going to infinity there.

The energy conservation is used after the atmospheric structure is setup
to iteratively refine the model. When the energy conservation equation
(72) has reached its prescribed accuracy, then the model is converged. This
process is described in section 3.2.

The structure of the dynamic layers is computed on a fixed radial grid.
The structure of the static layers of the atmosphere is computed on an
optical depth grid. Typically 50 layers are used consisting of 35 layers for
the wind region and 15 layers for the static region. The radial grid points
are prescribed by a cosh-law to finely sample the inner region of the wind,
where the velocity gradient is steepest, and to coarsely sample the outer
portion of the wind where the velocity gradient is small.

The radii r(l) in the upper layers l = 1, . . . , l∗ are specified by

r(l) = Rmin +Rmax

cosh
(
C l∗−l

l∗

)
− 1

cosh
(
C l∗−1

l∗

) (59)

where l∗ is the layer immediately above the dynamic-static transition, typ-
ically layer 35, and C is a constant (typically C > 5) that can be used to
adapt the radial sampling to the form of the velocity field. Equation (59)
does satisfy r(l∗) = Rmin, but r(l = 1) = Rmax generally not. This issue is
returned on in section 4.4.2 on page 46. Layer 1 is the outermost layer and
typically we choose the radial extension in the wind to be a factor of 200,
r(l = 1) = 200R∗. The radius of the layer above the transition radius r(l∗)
is defined as

Rmin =
R∗

1−
(
vmin
v∞

)1/β
(60)

with

vmin = pmin · v∞ (61)

a percentage of the terminal velocity. The default value of pmin = .002.
The optical depth scale τstd(l) is obtained from the radial scale r(l) by

integrating

dτstd = −κstdρdr (62)

where dτstd and κstd are the optical depth and mass extinction coefficient
respectively, both at the reference wavelength λstd = 12000Å. κ is calculated
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for each layer from the pressure and the temperature using the equation of
state

κ(l) = κ(Pg(l), T (l)) (63)

where the gas pressure Pg(l) is calculated with with the ideal gas law

Pg =
ρkT

µmH
(64)

with µ ≡ m̄/mH the mean ”molecular” weight per free particle (including
free electrons) in atomic units, and Pg =

∑
i Pi = ρkT

mi
the gas pressure

is the sum of all partial pressures, with i specifying all types of particles
including free electrons. The density ρ(l) needed in Eq. 64 was available
already (Eq. 57), a temperature structure T (l) is specified as input parameter
T (0)(l).

3.3.2 Hydrostatic region

In the hydrostatic layers (l = l∗ + 1, . . . , N) the structure is computed on a
fixed logarithmically spaced optical depth grid

log(τ(l)) = log(τ(l∗)) + (l − l∗)
[

log(τ(N))− log(τ(l∗))
N − l∗

]
(65)

starting from the value of the dynamic region’s bottom layer τ(l∗). Here
τ = τstd to ease the notation. From here on for all occurrences of τ referring
to the optical depth grid τ = τstd holds. The lower boundary is defined for
an optical depth τ(N) = τmax with a typical value10 of τmax = 100 to ensure
it is set well below the thermalisation depth11.

Once the complete τ -grid is available the temperature structure, that
is supplied as input parameter T (0)(τ), is mapped onto the new grid by
interpolation.

Now the complete atmospheric structure can be computed for each layer
by numerically integrating the hydrostatic equation

dPg
dτstd

= − g

κstd
(66)

downwards, starting from the transition layer l∗ at which the pressure, den-
sity and thus the mass extinction coefficient are already known. The radius
for every layer is calculated using equation (62).

10The value of 100 says that only e−100 of the radiation field at that depth in the
atmosphere is not absorbed on its way out to the observer by absorption processes.

11The thermalisation depth is defined as the optical depth at which the radiation field
”thermalises” Jλ = Bλ as seen from outside. It is not easy to pin down the exact location
at which this is satisfied, therefore mostly a thermalisation proximity is meant.
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3.3.3 Structure check

When the complete atmosphere is constructed the radial grid is checked and
if necessary adjusted so that the the jump in the density is smooth across
the static/dynamic transition, that is when

∆B ≡ ρ(l∗ + 1)/ρ(l∗) < 5 (67)

If the ratio is larger than 5 a new target value for the bottom wind layer
density

ρ′∗ = ρ(l∗ + 1)/2 (68)

is set and then the setup is repeated from the beginning, starting with the
radial grid setup, in which vmin this time is not set as a percentage of the
terminal velocity (Eq. (61)), but by

vmin = vmin
ρ(l∗)
ρ′∗

<
2

5
vmin (69)

where for the last step equations (67) and (68) are used.
Once this smoothness requirement is fulfilled the next higher density

jump is checked, which should satisfy

∆A ≡ ρ(l∗)/ρ(l∗ − 1) < 5 (70)

If this is not met, the input parameter C is increased in small steps

C = C +
1

10
(71)

The slope of the radial grid lowers for small r and rises for high r, thus the
bottom of the wind region is finer sampled. Again, the complete atmospheric
structure is recomputed, now with the new value for C. The requirements
for ∆A and ∆B both have to be fulfilled within 10 iterations, otherwise the
grid construction is halted. Better starting values for C and pmin must then
be set in order to successfully complete the model.

In fact, the new target density ρ′∗ is also set when ∆A is found to be too
large. This leads to problems when calculating cool winds. This problem is
described in section 4.5 on page 47.

3.4 Model completion

Once a proper atmospheric structure is found for all layers, the radiative
transfer problem is solved, which is described in section 3.1.2. Then the
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temperature structure is iteratively corrected using the temperature cor-
rection scheme (see page 32) to improve energy conservation. The energy
conservation is specified in the Lagrangian frame by radiative equilibrium

∞∫

0

(ηλ − χλJλ) dλ ≤ ε (72)

where ηλ and Jλ describe the emissivity and mean intensity respectively and
ε = 0 for exact radiative equilibrium, when each element of material absorbs
exactly the same amount of energy that it emits. In the modelling process
exact equilibrium is not forced but iteratively corrected for. The energy
conservation error ε of a converged model typically is < 1%.

The process described in this section is schematically shown in figure 9.

3.5 Overview of the input parameters

To summarise, the most relevant input parameters which characterise the
model are:

1. The general stellar parameters

Teff : effective temperature
R∗ : stellar radius

log g : logarithm of the gravitational acceleration at R∗
Z : chemical composition12

2. the wind structure parameters

Ṁ : mass loss rate
v∞ : terminal wind velocity
β : wind velocity field parameter

3. and the wind sampling parameters:

N : number of concentric layers in the model
l∗ : bottom layer of the dynamic region

Rmax : maximum outer radius
pmin : percentage of the terminal velocity to set Rmin

C : wind sampling cosh-function tuning parameter

PHOENIX offers numerous other parameters (see the PHOENIX manual
[Hau04], but unless mentioned otherwise, the default values have been used
and their purposes are not discussed in the scope of this work.

In addition to these three types of modelling parameters there is the
input temperature structure the wind structure construction is started from.

12Z represents the abundance of all elements except H and He on a logarithmic scale.
A metal abundance of Z = −2 means fraction of 1/100 of the solar abundances.
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Dynamic Region:
r(1) = Rmax
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?
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4πr2v(r)

Pg(r) = ρkT/(µmH )
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Figure 9: This Flowchart outlines the wind model scheme. A new atmo-
spheric structure is set up (left box) based on an initial input temperature
structure. This is repeated until a smooth transition is realised for the at
the dynamic/static interface. The new structure is then sent to the general
radiation transfer code described in section 3.1. The structure is refined via
a temperature correction, until energy conservation is satisfied with enough
precision. Then the model is considered converged. (After [Auf00])
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Either the output structure of a similar previously calculated model, or, if
non available, a comparable non-stellar-wind structure is used. The final
model results are independent of the initial temperature structure because
of the iterative adjustments made to the structure in order to fulfill the
convergence condition (see section 3.4).
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4 From hot-wind to cool-wind model

The first step in the modelling process, is to find the limitations of the
original hot-wind model when it is applied to cool winds. A convenient way
to achieve this is to perform a grid calculation. Model calculations are done
for a number of varied parameters, repeatedly varying one of these while
keeping all others constant.

