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Abstract

The modeling of stellar and planetary atmospheres is crucial for the understanding of astronomi-
cal observations. To understand how light that emerges from a stellar atmosphere is transported
from the inner regions of origin to the outer layers we have to model radiative transfer and solve
the radiative transfer equation (RTE). Earlier approaches of implementing the numerical solution
of the RTE were restricted to one dimension (1D) and spherically symmetric atmospheres due to
limited computational power.
Recent observations and theoretical calculations have shown the importance of non-spherically
symmetric structures (e.g. supernovae). A solution of the three dimensional (3D) RTE then
becomes essential for the modeling of realistic astronomical objects. Fortunately, increasing com-
putational power of modern computers in the last years and parallel programming interfaces made
it possible to fully implement solutions of the 3D-RTE.
In this work, we describe the theoretical background and a numerical solution of the 3D-RTE.
Radial velocity fields are included in the model by considering special relativistic effects on the
radiative transfer. This enables us to describe the dynamics of expanding or collapsing structures.
We present a numerical solution scheme which has been implemented in the 3D radiative transfer
framework of PHOENIX. The solver is based on a Gauss-Seidel iteration scheme and includes a
formal solution based on the method of characteristics.
Finally, the implementation has been tested in line transition calculations of a simple two-level
atom model. The results are compared to solutions of the 1D solver which is successfully imple-
mented in the 1D radiative transfer framework of PHOENIX.





Zusammenfassung

Die Modellierung stellarer und planetarer Atmosphären ist entscheidend für unser Verständnis
astronomischer Beobachtungen. Um zu verstehen, wie Licht aus den inneren Regionen eines Sterns
in die äußere Atmosphäre transportiert wird, müssen wir die Theorie des Strahlungstransportes
anwenden und die Strahlungstransportgleichung lösen. Frühere Ansätze zur numerischen Lösung
des Strahlungstransportproblemes waren aufgrund mangelnder Rechnerleistungen und Speicher-
kapazität meist auf eindimensionale (1D) Lösungen beschränkt. Aktuelle Beobachtungen und
theoretische Rechnungen zeigen allerdings, dass nicht sphärisch symmetrische Beschreibungen,
wie z.B für Supernovae, immer wichtiger werden. Die Lösung der dreidimensionalen (3D) Strah-
lungstransportgleichung wird dabei ausschlagebend für unser Verständnis astronomischer Objekte.
Glücklicherweise hat die Zunahme von Rechnerleistungen in den letzen Jahren und vor allem die
Entwicklung paralleler Programmierschnittstellen uns die Möglichkeit eröffnet, die vollständige
Lösung der 3D Strahlungstransportgleichung zu implementieren.
In dieser Arbeit beschreiben wir den theoretischen Hintergrund und eine numerische Lösung der
3D Strahlungstransportgleichung. Dabei werden radiale Geschwindigkeitsfelder in das Modell in-
tegriert, indem speziell-relativistische Effekte auf den Strahlungstransport betrachtet werden. Dies
erlaubt es uns, die Dynamik expandierender oder kollabierender Strukturen zu beschreiben.
Unser numerisches Lösungsschema wurde in der 3D Strahlungstransportumgebung von PHOENIX

implementiert. Der Lösungsansatz basiert auf einer Gauß-Seidel Iteration und beinhaltet eine for-
male Lösung, welche auf der Methode der Charakteristiken basiert.
Schließlich wurde die Implementation am Linienübergang eines hypothetischen 2-Niveau Atoms
getestet. Die Ergebnisse wurden mit den Lösungen der 1D Strahlungstransportgleichung vergli-
chen.





Contents

1 Preface 9

2 The Theory of Radiative Transfer 11

2.1 How We Measure Radiative Transfer . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2 The Interaction of Radiation with Matter . . . . . . . . . . . . . . . . . . . . . 13

2.2.1 The Extinction Coefficient . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2.2 The Emission Coefficient . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2.3 The Source Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3 The Radiative Transfer Equation . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.3.1 The Formal Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.3.2 The Radiative Transfer Equation in 3D Spherical Coordinates . . . . . . . 18

2.4 Radiative Transfer in Moving Media . . . . . . . . . . . . . . . . . . . . . . . . 20
2.4.1 Lorentz Transformation of the Material

and Radiation-Field Properties . . . . . . . . . . . . . . . . . . . . . . . 22
2.4.2 The Special Relativistic Radiative Transfer Equation . . . . . . . . . . . 25

2.5 Line Transitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.5.1 The Einstein Relations for Bound-Bound Transitions . . . . . . . . . . . 27
2.5.2 The Source Function for the Two-Level Atom . . . . . . . . . . . . . . . 29

3 The Solution of the Equation of Radiative Transfer 31

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.2 Modeling Atmospheres in PHOENIX . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.3 The Method of Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.4 Discretization of the Radiative Transfer Equation . . . . . . . . . . . . . . . . . 35

3.4.1 Wavelength Discretization . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.5 The Line Element in the Comoving Frame . . . . . . . . . . . . . . . . . . . . . 40
3.6 The Accelerated Λ-Iteration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.6.1 The Construction of the Approximated Λ-Operator . . . . . . . . . . . . 43
3.7 The Affine Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4 Implementation and Tests 47

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.2 The Solution Scheme - An Overview . . . . . . . . . . . . . . . . . . . . . . . . 47
4.3 An Estimation of Memory Requirements . . . . . . . . . . . . . . . . . . . . . . 48
4.4 Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.4.1 The Transformation of the Line Element . . . . . . . . . . . . . . . . . . 50
4.4.2 Continuum Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