After the limitations of the original model are addressed the modifica-
tions are described that have been made in the scope of this work, in order
to extend the applicability of the wind model to cool winds.

4.1 Determination of the original model limitations

The most interesting model parameters are those that change when moving
from hot (super)giants to cool (super)giants. A few selected parameters and
corresponding realistic parameter ranges are shown in table 1.

The upper three parameters Teff , log g and the metallicity Z are very
general stellar parameters. Except for the effective temperature these are
kept constant for all of the models presented in this work with the following
values:

the surface gravity log g = 0.5
the metallicity Z = 0

The effective temperature is naturally a free parameter, because it is by far
the most important stellar atmosphere parameter. It has the largest impact
on the shape of a spectrum.

The results of the grid calculation with the original model are shown in
figure 10. The first tree columns show the model parameters that are varied

Parameter Units typical min max step
M-K SG O-B SG M-K SG

Teff K 4, 000 40, 000 2800 4400 400
log g cm/s2 .5 3.0 0 2.0
Z Z� 0 0 −1 1

log Ṁ M�/yr −7 −7 −10 −5 1
v∞ km/s 60 1200 10 120 10
β 3.0 3.0 2.5 4.0

Table 1: The most important parameters influencing wind models, from the
top down: effective temperature, gravitational acceleration, metalicity, termi-
nal wind velocity and β. Typical values are given for cool and hot Super-
Giants. The parameter ranges represent realistic values for K and M super-
giants. Where no step width is specified, the parameter has not been varied
for wind models. Instead the typical values have been used.
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Exit
Teff VWind dM/dt ModID SpecID Status RunTimeM  RunTimeS ErrMsg
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
2800 120 E−11 94313 94314 ×  00:00:09  00:00:12 interp: logpg out of range
2800 120 E−10 94315 94316 ×  00:00:09  00:00:12 interp: logpg out of range
2800 120 E−08 94317 94318 O O 03:43:21  05:07:28
2800 120 E−06 94319 94320 O O 02:50:17  11:38:08
2800 60 E−11 94321 94322 ×  00:00:24  00:00:04 interp: logpg out of range
2800 60 E−10 94323 94324 ×  00:50:22  00:00:05 interp: logpg out of range
2800 60 E−08 94325 94326 ×  00:30:04  00:00:06 spultc: temperature .le. 0.d0!
2800 60 E−06 94327 94328 O O 02:47:57  08:18:21
2800 10 E−11 94329 94330 ×  00:17:31  00:00:04 interp: logpg out of range
2800 10 E−10 94331 94473 O O 03:34:43  10:03:30
2800 10 E−08 94333 94334 O O 03:32:57  07:40:42
2800 10 E−06 94335 94336 ×  00:17:08  00:00:06 accit: not converged to prescribed accuracy!
3200 120 E−11 94337 94338 ×  00:00:08  00:00:04 interp: logpg out of range
3200 120 E−10 94339 94340 ×  00:20:32  00:00:04 spultc: temperature .le. 0.d0!
3200 120 E−08 94341 94474 O O 01:32:33  05:48:17
3200 120 E−06 94343 94344 ×  00:07:48  00:00:05 accit: not converged to prescribed accuracy!
3200 60 E−11 94345 94346 ×  00:00:08  00:00:05 interp: logpg out of range
3200 60 E−10 94347 94348 ×  00:18:59  00:00:04 spultc: temperature .le. 0.d0!
3200 60 E−08 94349 94475 O O 01:18:49  05:46:50
3200 60 E−06 94351 94352 ×  00:05:36  00:00:04 accit: not converged to prescribed accuracy!
3200 10 E−11 94353 94354 ×  00:20:46  00:00:13 spultc: temperature .le. 0.d0!
3200 10 E−10 94355 94356 O O 02:12:39  06:11:09
3200 10 E−08 94357 94476 O O 00:49:10  07:46:15
3200 10 E−06 94359 94360 ×  00:45:53  00:00:09 accit: not converged to prescribed accuracy!
3600 120 E−11 94361 94362 ×  00:00:08  00:00:05 interp: logpg out of range
3600 120 E−10 94363 94364 ×  00:00:17  00:00:04 interp: theta/lg(T) out of range
3600 120 E−08 94365 94366 ×  00:00:56  00:00:04 phoenix: wind rgrid problem, stopping.            
3600 120 E−06 94367 94477 O O 00:34:39  06:05:23
3600 60 E−11 94370 94371 ×  00:00:32  00:00:05 interp: logpg out of range
3600 60 E−10 94372 94373 ×  00:00:31  00:00:05 fcthyd: convection theta .lt. 0!
3600 60 E−08 94374 94375 ×  00:00:39  00:00:04 phoenix: wind rgrid problem, stopping.            
3600 60 E−06 94376 94377 O O 00:40:24  06:27:21
3600 10 E−11 94378 94379 ×  00:00:16  00:00:04 interp: theta/lg(T) out of range
3600 10 E−10 94380 94381 ×  00:00:16  00:00:05 fcthyd: convection theta .lt. 0!
3600 10 E−08 94382 94383 O O 00:35:57  01:49:51
3600 10 E−06 94384 94385 ×  00:10:53  00:58:16 accit: not converged to prescribed accuracy!
4000 120 E−11 94386 94387 ×  00:00:35  00:00:04 interp: logpg out of range
4000 120 E−10 94388 94389 ×  00:00:42  00:00:04 phoenix: wind rgrid problem, stopping.            
4000 120 E−08 94390 94391 ×  00:00:43  00:00:04 phoenix: wind rgrid problem, stopping.            
4000 120 E−06 94392 94393 O O 00:40:02  01:19:47
4000 60 E−11 94394 94395 ×  00:00:09  00:00:05 interp: logpg out of range
4000 60 E−10 94396 94397 ×  00:00:34  00:00:05 gradad: ierr .ne. 0, matrix singular
4000 60 E−08 94398 94399 ×  00:00:18  00:00:04 fcthyd: convection theta .lt. 0!
4000 60 E−06 94400 94401 O O 00:35:40  05:47:57
4000 10 E−11 94402 94403 ×  00:00:34  00:00:18 gradad: ierr .ne. 0, matrix singular
4000 10 E−10 94404 94405 ×  00:00:25  00:00:09 fcthyd: convection theta .lt. 0!
4000 10 E−08 94406 94407 O O 00:35:50  01:32:40
4000 10 E−06 94408 94409 ×  00:15:13  06:39:36 accit: not converged to prescribed accuracy!
4400 120 E−11 94410 94411 ×  00:00:09  00:00:08 interp: logpg out of range
4400 120 E−10 94412 94413 ×  00:00:12  00:00:06 fcthyd: pgas < 0!
4400 120 E−08 94414 94415 ×  00:00:12  00:00:07 fcthyd: pgas < 0!
4400 120 E−06 94416 94417 ×  00:00:10  00:00:08 fcthyd: pgas < 0!
4400 60 E−11 94418 94419 ×  00:00:08  00:00:07 interp: logpg out of range
4400 60 E−10 94420 94421 ×  00:00:11  00:00:07 fcthyd: pgas < 0!
4400 60 E−08 94422 94423 ×  00:00:13  00:00:08 fcthyd: pgas < 0!
4400 60 E−06 94424 94425 ×  00:00:12  00:00:07 fcthyd: pgas < 0!
4400 10 E−11 94426 94427 ×  00:00:13  00:00:09 fcthyd: pgas < 0!
4400 10 E−10 94428 94429 ×  00:00:12  00:00:04 fcthyd: pgas < 0!
4400 10 E−08 94430 94431 ×  00:00:35  00:00:04 fcthyd: pgas < 0!
4400 10 E−06 94432 94478 O × 00:42:37  15:11:24 =>> PBS: job killed: walltime 54008 exceeded limit