7



8 Contents

4.4.3 NLTE Line Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5 Conclusions and Outlook 57

A Gaussian Quadrature 58

A.1 Gauss-Chebyshev Quadrature . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
A.2 Gaussian Quadrature for an Arbitrary Integration Interval . . . . . . . . . . . . . 59



Chapter 1

Preface

The light of a star that reaches us and which an observer uses for spectroscopy leaves the stellar
atmosphere in a relatively thin outer layer. In our sun, this layer is called the photosphere, and
it is only about 500 km thick. This is the area where the athmosphere becomes optically thin,
and light is able to leave the star whithout being scattered or absorbed. The theory of radiative
transfer is crucial for the understanding of these processes. It enables us to describe the transport
of energy from the inner regions, which we can not observe directly, to the outer layers of a stellar
atmosphere. We can then create a model atmosphere which is crucial for the understanding of
astronomical observations.
To verify a stellar model atmosphere, we have to compute synthetic spectra and compare them
with the observed ones. This requires us to solve the radiative transfer equation (RTE). This can
be a demanding challenge which depends on the complexity of the model astmosphere. To get
realistic results, the RTE can become very complex because in order to describe an atmosphere
accurately, we have to take in account numerous physical processes. For example, a photon
which is travelling through an athmosphere, is scattered and absorbed due to numerous interac-
tion processes between radiation and matter. In the outer optically thin regions, the photon can
be scattered over long distances without being absorbed, and due to this, the energy sources of
different regions in the atmosphere are coupled. This makes the solution of the RTE extremely
complicated, because mathematically the RTE becomes an integro-differential equation. Due to
that, we need efficient numerical tools in order to get a consistent solution of the RTE.
The simulation code used during the work on this thesis is part of the planetary and stellar atmo-
sphere code, called PHOENIX, which has been developed by Prof. Peter H. Hauschildt (University
of Hamburg) and Prof. Edward A. Baron (University of Oklahoma). PHOENIX can calculate at-
mospheres and spectra of stars and planets, including main sequence stars, giants, white dwarfs,
stars with winds, TTauri stars, Novae, Supernovae, brown dwarfs and extrasolar giant plan-
ets [Hauschildt and Baron 1999]. The code is permanently extended and improved in order to
get use of the advance in computational power of modern computers. The algorithms for the ra-
diative transfer, spectral line opacity, NLTE opacity and rate calculations have been implemented
for parallel computation [Hauschildt et al. 1997]. Parallel algorithms have become crucial since
the radiative transfer calculations are extended to three dimensions (3D). The solution of the
3D-RTE has become a common research subject in computational astrophysics in the last years,
as the deviation of the structures of all types of supernovae from spherical symmetry have been
shown in [Wang and Wheeler 2008].
The intention of this thesis was to extend the PHOENIX code in order to describe the dynamics of
a stellar atmosphere in 3D with radial velocity fields. The method we use to solve the 3D-RTE is
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based on the method described by Mihalas for solving the special relativistic spherically symmetric
RTE (SSRTE) [Mihalas 1980]. We extend the method, since we want to solve the full 3D-RTE
for non-spherically symmetric atmospheres in general.
At first, we describe the basics of the theory of radiative transfer in chapter 2, where we concen-
trate mostly on the derivation of the special relativistic RTE. In Chapter 3, we describe Mihalas’
method for the numerical solution of the SSRTE, and how we adapted it for the implementation
in the 3D transfer framework of PHOENIX. We summarize computational aspects that are crucial
for numerical 3D radiative transfer and discuss the results of our test calculations in chapter
4. Finally, we give an outlook on actual and future research subjects in the theory of radiative
transfer in chapter 5.



Chapter 2

The Theory of Radiative Transfer

The goal of the theory of radiative transfer in astrophysics is to describe the energy flow through
the different layers of a stellar or planetary atmosphere. We have to apply known physical laws
about absorption and scattering processes and derive the characteristic observables from the
theory. We then compare the theoretical results with observations and can improve our model.
In this chapter we describe the basic theory of radiative transfer. We introduce the important
physical values which we need to describe the transfer of energy through the atmosphere. We
describe the crucial scattering problem which makes the solution of the radiative transfer equation
(RTE) a demanding numerical problem. At the end of the chapter, we introduce special relativistic
radiative transfer and present the spherical symmetric special relativistic radiative transfer equation
(SSRTE). If not explicitly referenced otherwise, the contents of this chapter are based on [Mihalas
1978].

2.1 How We Measure Radiative Transfer

The radiation field consists of photons with energies defined by their momenta p = hν/c. If we
know the energy and direction of propagation ~n of each photon in the radiation field, we can
describe it by a photon distribution function f(~x, ~p, t) which is defined as in [Gray 1992] by

dN(ν) = f(~x, ~p, t) d~p dV (2.1)

with the fequency ν. The radiation field is then described as a photon gas with the phase space
density f . However, this is a microscopic description and not common in the formulation of
radiative transfer, since we are not interested in the observation of single photons. The spectrum,
an observer detects, measures the dependency of the overall energy transported by photons in a
specific frequency intervall (ν, ν+dν) on the frequency. Thus, we use an energy description of the
radiation field which is equivalent to (2.1) by defining the specific intensity I being proportional
to f via

f(~x, ~p, t) d~p =
dN(ν)

dV
=

1

hνc
I(~x, ~n, ν, t) . (2.2)

The specific intensity describes the intensity of radiation at position ~x and frequency ν traveling
in direction ~n at time t so that the energy dE which is transported through the unit area dA in
~x into the solid angle dω by radiation of frequencies (ν, ν + dν) in the time intervall (t, t+ dt) is
defined as

dE = I(~x, ~n, ν, t) dA cos θ dω dν dt (2.3)

11



12 2.1. How We Measure Radiative Transfer

d ~A
~n

θ

Iν

dΩ

Figure 2.1: The geometrical
situation for the definition of
the specific intensity I. The
vector d ~A is perpendicular to
the unit area dA and ~n de-
scribes the direction of propa-
gation of the specific intensity.

Here, θ is the angle between the direction of propagation of I and the normal to the surface
(dA cos θ = ~n · d ~A). In the following, we will often use the angle cosine µ defined as µ = cos θ.
In addition, we will often refer to the importance of the frequency dependency and for better
readibility, we will write ν as a subscript from now on.

The average of Iν over all solid angles is called the mean intensity

Jν(~x, t) =
1

4π

∫

4π
Iν(~x, ~n, t) dΩ (2.4)

We describe the direction of propagation ~n in spherical coordinates (θ, φ). With dΩ = sin θdθdφ =
−dµdφ and µ = cosθ we can rewite J as

Jν(~x, t) =
1

4π

∫ 2π

0

∫ 1

−1
Iν(~x, µ, φ, t) dµ dφ

The mean intensity is an angular average of the specific intensity. It is useful for statistical pro-
cesses, where the origin of the photons is not of interest (like radiative excitation and ionization).

The monochromatic flux is the net flow of energy per second through an area at ~x perpendicular
to ~n. In general, flux is a vector and can be defined by its components

~Fν(~x, t) = (

∮

Iν(~x, ~n, t) px dΩ,

∮

Iν(~x, ~n, t) py dΩ,

∮

Iν(~x, φ, θ, t) pz dΩ)

where ~p = (px, py, pz) denotes the direction of the flux in Cartesian coordinates. In fact, we often
imply the radial direction for the flux so that we can write the radial flux in spherical coordinates

F r
ν (~x, ~n, t) =

∮

4π
µ Iν(~x, ~n, t) dΩ

=

∫ 2π

0

∫ 1

−1
µ Iν(~x, µ, φ, t) dµ dφ (2.5)
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The flux is a directional quantity for measuring radiative transfer through stellar and planetary
atmospheres. In the case of thermodynamic equilibrium in the atmospheric layers, the net flux
vanishes.

2.2 The Interaction of Radiation with Matter

As radiation is transported through an atmosphere, it is constantly interacting with the present
matter. During these processes, energy is exchanged between the radiation field and the thermal
energy of the atmosphere, also referred to as the thermal pool of the atmosphere. It is important
to distinguish the interaction processes, because they have different effects on how energy is ex-
changed locally and globally between radiation and matter.
If we consider a beam of photons travelling through an atmosphere in a certain direction, energy
can be removed or added to the beam during the interaction processes. Although in fact, the
interaction processes are numerous, we distinguish between two basic ones. This allows us to
introduce macroscopic coefficients in order to include the interaction processes into our model.
If energy is added to the beam, we call it an emission process. If energy is removed from the
beam, we call it an absorption process. During an absorption process, a photon from the beam
is destroyed, and its energy is converted partly or wholly into kinetic energy of particles in the
atmosphere. In the other way, kinetic energy of a particle from the atmosphere is converted into
a photon during an emission process. By this, thermal absorption and emission processes cause a
direct energy exchange of the radiation field with the thermal energy of the gas in the atmosphere.
If the mean free path of a photon in the atmosphere is much smaller than the distance on which
the temperature considerably changes, the thermodynamic properties of the gas can be assumed
to be in a local thermodynamic equilibrium (LTE). In this case, thermal absorption and emission
couples the radiation field to the thermal pool at the region of interaction. The thermal absorption
and emissions rates are then determined by the local thermodynamic properties of the gas.

Though the thermal absorption and emission processes itself are manifold, we want to distin-
guish the following three

a) bound-free absorption and emission (b-f)
In fact, b-f absorption is simply photoionization. The energy of a photon is used to ionize
an atom. Energy from the radiation field is converted into kinetic energy of an electron in
the electron gas. The inverse emission process is the radiative recombination of an ion with
a free electron. The b-f processes transfer energy back and forth between the radiation field
and the thermal pool of the gas.

b) free-free absorption and emission (f-f)
When a free electron of the electron gas is moving in the field of an ion, its kinetic energy
can be changed by the absorption of a photon. The inverse process is called bremsstrahlung
and emits an electron into the radiation field.

c) bound-bound absorption (b-b)
b-b absorption is also known as photoexcitation. An electron that is bound in the field of
an atom can be shifted to a higher bound level by the absorption of a photon. The excited
atom can then be deexcited by an inelastic collision in the gas. By this, the energy of the
photon is converted into thermal energy of the gas.
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The deexcitation of an atom that is excited by photoexcitation (b-b absorption) can also happen
by the immediate return of the bound electron into its ground state. The energy of the re-
emitted photon is then only slightly shifted, and there is only little exchange of energy between
the radiation field and the gas. But in general, the direction of propagation of the photon has
changed. If a photon is removed from a beam of radiation by only changing its direction, we call
this a scattering process. Though the energy of the photon is not converted into thermal energy
of the gas during a scattering process, the change of the propagation direction causes an effective
contribution to the absorption rate of the direction the photon is removed from. As a scattering
process does not really destroy the photon, the pure thermal absorption is sometimes also called
true absorption. The scattered photon however is added to a beam of a different direction. By
this, a scattering process also causes an additional contribution to the total emission rate of the
direction the photon is added to.
The crucial point with scattering processes is that the energy of the photon is not converted into
thermal energy of the region where the scattering process takes place. If a scattered photon is
able to travel over long distances, on which the change in temperature becomes important, the
LTE assumption is no longer valid. In this non-LTE (NLTE) situation, energy of the radiation
field can be transported over long distances in the atmosphere without an exchange with the
local thermal pool. This causes a decoupling of the radiation field from the gas and its local
thermodynamic properties. On the other hand, scattering processes can couple different regions
of the atmosphere, when a scattered photon that originates in a different region is truly absorbed
in another, and thus causes a contribution to the local thermal energy of the region of absorption.
This situation is known as the scattering problem, because it makes the solution of the radiative
transfer equation very demanding.