Figure 10: Results from a grid calculation with the original model performed
in order to find the limitations of the hot-wind model when it is applied to cool
winds. This is the output of a batch program constructed to manage the grid
calculations performed in the scope of this work. Only 15 out of 60 models did
not terminate prematurely. The Teff = Teff , VWind = v∞ and dM/dt = Ṁ are
in the units K, km/s and M�/yr respectively.
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in the grid. The 4th and 5th column show the Process IDs belonging to
the calculations of the model and the corresponding spectrum respectively.
The 6th (double) column shows the exit status of the model/spectrum cal-
culations. The 7th and 8th column gives the calculation time. The last
column the error message the calculation exits with when not successful.
Only 15 out of 60 models finished the specified number of iterations, 20 in
this case. However, just finishing the 20 iterations does not imply that the
model converged.

There are nine different error messages shown in the last column of figure
10. Not all of them are caused by errors in the atmospheric structure. For
example the error for the model with {Teff , v∞, Ṁ} = {4400, 10, 10−6} in
the units of table 1 on page 40

=>> PBS: job killed: walltime 54008 exceeded limit

comes from the job queuing system that killed the computation because
it took longer than the time reserved for it, 15 hours in this case. It is
likely however, that the spectrum calculation would have been completed
successfully in a bit more time. The spectrum computation is in fact
just one more iteration13, of which just 20 passed before. Besides, there
are other spectrum computations that took almost 12 hours to complete
({Teff , v∞, Ṁ} = {2800, 120, 10−6} in the usual units) whereas others only
need 1 hour and 30 minutes ({Teff , v∞, Ṁ} = {4000, 10, 10−8} in the usual
units).

Nevertheless, there are a lot of errors that are caused by improper con-
struction of the atmosphere. Some of these can be resolved by individual
fine tuning. But except from the fact that it is very laborious, a principally
better method is to adapt the atmosphere construction originally intended
for hot stellar winds to cold-wind modelling.

4.2 Unaltered basic assumptions

Although cool winds are principally completely different from hot winds
(see section 2.2), the most fundamental assumptions made for the hot-wind
model can be kept unchanged:

1. time independent, steady state
2. radial symmetry
3. β velocity law
4. smooth single-phase flow, so no dust
5. no mechanical dissipation, heat conduction or viscosity
6. no magnetic fields

13The fundamental difference, is that after every iteration in the wavelength loop the
radiation field is Lorentz transformed from the comoving Lagrange frame into the Euler
frame. This difference, however, is not relevant for the convergence of the model.
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7. no rotation effects
8. constant chemical abundances throughout the (extended) atmosphere

The things that do change are described in the following.

4.3 Upper boundary

4.3.1 Low pressure problem

Figure 10 shows that non of the models for low mass loss rates of Ṁ =
10−11Ṁ/yr completed successfully. Most of these terminated with the mes-
sage

interp: logpg out of range!

For the calculation of the equation of state (EOS) partial pressure tables are
used that have a limited pressure range. The pressures in winds with small
Ṁ , are by far smaller than the normal atmospheric ranges.

Therefore, the first step to tackle the low pressure problem is to compute
new pressure tables with lower ranges with csppress (see the PHOENIX man-
ual [Hau04]). The pressure tables have a prescribed format, in which the
pressure range extends over 19 orders in predefined steps. The normal range
of the gas pressure in the tables is 109 − 10−10 dyn/cm2, whereas the newly
calculated tables have ranges from 108 − 10−11, 107 − 10−12, 106 − 10−13

and 105 − 10−14 dyn/cm2. It turned out that in the last two tables the up-
per pressure limit is too low for the inner shells of the hydrostatic parts of
the atmosphere. In practice the table with the range 107 − 10−12 dyn/cm2

proved to be the most useful.
The new limit of the gas pressure

Pg ≮ 10−12 dyn/cm2 (73)

is a factor 100 smaller, but in many cases still not small enough. The next
step is that regions with a pressure of less than 10−12 dyn/cm2 are so opti-
cally thin, that their contribution to the spectrum can easily be neglected.
This means, that the extent of the radial grid must be reduced until the outer
layer is within the range of the table. The scheme used for this stripping off
of outer layers is:

1. construct the radial grid r(l)
2. compute the state of the top layer r(1)
3. check whether Pg(1) > 10−12

4. if not, reduce the radial range according to

Rmax = Rmax ·
[
1− 0.2

(
3− 2

Pg(1)

10−12

)]
(74)
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in which the factors 0.2, 3 and 2 are chosen in such a way that the range is
reduced between 20% in case that the outer pressure is close to the target
value and 60% if it is still way off.

These steps are repeated until the condition of step 3 is met. This
iteration is very fast because only one layer needs to be computed.

When hot winds are modelled, the wind temperatures are high enough
that molecules do not need to be considered in the equation of state. This
significantly reduces the calculation time, so that the equation of state can
be calculated from scratch for every model again. Therefore, the low outer
pressure problem does not occur for hot-wind models. Nevertheless, it is
useful to strip off the layers with extremely low pressures. These layers have
a negligible effect on the spectrum and can rather be used for the wind
regions where the influences on the spectrum are large and change rapidly
from layer to layer.

4.3.2 Start new iterations from initial values

In the iterative process described above another problem emerges. When the
state of the top layer is computed, the environmental variables T (1), Pg(1)
and g(1) are recalculated and the old values are overwritten. The calculation
is not very precise at this stage and is meant as a initial guess needed to suc-
cessively perform the full precise LTE calculation. But when the unprecise
values are repeatedly reused, the initial deviations are repeatedly amplified.
The errors can become so large that the subsequent structure calculations
yield invalid structures (e.g. negative temperatures). This problem of pro-
gressive error amplification is solved by making an initial backup of the three
parameters that are altered in the top layer setup and restored before every
following top layer calculation. In addition the initial Rmax is stored as the
reference radius of the restored values. Thus every new calculation starts
from scratch.

4.3.3 Inexact reassignment

The modifications that finally solved the outer low pressure issue mainly
affected the top layer setup. But another problem, occasionally affecting
model or spectrum calculations for which a preceding model was unaffected,
has been found to originate from the top layer setup

s3init: beta inversion!

caused by a non-monotonic velocity field. The layer in which the velocity
in those cases is not monotonic appeared to be the outer layer. The wind
velocity for large r becomes almost constant (but still increases), and the
decrease in the last layer is not very obvious as it occurs typically after the
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15th decimal place. This is due to a wrong reassignment of the outer velocity

v(1) =
Ṁ

4πr(1)2ρout
(75)

in which ρout is a common block variable in PHOENIX that is not in all cases
exactly equal to ρ(1), which is defined in Eq. (57) in the top layer setup. The
problem has been solved by removing the reassignment, which is equivalent
to exchanging ρout by ρ(1) in Eq. (75) for an exact reassignment.

4.4 Lower boundary

4.4.1 Thin hydrostatic region problem

Another problem arises in the static part of the atmosphere. The static part
is sampled quite roughly with typically only 15 layers to save layers for the
dynamic part. In the static layers setup first an optical depth grid τ(l) is
constructed, based on the bottom value of the wind region τ(l∗) (see page
35). The slope of this grid increases with decreasing number of static layers
and with decreasing optical depth at the interface τ(l∗). The slope of the
τ -grid is not allowed to be too large because large steps in τ are problematic
when solving the radiation transport equation (section 3.1.4). To prevent
the slope from becoming to large, a maximum slope was hardcoded into the
model overruling the target maximum value τmax.