2.2.1 The Extinction Coefficient

The sum of all true and scattering absorption contributions is described by the total absorption
coefficient, also called extinction coefficient or opacity. We define the extinction coefficient
χν(~x, ~n, t) by the energy removed from the beam

dE− = χν(~x, ~n, t) Iν(~x, ~n, t) dA cos θ ds dω dν dt (2.6)

As described in the last section, extinction consists of thermal absorption and scattering processes.
So we divide the extinction coefficient into

χν(~x, ~n, t) = κν(~x, ~n, t) + σν(~x, ~n, t) (2.7)

where κν is the thermal or true absorption contribution and σν is the scattering coefficient. The
dimension of χν is 1

length .
χν includes also the stimulated emission caused by photons of the beam. These photons can
perturb excited electrons in their bound-states causing the emission of another photon. Because
the perturbing and the emitted photon are correlated in their direction of propagation, stimulated
emission can cancel out some of the total opacity. Therefore, χν will include the stimulated
emission as a contribution of negative opacity.

In fact, the interaction of the radiation field and the absorbing matter of the atmosphere is
not linear, because the radiation field is determined by the absorption rates, and the absorption
rates themselves are determined by the level populations of the matter. On the other hand, the
level populations are determined by the radiation field, because of stimulated and thermal emission
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and absorption. Anyway, we can calculate the level populations in quantum theory in the case of
LTE. For that, we have to solve the rate equations. In LTE, this problem simplifies to solving the
Boltzmann- and Saha-equations which describe the level populations of bound and continuum
states. The level populations can then be derived from the local density and temperature. But
in the NLTE situation, the temperature itself is determined by the global balance between energy
emitted and absorbed by the matter. Therefore, the temperature structure of the atmosphere
depends also on the radiation field and its response to the global properties of the atmosphere.
It is crucial to include the NLTE situation into a model atmosphere, because otherwise, we will
get no realistic results.

2.2.2 The Emission Coefficient

The emission coefficient, also called emissivity, is defined by the energy added to a beam along
the infinitesimal line element ds

dE+ = ην(~x, ~n, t) dA cos θ ds dω dν dt

As described in the beginning of this section, we can also divide the emissivity into a thermal and
scattering part

ην(~x, ~n, t) = ησ
ν (~x, ~n, t) + ηκ

ν (~x, ~n, t)

Because of the statistical nature of absorption, scattering and emission processes, the opacity
and emissivity are isotropic. But this is only true in a static atmosphere. In the presence of a
velocity field, the opacity and emissivity become angle-dependent. However, we will drop the
explicit angle-dependency for now, because we will solve the transfer equation in a comoving
frame, where extinction and emission coefficients remain isotropic.

The thermal part of the emissivity ηκ
ν (~x, t) at the position ~x in the atmosphere depends on

the local temperature T (~x) of the gas. We assume a thermodynamic equilibrium at ~x, and in this
case, thermal absorption and emission will be balanced. The thermal emission can be described
by a Planck-emission and thus, the thermal absorption coefficient becomes

ηκ
ν (~x, t) = κν(~x, t) Bν(T (~x), t)

This is known as the Kirchhoff-Planck relation. In the case of LTE, we can rewrite the emissivity
as

ην(~x, ~n, t) = ηκ
ν (~x, ~n, t)

Again, because the overall radiation field itself determines the local thermal properties of the gas
and vice versa, this simplifications becomes invalid in a realistic atmosphere. Hence, we have to
include the scattering part ησ

ν .
As mentioned before, the scattering part describes the global influence of the radiation field on
local thermodynamic properties. That means, we have to take in account the contribution of
scattered photons from all over the atmosphere in order to calculate the emission at a specific
point ~x in the atmosphere. Though we do not know these contributions in the case of NLTE, we
can write it formally as a scattered contribution from the incoming intensities from all directions
at ~x. Because we defined the mean intensity in (2.4), we can write the scattering contribution as

ησ
ν (~x, t) = σν(~x, t) Jν(~x, t)

With this, we can rewrite the emissivity as

ην(~x, t) = σν(~x, t) Jν(~x, t) + κν(~x, t) Bν(T (~x), t) (2.8)
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2.2.3 The Source Function

A useful quantity, we will often use, is the ratio of emission and extinction. This is called the
source function and it is defined as

Sν =
ην

χν
(2.9)

The source function measures whether energy is removed or added to the radiation field. In the
case of coherent scattering, we can use (2.8) and (2.7) to rewrite the monochromatic source
function

Sν =
σν

κν + σν
Jν +

κν

κν + σν
Bν

and with the definition of the thermal coupling parameter ǫ we get

Sν = (1− ǫ)Jν + ǫBν (2.10)

ǫ =
κν

κν + σν
(2.11)

The thermal coupling parameter ǫ is the probability for the complete destruction of a photon
during a thermal absorption process. Therefore, ǫ = 1 means that all photons are thermalized
and we do not have any scattering processes. In this case we get

Sν = Bν (2.12)

which means that the radiation field is determined by pure thermal black-body radiation. This
situation is equivalent to LTE.

2.3 The Radiative Transfer Equation

With the definitions of the specific intensity (2.3), the extinction coefficient (2.7), the emissivity
(2.8), and the source function (2.9), we can now derive the radiative transfer equation. Figure
(2.2) shows the geometrical situation, in which the incoming intensity Iν(~x) is partially reduced
while passing through a disk of matter of area dA and thickness ds. At the same time, energy is
emitted inside the disk and added to the outgoing intensity Iν(~x+ d~x).

dA

ds

dI(x + ds)

dI(x)

dΩ

dΩ

Figure 2.2: The incoming intensity is partly extinct inside the infinitesimal disk of matter. The outgoing
intensity is the sum of the remaining incoming intensity and the emitted energy from inside the disk.
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The difference between the incoming and outgoing intensities must be determined by the difference
between the emitted and extinct energy inside the disk

[Iν(~x+ ∆~x, ~n, t+∆t)− Iν(~x, ~n, t)] dA dω dν dt

= [ην(~x, ~n, t)− χν(~x, ~n, t)Iν(~x, ~n, t)] ds dA dω dν dt . (2.13)

In the case of an infinitesimal disk, the difference between the intensities
becomes a differential

dIν(~x, t) =

(

∂Iν
∂t

)

dt+

(

∂Iν
∂s

)

ds

and with dt = ds
c

dIν(~x, t) =

[

1

c

(

∂Iν
∂t

)

+

(

∂Iν
∂s

)]

ds (2.14)

From the combination of (2.13) and (2.14), we get the time-dependent radiative transfer equation

[

1

c

∂

∂t
+

∂

∂s

]

Iν(~x, ~n, t) = ην(~x, ~n, t)− χν(~x, ~n, t)Iν(~x, ~n, t) (2.15)

The differentiation ∂
∂s depends on the coordinate system in which Iν is described.

In a Cartesian coordinate system, we can derive

∂

∂s
= ~n · ~∇ (2.16)

In the case of time-independence, equation (2.15) becomes

∂Iν(~x, ~n)

∂s
= ην(~x, ~n)− χν(~x, ~n)Iν(~x, ~n) (2.17)

The RTE can be simplified by using the optical depth τ which is defined by its differential

dτν(~x) = −χν(~x) ds (2.18)

We define it with a negative sign so that the optical depth is zero at the surface of the atmosphere
and increases inwards. Hence to get the optical depth that prevents a photon deep inside the
atmosphere at radius r from leaving the star, we have to integrate τ from the surface at r0 to r.
We get the total radial optical depth from

τν(r) = −

∫ r

r0

χν(r
′) dr′ =

∫ r0

r
χν(r

′) dr′

With the definition of the optical depth (2.18) and the source function (2.9), we can write the
general time-independent RTE in a very compact form by dividing it by the extinction coefficient
χν

∂Iν
∂τν

= Iν − Sν (2.19)

Though it looks very compact and simple, the left hand side of (2.19) depends on the actual
geometry of our transfer problem. Thus it can become very complex. Furthermore, when we
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insert the source function from (2.10) which contains the mean intensity as defined in (2.4),
equation (2.19) becomes

∂Iν
∂τν

= Iν −

[

(1− ǫ)

(

1

4π

∮

4π
Iν dΩ

)

+ ǫBν

]

(2.20)

Here we recognize that the RTE contains what we called the scattering problem. The differential
equation for Iν contains the integral over Iν . This makes the RTE an integro-differential equation.
Physically, this describes the decoupling of the radiation field from local thermodynamic properties
in the case of NLTE. It means that for the solution of the RTE at a specific point in the atmosphere,
we already have to know its solution everywhere else. To solve the RTE, we have to find consistent
solutions of the source function Sν and the radiation field described by Iν and Jν which satisfy
(2.20).

2.3.1 The Formal Solution

Though the RTE (2.19) is an integro-differential equation, we can derive a formal solution. We
can make (2.17) an exact differential equation by multiplying it with the factor e−χs. The RTE
(2.17) then becomes

[

χνIνe
−χνs + ηνe

−χνs
]

ds+ e−χνsdIν = 0

We can then integrate the term in brackets from s1 to s2 and with our definition of the optical
depth (2.18), we find the formal solution

Iν(τ2) = Iν(τ1) e
(τ1−τ2) +

∫ τ2

τ1

Sν(τ) e
(τ−τ2)dτ (2.21)

The formal solution describes, what we see in figure (2.2). The first summand describes the
incoming intensity which is damped exponentially along the direction of propagation from τ1 to
τ2 due to extinction. The integral describes the intensity added to the beam between τ1 and τ2.
At the same time, the emitted energy is also damped because of extinction. We call this a formal
solution, because in general, we still do not know the source function in the integrand. However,
the formal solution will become very important during the numerical solution described in chapter
3.

2.3.2 The Radiative Transfer Equation in 3D Spherical Coordinates

In this thesis, we want to describe radiative transfer in 3D spherical coordinates. These are the
most accurate coordinates to describe the physical properties of a spherical shaped atmosphere.
In a spherical coordinate system, the spatial point ~x is describes by three coordinates

~x = ~x(r,Θ,Φ)

For the propagation vector of the specific intensity ~n, we need another set of spherical coordinates
(r′, θ, φ). Because we are only interested in the direction of these coordinates, we can write

~n = ~n(θ, φ)

Now we can write the specific intensity Iν(~x, ~n) at the point ~x(r,Θ,Φ) in the spherical coordinates
as

Iν(r,Θ,Φ, θ, φ)
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Φ
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Θ

θ
d~s

φ

x

z

Figure 2.3: The global coordinate system which describes the atmosphere, and a local tangential coordinate
system in which we describe the direction of propagation;