The optical depth of the interface depends on the mass loss rate via the
density. The lower mass loss rate models here give rise to a problem. The
largest value that is reached for τ for low mass loss rates (i.e., Ṁ / 10−9) is
typically one or two orders lower than τmax. Thus the complete atmosphere
is thin at the wavelength λstd at which the τ -grid was constructed.

The solution to this problem is obvious: the hardcoded maximum slope
must be replaced by a method that reduces the needed slope to such extent
that the hardcoded maximum isn’t even reached. In order to lower the
needed slope first the number of static layers N − l∗ is increased. This aim
can be merged into the corrections of section 4.3 where the outer layers are
stripped off by reducing Rmax. There the stripped shells were all released
to the wind region, where they had been taken from, so that the parameter
l∗ was left unchanged. Now they will be equally divided between the wind
region and the static region. To the sequence on page 43 another step is
added:

5. release the outer shell alternatingly to the static or wind region

l∗ = l∗ − δtop with δtop = 0, 1 (76)

where δtop is toggled between 0 and 1 every iteration starting with 1.
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Although at the top layer setup procedure nothing is known about a pos-
sible problem at the bottom, it is justified to release shells to the static
region, because if the wind is too optically thin at the top, then it will be
relatively thin at the transition layer either. Therefore, the extra layers for
the hydrostatic region will be needed there after the top layer setup anyway.

But in spite of this modification to the top layer setup the required slope
is not always achieved. The outer layers of the wind in these cases are often
optically very thin, with values of τ / 10−10 and maybe a few more can be
stripped off here. This optical depth is based on continuum processes only,
and only for one wavelength. The line extinction coefficients can be up to
8 orders larger than the continuum coefficients. In order to make sure that
the optical depth of the outer shell with the contributions of line processes
included does not fall below 10−1 at all wavelengths for the strongest lines,
only the layers for which τ(l) < 10−10 are released additionally. Again these
are equally divided (approximately) between the wind and the static region

l∗ = l∗ − δbot with δbot = floor(Nnow/2) (77)

where Nnow represents the number of no-wind (τ(l) < 10−10) layers.
But still, the extra layers now available to the static region reduce the

slope not always enough to get below the maximum. The second way to
decrease the slope is to increase the optical depth at the interface τ(l∗). This
is done by reducing Rmin. The velocity law approaches 0 when r → R∗. It
follows from Eq. (57) that ρ approaches ∞ when r → R∗. By moving closer
to the star the density and thus the optical depth at the transition interface
can be increased.

The initial value of Rmin is determined in the original model with the pa-
rameter pmin, with a default value of pmin = 0.002. If the first two attempts
to decrease the slope of the τ -grid described above have not been sufficient,
the minimal velocity of the wind region is iteratively reduced according to

pmin = pmin/10 (78)

until the condition

τ(l∗) ≤ τmax/10dmax(N−l∗) = 102−0.3(N−l∗) (79)

is met, where dmax = 0.3 is the hardcoded maximum slope. Every time a
new value for pmin is set, a new radial grid is made and the wind region
structure is recomputed down to the bottom in order to check condition
(79).

4.4.2 Radial grid fix

The three modifications described above effect that thin hydrostatic regions
no longer occur. However, while examining the radial structure being mod-
ified by the loop described above, a problem has been found that causes
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the outer radius to change unintentionally every time the radial grid is re-
computed. The radial grid as described by equation (59) does not generally
satisfy r(1) = Rmax. Although the deviations are not very large, i.e. in the
order of a few percent, the many recomputations performed in the modified
model make the deviation grow increasingly. The corrected expression for
the radial grid setup is

r(l) = Rmin + {Rmax −Rmin)}
cosh

(
C l∗−l
l∗−1

)
− 1

cosh(C)− 1
(80)

which satisfies both r(1) = Rmax and r(l∗) = Rmin.

4.5 Transition boundary

4.5.1 Improve smoothing process

The smoothing process as it is implemented in the original wind model (see
section 3.3.3) does not work as desired in many cool-wind cases. In figure
10 the four models with the message

phoenix: wind rgrid problem, stopping.

aborted due to insufficient smoothing. This problem is not as rare as the
list suggests with only four out of sixty models. The other frequent errors
that occur in the list are due to the upper and lower boundary problems
that are described above. The structure check is the last step of the grid
setup iteration. So only models which survive the earlier steps are prone to
this problem.

In the smoothing procedure (see section 3.3.3), the density is checked at
the hydrodynamic-static transition ∆B and at the transition directly above
it ∆A. ∆B is decreased by moving l∗ towards l∗+ 1 using the target density
ρ′∗. ∆A is decreased by moving the points in the bottom of the wind region
l < l∗ closer together (so towards l∗ because l∗ is fixed) by increasing the
radial sampling constant C. The effect of increasing C is shown in figure 12.

The jump that causes the ”r-grid problem” in most cases is ∆A. If the
threshold ∆A > 5 is exceeded, the original model not only increases C but
also uses the new target density ρ′∗ of Eq. (68) to set Rmin. The new Rmin

improves ∆B a bit but at the same time makes ∆A much worse. When
setting the new Rmin via the target density l∗ moves faster up towards l∗+1
than l∗ − 1 to l∗ because of the increasing slope when moving towards the
star (see figure 11). The little increase of C = C+1/10 in the original model
in most cases can not compensate for this effect, not to speak of improve
the jump.

The smoothing procedure performs much better when the new target
density is prevented to be set in case that ∆A is too large. However, the ∆A
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Figure 11: An artificial density curve with four sampling points belonging
to the layers l∗ − 2, l∗ − 1, l∗ and l∗ + 1. The density jumps ∆A and ∆B are
between the layers l∗ − 1 and l∗ and the layers l∗ and l∗ + 1 respectively.

problem still is not completely solved, which means that the C correction
of Eq. (71) is insufficient with the built in limit of 10 iterations, so that the
bottom layers of the wind region are still too far apart (see figure 11).

The influence of C on the radial grid is shown in figure 12. If the original
model is started with the default value of C = 5.0 it can increase to C =
5.0 + 10 ∗ 0.1 = 6.0 at most (see section 3.3.3). In order to both extend
the range of the parameter C and reduce the number of iterations required
for smoothing, the step width of C is increased by a factor of 5. The new
correction to the jump ∆A is

C = C + 5/10 (81)

for every iteration.
With these modifications, the smoothing problems no longer occur.

4.5.2 Avoid remappings of a mismapped temperature structure

The basic idea behind the construction of the atmosphere (see section 3.3)
is to start with an initial guess for a radial grid (parameters pmin, Rmax and
C). Then an atmosphere is constructed based on the guess in which one step
is to map the temperature structure on the initial grid. Subsequently, the
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Figure 12: Six radial sampling curves for values of the parameter C from
C = 5.0 to C = 10.0 with a stepsize of 1.0. The radii are given in units of
the stellar radius R∗ whith a maximum radius of Rmax = 200R∗. On the x-
axis the layer numbers are shown with a typical total of 35 for the wind region.
Increasing C lowers the slope of the lower layers (closer to the star, with higher
layer number) and steepens the slope in the outer regions of the wind.

initial parameters are refined. This scheme is iterated until the constructed
atmosphere satisfies the specified conditions.

When the τ grid that is constructed during the first iteration deviates
much from the final grid, the interpolations made during the atmosphere
construction process can yield a very unusable temperature structure. Con-
sequent remappings of this initial mismapping in the best case leads to a
non-optimal atmosphere, but more frequently the calculation stops after
some iterations.

The basic idea of an initial guess that is iteratively refined has been
extended in many of the modifications made for cool winds. Therefore,
an important last modification to the hot-wind model is to save the initial
temperature structure T (0)(τ) and reuse the saved structure instead of the
remapped structure for next iterations where the parameters pmin, Rmax and
C are refined. This is in complete analogy to the modification described in
4.3.2 where the top layer is saved and restored for the same purpose.
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5 The first results with the new model

With the modifications made to the original model described in chapter 4 it
is now interesting to see how the modified model performs when atmospheres
of cool-wind stars are calculated. In the first place the ability is tested
to setup atmospheric structures that are able to converge. In addition,
the spectra produced by the model calculations are examined to contain
characteristic wind features, like those used for observing cool stellar winds
described in chapter 2.4

In this section the bare results are shown for these two tests. A discussion
of the results is found in section 6.

5.1 Model grid recalculated with the modified code

The grid calculation that was performed with the original model (see figure
10) has been repeated with the modified model. The model parameters
have not been changed in order to give a fair comparison between the old
and the new grid results (except for the three grid parameters: effective
temperature, terminal wind velocity and mass loss rate). The new results
are shown in figure 13.

Not all models have finished successfully. One type of error has occurred
for two models. This type of error is due to an unsuitable value of a general
PHOENIX parameter, taulin. The effect of taulin on the wind model cal-
culations is described in section 6.1. When the taulin value is increased a
little bit (from 10−3 to 10−2) all models finish successfully.

The grid had originally been calculated to find the limitations of the
hot-wind model when it is applied to cool winds. The limitations of the
original model are thus found to be resolved with the modified model.

50



Exit
Teff VWind dM/dt ModID SpecID Status RunTimeM  RunTimeS ErrMsg
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
2800    120     E−110 93823 93989 O O 03:53:21 06:01:51  
2800    120     E−100 93824 94111 O O 07:34:14 04:22:39  
2800    120     E−080 93825 93990 O O 04:57:14 07:50:02  
2800    120     E−060 93826 94136 O O 07:24:16 13:54:04  
2800    060     E−110 93918 94018 O O 04:23:07 06:01:21  
2800    060     E−100 93919 94022 O O 04:18:15 04:26:26  
2800    060     E−080 93920 94046 O O 05:21:41 06:53:59  
2800    060     E−060 93921 94045 O O 07:42:08 11:20:45  
2800    010     E−110 93833 93992 O O 04:57:23 06:12:13  
2800    010     E−100 93834 94140 O O 05:18:47 05:50:28  
2800    010     E−080 93835 94141 O O 03:26:37 08:40:17  
2800    010     E−060 94024 94117 x x 00:51:51 00:15:38 accit: not converged to prescribed accuracy!
3200    120     E−110 94026 94128 O O 04:42:05 03:11:30  
3200    120     E−100 94027 94129 O O 05:13:38 02:46:46  
3200    120     E−080 94028 94137 O O 03:09:15 02:08:54  
3200    120     E−060 94029 94119 O O 00:37:11 01:27:00  
3200    060     E−110 94031 94138 O O 04:23:45 01:29:28  
3200    060     E−100 94032 94144 O O 02:39:20 01:23:17  
3200    060     E−080 94033 94150 O O 03:25:16 02:30:54  
3200    060     E−060 94034 94435 O O 00:38:51 00:29:25  
3200    010     E−110 94036 94312 O O 03:48:40 01:23:42  
3200    010     E−100 94453 94653 O O 03:32:05 03:34:53  
3200    010     E−080 94038 94145 O O 00:42:26 03:56:36  
3200    010     E−060 94039 94146 x x 00:08:13 00:10:51 accit: not converged to prescribed accuracy!
3600    120     E−110 94041 94151 O O 00:41:33 01:43:35  
3600    120     E−100 94042 94152 O O 00:41:33 01:02:55  
3600    120     E−080 93941 94023 O O 00:41:10 01:14:59  
3600    120     E−060 93942 94043 O O 00:39:03 08:15:02  
3600    060     E−110 93944 94047 O O 00:41:29 01:11:31  
3600    060     E−100 93945 94054 O O 01:13:57 01:30:32  
3600    060     E−080 93946 94048 O O 00:41:29 01:13:07  
3600    060     E−060 93947 94049 O O 00:40:01 08:26:03  
3600    010     E−110 93949 94058 O O 01:12:17 01:24:12  
3600    010     E−100 93950 94059 O O 01:02:30 01:31:24  
3600    010     E−080 94135 94368 O O 00:41:41 01:04:36  
3600    010     E−060 93952 94056 O O 00:38:32 06:59:22  
4000    120     E−110 93954 94065 O O 00:41:13 01:25:59  
4000    120     E−100 93955 94081 O O 00:41:17 01:27:43  
4000    120     E−080 93956 94082 O O 00:41:25 01:23:14  
4000    120     E−060 93957 94083 O O 00:39:10 05:49:08  
4000    060     E−110 93959 94085 O O 00:41:54 01:36:25  
4000    060     E−100 93960 94086 O O 00:54:47 01:10:48  
4000    060     E−080 93961 94087 O O 00:41:39 01:11:42  
4000    060     E−060 93962 94088 O O 00:39:51 11:37:35  
4000    010     E−110 93964 94090 O O 00:41:26 01:27:36  
4000    010     E−100 93965 94091 O O 00:43:16 01:15:07  
4000    010     E−080 93966 94092 O O 00:42:09 01:30:16  
4000    010     E−060 93967 94094 O O 00:40:58 11:02:58  
4400    120     E−110 93969 94096 O O 00:41:40 01:05:05  
4400    120     E−100 93970 94095 O O 00:41:32 00:58:37  
4400    120     E−080 93971 94097 O O 00:42:00 01:07:19  
4400    120     E−060 93972 94098 O O 00:39:32 02:59:01  
4400    060     E−110 93974 94100 O O 00:37:09 01:07:26  
4400    060     E−100 93975 94101 O O 00:45:15 00:50:05  
4400    060     E−080 93976 94103 O O 00:42:16 01:24:12  
4400    060     E−060 93977 94102 O O 00:39:48 12:29:10  
4400    010     E−110 93979 94105 O O 00:41:19 01:06:48  
4400    010     E−100 93980 94107 O O 00:42:18 00:52:36  
4400    010     E−080 93981 94108 O O 00:43:13 00:55:55  
4400    010     E−060 93982 94106 O O 00:36:47 13:07:15  

Figure 13: Results from a grid calculation with the modified model. This
is the output of a batch program constructed to manage the grid calculations
performed in the scope of this work. Only 2 out of 60 models terminated
prematurely. This grid has been calculated with exactly the same settings as
the grid shown in figure 10 on page 41, but now the modified wind model has
been used instead of the original hot-wind model. The two models that did
not converge in this grid converge when increasing taulin (a general PHOENIX
parameter, see section 6.1) a bit.
Here the uncorrected table is shown for a fair comparison with figure 10, for
which no fine tuning has been done either.
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Figure 14: Many UV emission lines in cool-wind spectra are found to be
close together so that their profiles overlap. The lines shown here are all Fe II
lines. The vertical lines mark the line centers, the little dashed lines indicate
the doppler shift ∆λ = −λ0v∞/c for the outermost model layers where the
terminal velocity is reached. The profile of the Fe II 36 2379.8Å line that is
also found in figure 3 can not be discerned.

5.2 Characteristic UV emission lines

UV emission lines contain important observational characteristics of cool
stellar winds (see section 2.4). Many of the observational emission lines
shown the figures 3 and 4 are found in the spectra calculated with the wind
model. However, some of them are found to be partially overlapped by
neighbouring lines. The overlap increases when v∞ is increased because the
lines then broaden. An example is given in figure 14, where the Fe II 36
2379.3Å line (one of the lines of figure 3) is shown with its close neighbours.