It is important to keep in mind the difference between the local coordinates of propagation (θ, φ)
and the point x(r,Θ,Φ) in the global coordinate system, which describes the physics of an
atmosphere.
To describe radiative transfer in 3D spherical coordinates, we have to write down explicitly the
directional derivative on the left hand side of the time-independent RTE (2.17)

∂

∂s
=

n
∑

i=1

∂xi

∂s

∂

∂xi
(2.22)

=

(

∂r

∂s

)(

∂

∂r

)

+

(

∂Θ

∂s

)(

∂

∂Θ

)

+

(

∂Φ

∂s

)(

∂

∂Φ

)

+

(

∂θ

∂s

)(

∂

∂θ

)

+

(

∂φ

∂s

)(

∂

∂φ

)

(2.23)

The derivatives with respect to θ and φ account for the change of the local tangential coordinate
system. The spatial derivatives ∂r

∂s ,
∂Θ
∂s , and ∂Φ

∂s describe the dependency of Iν on the 3D coordi-
nate system of the atmosphere. However, the 3D coordinates (r,Θ,Φ) depend on the direction
of propagation ~n(θ, φ), since a photon in an inertial system always travels along a straight line
of sight. Therefore, a fixed direction ~n determines the 3D coordinates (r,Θ,Φ) along which
the specific intensity Iν propagates. This implies that we can solve the 3D-RTE by solving a
spherically symmetric RTE along several characteristics (section 3.3). We can drop the explicit
dependencies of Θ and Φ in the RTE and use the spherically symmetric RTE if we solve it for
all initial values of the direction of propagation ~n. Thus, we will derive the spherically symmetric
RTE in the following.
The derivative of the azimuthal angle φ vanishes in the case of spherically symmetric radiative
transfer due to the rotational symmetry of a tangential frame in a spherically symmetric atmo-
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~n
~r1

~r2

θ1

dθ

dr

ds

θ2

~n

Figure 2.4: the parallel translation of ~n along d~s; in the case of spherical symmetry, the derivative with
respect to φ vanishes.

sphere. Figure 2.4 shows the geometrical situation of an infinitesimal translation along ~n. The
derivatives with respect to r and the polar angle θ can be derived from the definitions of the
trigonometric functions

∂r

∂s
= cos θ (2.24)

∂θ

∂s
= −

sin θ

r
(2.25)

With (2.24) and (2.25), the directional derivative in the case of spherical symmetry becomes

∂

∂s
= µ

∂

∂r
+

(1− µ2)

r

∂

∂µ

with µ = cos θ.

We can now write down the spherically symmetric RTE

[

1

c

∂

∂t
+ µ

∂

∂r
+

(1− µ2)

r

∂

∂µ

]

Iν = ην − χνIν (2.26)

2.4 Radiative Transfer in Moving Media

The intention of this thesis is to solve the 3D-RTE for a dynamic atmosphere in the presence of
a velocity field. But at this point, we only have an accurate description of radiative transfer for
static media. To include a velocity field into our model, we have two choices for the description
of the radiative transfer.
On the one hand, we can describe the transfer problem in the frame, where the observer at infinity
and the center of the star are at rest. We call this frame the observer’s frame or Eulerian frame.
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But due to Doppler-shifts which we observe in an Eulerian frame with a velocity field, the Eulerian
approach gets inconvenient when we want to compute spectral lines. To compute a synthetic
spectrum, we have to include atomic and molecular data which we get from precomputed data
bases. The line profiles are dynamically discretized for the computations in numerical radiative
transfer. Figure 2.5 shows how the Doppler-shifts in an Eulerian frame will then make the dis-
cretization inaccurate. The wavelengths are shifted but the discretization grid is static.

λ

v = 0

v = 0

Figure 2.5: The dynamic wavelength sampling of a line in an Eulerian frame will not be accurate with
velocity fields because of Doppler shifts in the line profile.

Furthermore, the Eulerian frame frequency depends on the angle between the direction of prop-
agation ~n and the velocity ~v (see 2.32). Hence the opacity and emissivity also become angle-
dependent, because they depend on the frequency. Therefore, the opacities and emissivities are
not isotropic in the Eulerian frame.

On the other hand, we can describe the radiative transfer in a frame which is comoving with
the atmosphere [Mihalas 1980]. We call this a Lagrangian frame. Because in a comoving frame
(cmf) the velocity vanishes, there are no Doppler-shifts in the line profiles and the discretization
stays accurate. We can then restrict the frequency-bandwidth, in which the line profile has to be
discretized with high accuracy, to the width of the intrinsic line-profile. Besides that, the opacity
and emissivity stay isotropic in the comoving frame, because the velocity vanishes.
Therefore, we choose the Lagrangian frame for our numerical solution approach. But we have to
transform the spherical symmetric RTE (2.26) into the Lagrangian frame by a Lorentz transfor-
mation.
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Though the RTE in the Lagrangian frame offers physical and computational advantages, the
cmf solution method we will present in chapter 3 is only working for monotonic velocity fields.
However, the Lorentz transformation may only be applied if the relative velocity between the
frames is uniform and constant. But in the case of an expanding atmosphere, the velocity field is
of a radial form

~v(r) = v(r)
~r

r
(2.27)

and hence, the expanding atmosphere is not an inertial frame. Each location in the atmosphere
needs to be transformed into its own tangential inertial system which instantaneously coincide
with the moving matter. Therefore, we need individual transformations for each point in the
expanding atmosphere.
Furthermore, as the comoving frame is not an inertial frame, we shall leave the space time
coordinates in the Eulerian frame, when we derive the cmf RTE. We thus avoid the need for a
metric of an accelerated fluid frame [Castor 1972].