Overlapping lines first have to be disentangled to obtain the profiles of
the individual lines. This is beyond the scope of this work. Since here is
only looked for a qualitative evaluation of UV line profiles, some lines that
have no close neighbours are selected. The lines have been picked from the
list from Judge [JJ91] that was used for the observed spectral lines of figure
3.

Figure 15 shows four UV line profiles. The two on the left are also found
in the observed spectra of figure 3 and 4. The Fe II 1 2625.6Å line profile
on the left side flows over to the neighbouring Fe II 1 2621.7Å line. Instead
of the Fe II 3 2332.8Å observed line, which has a neighbouring Fe II 35 line
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Figure 15: Four UV emission lines with wind absorption cores in synthetic
spectra from the modified wind model in PHOENIX . The values of the model
parameters Teff , v∞ and Ṁ are given in the plot titles. The vertical lines mark
the line centers, the little dashed lines indicate the doppler shift ∆λ = −λ0v∞/c
for the outermost model layers.

at 3231.3Å, the Fe II 3 2338.0Å line is plotted here. In addition the Fe II 2
2406.6Å is plotted because of it’s typical shape without neighbour effects.

In figures 16 and 17, the same profiles are shown for varied values of
v∞. At the lowest velocity of 10km/s some of the emission lines are not yet
present. Then at first the absorption core shifts from the middle towards
lower wavelengths. At higher velocities the core can no longer be clearly
discerned but an asymmetry is still found.

The synthetic profiles are found to be very similar to the observed profiles
shown in figure 3 and 4. The results shown here are obtained without tuning
any modelling parameter in order to find a good fit. Apparently PHOENIX is
very capable of modelling cool stellar wind spectra.
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Figure 16: The emission lines Mg II h 2802.7Å and Fe II 1 2625.6Å that
are also shown in observed spectra in figure 3 and 4 for different values of the
terminal velocity v∞ ranging from 10km/s for the lowest to 120km/s for the
highest curve. The lines are scaled by a factor 100 per 10km/s step. The solid
vertical lines mark the line centers, the small dashed ones the doppler shift for
v∞.
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Figure 17: The emission lines Fe II 3 2338.0Å and Fe II 2 2406.6Å of figure
15 for different values of the terminal velocity v∞ ranging from 10km/s for
the lowest to 120km/s for the highest curve. The lines are scaled by a factor
100 per 10km/s step. The solid vertical lines mark the line centers, the small
dashed ones the doppler shift for v∞.

55



6 Discussion

In the previous chapter was shown that the modified wind model constructs
converging cool-wind atmospheres. Furthermore, the resulting synthetic
spectra show the characteristic observational cool-wind features. It has also
been shown that in certain specific cases even with the modified wind model
some tuning is needed for the model to converge (see figure 13). In this
section, the reason for this tuning requirement is discussed. Furthermore, a
few possible refinements of the modelling process are proposed that should
further improve the convergence of the wind model calculations and the
accuracy of the obtained wind spectra.

6.1 Further fine tuning

In section 5.1 has been mentioned that models that do not converge with
the modified wind model can be tuned with the parameter taulin. taulin
is a general PHOENIX parameter (see the PHOENIX manual [Hau04]) which
influences the way the source function is interpolated on a new τ -grid along
a characteristic ray, see equation (50). When the step in the optical depth
along a characteristic ray ∆τ k is greater than taulin, parabolic interpola-
tion is used instead of linear.

In the outer regions of the wind model the temperature and the source

Figure 18: The final temperature and mean intensity (at τ = τstd) structures

of a model with the parameters {Teff , v∞, Ṁ} = {4000, 90, 10−9} in the usual
units. On the x-axis the layer number minus 1 l−1 is shown. In the outer region
of the wind, from layer 1 to about 30 (0 to 29 in the plot), the temperature is
rather constant. This generally is the case for wind models.
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Figure 19: The fatal evolution of a temperature structure when in problem-
atic cases taulin is increased too much. The x-axis shows the iteration number
i from 1 to 3, the y-axis the layer number l from 1 to 50, the z-axis shows the
temperature in K. In a certain iteration a temperature inversion develops. In
subsequent iterations this local minimum falls further down, until it gets below
0 K. In the case shown here, this happened after the second iteration.

function typically are rather constant, see figure 18. Interpolating a con-
stant function piecewise with parabolic fits can give a very imprecise result.
Besides, these interpolations are not stable, meaning that from iteration to
iteration the values oscillate around the constant value. Through the in-
terpolated source function the computed corrections to the mean intensity
J in Eq. (45) then are imprecise. The accelerated lambda iteration stops
when the prescribed accuracy is not reached after a maximum number of
iterations, which is 50 by default. When the computed corrections to J in
the last iteration are still not much smaller than in the first, increasing the
maximum number of iterations will not help. Tuning taulin can give a
solution in many cases.

Higher values of taulin imply that a linear interpolation is also used in
cases where the steps in the optical depth are larger. For a coarsely sampled
curve (with large steps in the sampling grid) a linear interpolation gives
inaccurate values between two points. So increasing taulin increases the
inaccuracy of the radiation field computations in Eq. (45), which directly
enters the temperature correction in Eq. (53).

When taulin is set too high, temperature inversions emerge in the struc-
ture. These inversions are amplified in subsequent iterations and the calcu-
lation finally stops when the temperature in the minimum falls below 0 K
(typically after two or three iterations). The temperature structure evolu-
tion for such a case is shown in figure 19.

There is another parameter to tune, the temperature correction attenu-
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Figure 20: The temperature structure restores from a temperature inversion.
The x-axis shows the iteration number i from 1 to 20, the y-axis the layer
number l from 1 to 50, the z-axis shows the temperature logarithmically. In this
case this is achieved by increasing the general PHOENIX temperature correction
attenuation parameter idmin. The temperature fall consequently extends over
more iterations and is more gradual so that the dip is smoother.

ation factor idmin (see the PHOENIX manual [Hau04]). By increasing idmin

the temperature inversion develops more slowly. The final temperature
structure is then approached in smaller steps and in a smoother way so
that the dip does not get too deep. If the minimum is kept above 0 K,
the structure has a chance to recover from the inversion. An example of a
structure that was able to recover from the temperature inversion is shown
in figure 20.
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6.2 Sophistication of the temperature correction method

In figure 20 the constant temperature of the outer shells l < 24 has to
decrease from 1900K after the second iteration i = 2 to 650K after the final
iteration i = 20. This decrease is slow for the outermost layers l < 12
but too fast at first for the layers 12 < l < 24. The structure does not
start to recover from the temperature inversion until the temperature of the
outermost layers l < 12 has approached the final outer temperature.

A much better way to handle the temperature inversions than the con-
stant attenuation of the complete temperature correction with idmin would
involve a modification to the temperature correction method. As stated in
[Luc64] it is convenient to write the temperature correction ∆B in equation
(53) as

∆B = ∆B1 + ∆B2 (82)

with

∆B1(r) =
1

κP
{κJJ − κPB + Ṡ/(4π)} (83)

∆B2(r) = − 2(H(τ = 0)−H0(τ = 0))

+
1

fqr2

R∫

r

qr′2χF (H(r′)−H0(r′))dr′ (84)

The first term ∆B1 is important for the outer layers but is always small in
the deeper layers. The accurate correction in the deeper layers is obtained
through the term ∆B2. For the wind models the convergence of the inner
layers is not problematic, but the region ∆B1 is responsible for is. Especially
the large corrections due to ∆B1 are too large. Lucy [Luc64] has already
suggested to under-correct the first term if the correction is large according
to

∆B =

{
∆B1 + ∆B2 if ∆B/B < 0.1
0.8 ·∆B1 + ∆B2 if ∆B/B > 0.1

(85)

The values of 0.1 and 0.8 might need to be revised for general purposes, or
even become input parameters for single models to be tuned. Using this
kind of attenuation of the temperature correction right at the place r where
the correction would become too large could solve or at least improve the
situation concerning the temperature inversions.