2.4.1 Lorentz Transformation of the Material

and Radiation-Field Properties

The special theory of relativity describes the physical relations between inertial systems in the case
of flat space-time. The appropriate mathematical formalism is described in the four-dimensional
Minkowski real vector space. The relations between four-vectors in different inertial systems are
determined by the Lorentz transformation. The general Lorentz transformation is described by a
linear transformation of the form

x′α = Λα
βx

β (2.28)

In the case of two inertial systems moving relatively to each other with an arbitrarily directed
velocity ~β = (βx, βy, βz), the general Lorentz-Matrix is

Λi
j =













γ −βxγ −βyγ −βzγ

−βxγ 1 + (γ − 1)β2
x

β2 (γ − 1)
βxβy

β2 (γ − 1)βxβz

β2

−βyγ (γ − 1)
βyβx

β2 1 + (γ − 1)
β2

y

β2 (γ − 1)
βyβz

β2

−βzγ (γ − 1)βzβx

β2 (γ − 1)
βzβy

β2 1 + (γ − 1)β2
z

β2













(2.29)

with the Lorentz factor γ = 1/(1−β2)1/2. At this point, we only know the static RTE (2.15) in the
Eulerian frame. In the case of spherical symmetry, we derived the RTE in spherical coordinates.
With time-dependence it is

1

c

∂I(µ, ν, t)

∂t
+ µ

∂I(µ, ν, t)

∂r
+

(1− µ2)

r

∂I(µ, ν, t)

∂µ
= η(µ, ν, t)− χ(µ, ν, t)I(µ, ν, t) (2.30)

For two inertial systems, the RTE is covariant and we can then easily replace the Eulerian physical
quantities by their corresponding Lagrangian ones if we take in account the appropriate transfor-
mations and relativistic invariant quantities.

The Four-Momentum of a Photon

The angle cosine µ and the frequency ν are properties of the specific intensity I(ν, µ). They
describe the direction of propagation and the energy of a photon. These radiation-field properties
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are combined in the four-momentum of the photon

~p =









E/c
px

py

pz









=
hν

c









1
nx

ny

nz









(2.31)

The four-momentum of the photon is a relativistic generalization in the Minkowski space. We
get the relation between the properties of a photon in the Eulerian and Lagrangian frames by
transforming the four-momentum according to (2.28)

p′α = Λα
β p

β

With (2.29) and (2.31), we get the frequency and the direction of propagation in the comoving
frame

ν ′ = νγ (1− ~β · ~n) (2.32)

~n′ =
ν

ν ′

[

~n−

(

γ −
γ − 1

β2
(~β · ~n)

)

~β

]

(2.33)

Because we restrict the velocity field to the form (2.27), the dot product of ~β and ~n becomes

~β · ~n = β ~er · ~n

= βµ

From the differential operator (2.16) and (2.24), we know that

nr =
∂r

∂s
= µ

Thus we get the comoving angle cosine µ′ from (2.33)

n′r =
ν

ν ′
[n′r − γβ + µ(γ − 1)]

⇔ µ′ =
ν

ν ′
γ (µ− β)

and using (2.32) we get

µ′ =
µ− β

1− βµ
(2.34)

By the straightforward derivations of µ′ and ν ′, we get the useful relations between the Eulerian
and Lagrangian differentials

dν ′ =

(

ν ′

ν

)

dν (2.35)

dµ′ =
( ν

ν ′

)2
dµ (2.36)

which we will need for the formulation of the relativistic invariants.



24 2.4. Radiative Transfer in Moving Media

The Relativistic Invariants

The relativistic invariants connect the quantities of the Eulerian and Lagrangian frames. We can
determine these invariants from classical considerations. For the invariant of the specific intensity,
we claim that the photon density will be maintained during the transformation. The number of
photons N passing through an area dA perpendicular to ~v in the frequency intervall [ν, ν + dν]
into the solid angle dω in direction ~n (with d ~A · ~n = µ dA) in the time intervall [t, t + dt] has
to be the same in both frames. If we choose the area dA to rest in the the stationary Eulerian
frame, we find

N =

[

I(µ, ν)

hν

]

dω dν µ dA dt

An observer in the comoving frame counts the same number of photons passing through the disk.
When we consider the movement of dA in the comoving frame, the comoving observer counts

N ′ =

[

I ′(µ′, ν ′)

hν ′

]

dω′ dν ′ (dA µ′ dt′ + c−1 dA v dt′)

The first term gives the number of photons which would pass dA at rest, and the second term
gives the number of photons which are collected by dA in the volume (dA v dt′) during its
movement. The area dA is the same in both frames, because we claimed that ~v is perpendicular
to dA. If we claim that

N ′ !
= N (2.37)

we need the relations between the differentials of the Eulerian and Lagrangian frames from (2.35)
and (2.36). Furthermore, we need the relations between the differentials of the solid angles and
time. Because dω = −dµ dφ, the spherical symmetry (dφ′ = dφ) and the time dilatation, we
find

dω′

dω
=
dµ′

dµ
(2.38)

dt′ = γ dt (2.39)

We can now write down (2.37) explicitly by using (2.34) to (2.39) and derive the invariant of the
specific intensity

I

I ′
=
ν

ν ′
dω′

dω

dν ′

dν

dt′

dt

1

µ
(µ′ + β)

=
ν

ν ′

( ν

ν ′

)2 ν ′

ν
γ

1

µ
(µ′ + β)

=
( ν

ν ′

)2
γ

1

µ

(

µ− µβ2

1− βµ

)

⇔ I(ν, µ) =
( ν

ν ′

)3
I ′(µ′, ν ′) (2.40)