6.3 Adapted radial sampling

Apart from the fact that the temperature is nearly constant in the outer
layers, as shown for a typical model in figure 19 to be over 30 of 35 wind
layers, is a problem for the interpolation of the source function (see section
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6.1) it suggests that the contribution of the outer shells to the final model
spectrum is not very useful.

The cosh sampling function defined by equation (59) used in the wind
model more finely samples the inner regions of the wind where the contri-
bution is expected to be more important. The sampling depends on the
parameter C as shown in figure 12. The improved C refinement introduced
in section 4.5 has been implemented for better model convergence, but ap-
parently the final sampling is still not optimal. It would be principally
better to adapt the radial sampling to the wind velocity structure that is to
be sampled.

6.3.1 Determination of an optimal sampling function

The basic idea for the adapted radial sampling is to adapt the number of
layers to the importance of that specific region in proportion to that of
other regions. Then many layers are reserved for regions where the wind
is important and only a few layers in regions where the contribution to the
spectrum is either very small or not different from the contribution of other
layers.

At first, a criterium has to be defined in order to estimate the relative
importance ι(r) of a specific shell with radius r. It is impossible to foretell
the exact contribution a specific shell has to the spectrum, so the importance
definition can only contain subjective criteria. As no absolute relations are
needed it is sufficient to specify the proportionality of the importance to the
different quantities. The following quantities are chosen to make up ι:

v(r) : The wind velocity is what makes the wind shells special when added
to the hydrostatic region. The addition of a low velocity shell to the
hydrostatic spectrum is not as interesting as a high velocity shell.

dv(r)
dr : The different velocities of different shells distinguishes them from

each other. Where the gradient is large, many layers are needed to
sample the differences.

ρ(r) : When the density of a shell is extremely low, no significant contribu-
tion of this shell is to be expected, whereas dense shells have a large
impact on the radiation field. So many layers are needed for dense
region and only a few for the thin regions.

In conclusion the relative importance of a shell with radius r is

ι(r) ∝ v(r) · dv(r)

dr
· ρ(r) (86)

In figure 21 the curve of ι(r) is plotted together with the three functions ι
is constructed from for a β-law with the standard value β = 3.

Until now shells have been considered with a radial distance r. Now r is
discretised to layers r = r(l) with l = 1, . . . , l∗. ι(r) can be expressed as a
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Figure 21: The importance of a shell of the hydrodynamic part of the atmo-
sphere as defined by Eq. (86) normalised to a maximum of unity is the solid
curve. The three functions comprised in ι are the dotted lines. The velocity is
given by a β-law with the standard value β = 3. The radius is given in units
of R∗. The shells very close to the star are not important because they are
almost static v ≈ 0 and do not change much v′ ≈ 0. The shells very far from
the star are not very important because they become similar v′ ≈ 0 and thin
ρ ≈ 0.

function of the layer number l

ι(l) = ι(r(l)) ∝ v(l) · dv(l)

dl
· ρ(l) (87)

which represents the importance of layer l and where v(l) = v(r(l)), dv(l)
dl =

dv(r(l))
dr · dr(l)

dl and ρ(l) = ρ(r(l)).
The importance of the layers should be inverse proportional to the dis-

tance between the layers which is itself proportional to the sampling rate s,
so that

s(l) ≡
(

dr(l)

dl

)−1

∝ ι(l) (88)

Using the continuity equation (1) this can be written as

(
dr(l)

dl

)2

∝ r2

dv(l)
dr

(89)

This differential equation determines the adapted radial sampling function.
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6.3.2 The exact solution for a β-law with β = 3

When v(r) is a β-law with β = 3 Eq. (89) simplifies to

dr(l)

dl
∝ ± r3(l)

r(l)−R∗
(90)

which can be solved analytically. This is an ordinary first order differential
equation of the form

y′ = f(y, t) (91)

The solution y(t) is determined by one initial value, e.g. y(t0) = y0. But
the radial sampling function has two boundary values r(1) = Rmax and
r(l∗) = Rmin. Therefore, equation (90) must be written as

r′(l) = c · r3(l)

r(l)−R∗
(92)

in which the constant c is determined by the other boundary value. The
solution of Eq. (92) is the (analytically) adapted radial sampling function

ra(l) ≡ −R2
max

(1 + f)

g
(93)

in which the first boundary condition r(l = 1) = Rmax is used and f and g
are given by

f =

√
2c(l − 1) +

(Rmax − 1)2

R2
max

(94)

g = 1− 2Rmax + 2cR2
max(l − 1) (95)

With the second boundary condition r(l = l∗) = Rmin the expression for c
is found

c =
1− 2Rmin − R2

min
R2

max
+

2R2
min

Rmax

2R2
min(l∗ − 1)

(96)

The three plots in figure 22 show the adapted radial sampling function of
Eq. (93) in comparison with the usual cosh-function with a slope factor C =
6.0 used in the wind model for different values of Rmax. In figure 23 a plot
of the radial importance distribution is shown, the adapted radial sampling
function and the resulting layer importance distribution.
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Figure 22: For three different values of Rmax = 200, 30 and 4R� the adapted
radial sampling curves are shown (solid lines) in comparison with the cosh curve
(dashed lines) that is currently implemented in the wind model (Eq. (59)).
The differences are substantial for all three values of Rmax. Both the extreme
inner and the outer layers are sampled more coarsely with the adapted radial
grid than with the cosh grid, which reflects the adaption to the importance
distribution (see figure 21).

6.3.3 Estimating sampling qualities

When the adapted radial sampling function of Eq. (93) is used the impor-
tance of layer l is by design (Eq. (88)) equal to the radial sampling rate s(l).
This means that the radial distribution of the layers r(l) is optimal, accord-
ing to the chosen form of ι. The radial distribution of other radial sampling
functions, like the cosh function of Eq. (59) used to construct the radial grid
in the wind model, consequently are not optimal. The importance function
gives an opportunity to test models for their radial sampling quality. For
that purpose the quality function q is defined as square root of the product
of the normalised importance and the normalised radial sampling rate

q(l) ≡
√

1

a
ι(l) · 1

b
s(l) (97)

The coefficients

a =

l∗∑

l=1

ιa(l) (98)

b =
l∗∑

l=1

sa(l) (99)
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Figure 23: The adapted radial sampling function (center graph) transposes
the radial structure information v(r), dv(r)/dr and ρ(r) (top graph) in such
a way, that the sampling rate s(l) is large (the distance between the layers is
small) where the importance ι(l) of a layer is large (bottom graph).
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Figure 24: The importance ι, sampling rate s and the quality function q
for the radial cosh grid used in the wind model (Eq. (59)). The importance
function is more localised than when the adapted radial sampling function
(Eq. (93)) is used (for comparison see the bottom graph of figure 23).

normalise the integrated importance and the radial sampling rate to unity
for the adapted sampling function. The square root maintains the normali-
sation.

As for the adapted radial sampling function qa(l) = ιa(l) = sa(l), the
quality function is spread out over all layers (see the bottom graph of figure
23). For other sampling functions q(l) is more localised. In case of the cosh
function, q is typically spread out over about 15 layers of 35. An example
for Rmax = 200R� and C = 6 is shown in figure 24.

q(l) represents the contribution of layer l to the total quality of the radial
sampling Q

Q =

l∗∑

1

q(l) (100)

This quality index Q can be used to compare the quality of various sampling
functions. Because of the normalisation coefficients a and b the quality index
for the adapted sampling function for β = 3 (Eq. (93)) equals unity Qa = 1.
This reflects the fact that the adapted sampling is assumed to supply the
”optimal” radial sampling. The square root in equation (97) ensures that the
contribution to Q of layers for which ι · s is small are not underrepresented.

The Q values for the cosh sampling function (Eq. (59)) for various C and
Rmax are shown in table 2. Some corresponding quality curves are shown
in the appendix. The low values for Rmax = 200R� are caused by the fact
that the cosh function oversamples the outer region (see figure 22), which is
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C Q
Rmax = 200 Rmax = 20 Rmax = 2

1 0.056 0.260 0.689
2 0.064 0.296 0.674
3 0.080 0.355 0.650
4 0.106 0.432 0.619
5 0.147 0.513 0.586
6 0.203 0.583 0.556
7 0.270 0.630 0.528
8 0.337 0.652 0.502

9 0.395 0.654 0.480
10 0.438 0.641 0.461
11 0.465 0.620 0.447

12 0.477 0.599 0.435

Table 2: The quality index Q for the cosh sampling function as implemented
in the wind model for various C and Rmax. Q gives an upper boundary for
the wind sampling quality. For the adapted radial sampling function Q = 1.
The maximum values for each Rmax occur at different values for C. Graphs of
quality curves corresponding to a number of the Q values in this table can be
found in the appendix (figure 26-28).

very large in this case. The best value of C is the highest of the range listed
in the table, because for higher values the innermost region is sampled even
better.

This shows the weakness of the quality testing method: a poor sampling
of important layers can be compensated by an oversampling of unimportant
regions. Another weakness appears if a sampling function would situate all
layers in that region where ι(r) is high (1.25 . r . 2/,R∗ for the case of
a β = 3 velocity field, see figure 23). Then both ι(l) and s(l) are large in
all layers, resulting in a high Q (even larger than 1), although only a very
small region of the wind is sampled. However, these weaknesses both do
not largely affect Q for the adaptive radial sampling function. Q for the
cosh function is affected by the first weakness, which causes the value to be
too large. It is not affected by the second problem, because the region with
large ι(r) is rather undersampled than oversampled.

In conclusion, the Q values listed in table 2 are upper boundaries. There-
fore, the adapted radial grid would improve the quality of the wind modelling
considerably.

6.3.4 A numerical method for arbitrary velocity fields

The differential equation that determines the adapted radial sampling func-
tion (Eq. (89)) can generally not be solved for arbitrary values of β or non-
β-law velocity fields. Although β has not been varied for calculations per-
formed in the scope of this work, it is an important wind modelling pa-
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rameter. Therefore, a more general version of the adapted radial sampling
method is needed.

Instead of the assumption of equation (88), for the numerical solution it
is assumed that the importance integrated over a layer should be equal for
all layers 1 ≤ l ≤ l∗

r(l+1)∫

r(l)

ι(r) dr =
1

l∗ − 1

r(1)∫

r(l∗)

ι(r) dr =
1

l∗ − 1

Rmax∫

Rmin

v(r)
dv(r)

dr
ρ(r) dr (101)

The factor 1/(l∗−1) represents the l∗−1 intervals the importance is divided
over. This defines the numerically adapted radial grid rn(l).

When equation (101) is evaluated the integral is replaced by a summation
and

dv(r)

dr
=
v(ri+1)− v(ri−1)

ri+1 − ri−1
(102)

But the largest part of the contribution to the integrated importance is ob-
tained within the first few stellar radii (see figure 21), whereas the last radius
of the outermost grid point is a few hundred stellar radii. Consequently, very
small radial steps are needed to obtain a reasonably accurate numerically
adapted radial grid rn(l).

The numerically adapted grid for a β-law with β = 3 is computed (with
7000 radial points in the interval Rmin − Rmax) for comparison with the
analytic solution of section 6.3.2. The obtained sampling curve is virtually
equal to analytic solution ra, shown in figure 23. But when the importance
ι(l) and the sampling rate s(l) are calculated from rn the inaccuracy is
noticeable, see figure 25.

6.3.5 The limitations and the benefits of adapted sampling

The analytical and the numerical method presented here are based on an im-
portance relation that specifies the relative importance of a shell with radius
r. Such an importance consideration is only very approximative and based
on a subjective choice of contributing quantities. Therefore, the importance
should be carefully chosen and possibly the results for multiple importance
relation must be compared.

A better definition of the importance relation could comprise replacing
the ρ of equation (86) by the optical depth τstd. As τstd is not known a
priori, this can not be used for an initial radial grid. A model could be
started with an initial grid based on ρ for the importance. In subsequent
iterations this initial grid can then be refined using the optical depth for the
importance definition.

As in practice the flexibility of the model for importance definitions
and velocity fields is required, the analytic method is not generally useful.
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Figure 25: The importance ι and the sampling rate s for a β = 3 velocity
field as obtained by the numerical method of section 6.3.4. The result is the
same as with the analytic solution of section 6.3.2 except that it is less accurate
(see figure 23 for comparison).

The numerical method is not very accurate but usable, because the exact
location of a single layer is not important. Some scattering around the
actual value can be tolerated. But another numerical method, which is
more accurate than the method described in section 6.3.4, is to numerically
solve the differential equation (89). For example a Runge-Kutta method
could be used.

The original problem the adapted sampling has been proposed for is the
constant temperature in the outer shells of the wind models. Due to these
outer shells, taulin needs to be increased to assure a linear interpolation of
the (rather) constant source function. With the adapted radial sampling the
temperature (and the source function) will not be constant over numerous
layers anymore. Thus the parabolic interpolation can be used for larger steps
in the optical depth along a characteristic ray (taulin can be decreased).
This in turn prevents the inner wind region from temperature inversions
(section 6.1).

6.4 Outlook

In the foregoing discussion two suggestions for improvement of the wind
model have been described. The first is the sophistication of the temper-
ature correction method (section 6.2). This should improve the ability to
construct converging models for winds with high mass loss rates or low
terminal velocities (which both lead to increasing wind densities). The im-
plementation comprises a determination of good values for the two constants
in equation (85).
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The second one is to implement the adapted radial grid (section 6.3).
This improves the convergence because the more precise parabolic interpo-
lation can be used for the ALI method instead of the linear. In addition, the
adapted radial grid improves the accuracy of the wind spectrum, because a
larger diversity of wind shells is being sampled. The coarser sampling of the
innermost wind shells leads to larger steps in the optical depth for this re-
gion. Therefore, the temperature correction sophistication is a prerequisite
for this new grid. Probably, the number of wind layers has to be increased
and thus the total number of model layers. For the implementation of the
adapted radial grid the effect of alternative definitions of the importance
function needs to be analysed. For the analysis of the actual contribution
of a layer to the spectrum depth (layer) dependent spectra could be used.

All calculations performed in the scope of this work have been made
with the assumption of LTE, which is a good approximation only when the
level populations are dominated by collisions. But in the wind layers the
densities are very small so that collisions become very rare. Consequently,
LTE is expected to be a very poor assumption for the wind region. Non-LTE
calculations are needed for accurate cool-wind modelling.

With the increased accuracy of the adapted sampling and NLTE, the
effects of more complicated semi-empirical velocity fields like the ζ Aurigae
field from [BKR+96] (figure 8) can be examined or even refined to better fit
the observations.
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A Quality curves for the cosh sampling function

Figure 26: Curves for the importance distribution ι, the sampling rate s
and the resulting quality distribution q for the cosh sampling function with
C = 3, 7, 11 and Rmax = 200R�. The area under the dashdotted q-curve is an
estimation of the sampling quality.
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Figure 27: Like figure 26, but with Rmax = 20R�.
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Figure 28: Like figure 26, but with Rmax = 20R�.
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