For the invariant of the emissivity, we claim that the number of photons emitted from a certain
volume dV into the solid angle dω in the frequency intervall (ν, ν + dν) in the time intervall
(t, t+ dt) must be same in both frames

(η(µ, ν) dω dν dV dt)/hν = (η′(µ′, ν ′) dω′ dν ′ dV ′ dt′)/hν ′
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Because the Lorentz contraction (dx′ = 1/γ dx) and the time dilatation effect (dt′ = γdt) cancel
each other out, the four-dimensional space time volume element (dV dt) is the same in both
frames and hence

η(µ, ν)

η′(µ′, ν ′)
=
ν

ν ′
dω′

dω

dν ′

dν

⇔ η(µ, ν) =
( ν

ν ′

)2
η′(ν ′) (2.41)

Here, we see explicitly that η′ in the comoving frame is isotropic. Using (2.40) and (2.41), we
conclude from the energy balance on the right hand side of the RTE that

χ(µ, ν) =

(

ν ′

ν

)

χ′(ν ′) (2.42)

2.4.2 The Special Relativistic Radiative Transfer Equation

Substituting the invariants of the specific intensity (2.40), the emissivity (2.41) and the opacity
(2.42) into the time-dependent, spherically symmetric RTE (2.30), we get

η′(ν ′)− χ′(ν ′)I ′(µ′, ν ′) =
( ν

ν ′

)

[

1

c

∂I ′(µ′, ν ′)

∂t
+ µ′

∂I ′(µ′, ν ′)

∂r
+

1− µ2

r

∂I ′(µ′, ν ′)

∂µ

]

− 3
( ν

ν ′2

)

[

1

c

∂ν ′

∂t
+ µ

∂ν ′

∂r
+

1− µ2

r

∂ν ′

∂µ

]

I ′(µ′, ν ′) . (2.43)

Equation (2.43) now contains the comoving frame intensity, emissivity and opacity, but we have
to pay attention to the derivatives. Because the velocity of the matter in the atmosphere depends
on the radius r and (in general) the time t, a variation of r or t causes a change of the velocity β
and hence, µ′ and ν ′ are not constant according to (2.34) and (2.32). Therefore, we have to take
into account the variations of the comoving frame quantities µ′ and ν ′ explicitly. By applying the
chain rule, we can derive [Mihalas 1980]

∂

∂t

∣

∣

∣

∣

rµν

=
∂

∂t

∣

∣

∣

∣

rµ′ν′

+
∂µ′

∂t

∣

∣

∣

∣

rµν

∂

∂µ′
+
∂ν ′

∂t

∣

∣

∣

∣

rµν

∂

∂ν ′
, (2.44)

∂

∂r

∣

∣

∣

∣

tµν

=
∂

∂r

∣

∣

∣

∣

tµ′ν′

+
∂µ′

∂r

∣

∣

∣

∣

tµν

∂

∂µ′
+
∂ν ′

∂r

∣

∣

∣

∣

tµν

∂

∂ν ′
, (2.45)

∂

∂µ

∣

∣

∣

∣

rtν

=
∂µ′

∂µ

∣

∣

∣

∣

rtν

∂

∂µ′

∣

∣

∣

∣

rtν

+
∂ν ′

∂µ

∣

∣

∣

∣

tµν

∂

∂ν ′
. (2.46)

The first terms in (2.44) and (2.45) describe the explicit dependencies of the comoving quantities
on the Eulerian space time coordinates. The second terms describe the implicit dependencies
caused by the velocity field. The derivative of µ is only implicit, because µ′ and ν ′ are isotropic
in the comoving frame. We have to rewrite (2.43) so that it only contains comoving quantities
except the Eulerian space time coordinates. We use the differential operator from (2.44), (2.45)
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and (2.46), and after the straightforward derivation of the comoving quantities, we get

η′(ν ′)− χ′(ν ′)I ′(µ′, ν ′) =
γ

c
(1 + βµ′)

∂I ′(µ′, ν ′)

∂t
+ γ(µ′ + β′)

∂I ′(µ′, ν ′)

∂r

+ γ(1− µ′2)

[

1 + βµ′

r
−
γ2

c
(1 + βµ′)

∂β

∂t
− γ2(µ′ + β)

∂β

∂r

]

∂I ′(µ′, ν ′)

∂µ′

− γ

[

β(1− µ′2)

r
+
γ2

c
µ′(1 + βµ′)

∂β

∂t
+ γ2µ′(µ′ + β)

∂β

∂r

]

ν ′
∂I ′(µ′, ν ′)

∂ν ′

+ 3γ

[

β(1− µ′2)

r
+
γ2

c
µ′(1 + βµ′)

∂β

∂t
+ γ2µ′(µ′ + β)

∂β

∂r

]

I ′(µ′, ν ′)

(2.47)

Equation (2.47) is called the spherical symmetric special relativistic radiative transfer equation
(SSRTE). Because we are not interested in the time dependence, we can drop it and the SSRTE
becomes

η′(ν ′)− χ′(ν ′)I ′(µ′, ν ′) = γ(µ′ + β′)
∂I ′(µ′, ν ′)

∂r

+ γ(1− µ′2)

[

1 + βµ′

r
− γ2(µ′ + β)

∂β

∂r

]

∂I ′(µ′, ν ′)

∂µ′

− γ

[

β(1− µ′2)

r
+ γ2µ′(µ′ + β)

∂β

∂r

]

∂(ν ′I ′(µ′, ν ′))

∂ν ′

+ 4γ

[

β(1− µ′2)

r
+ γ2µ′(µ′ + β)

∂β

∂r

]

I ′(µ′, ν ′) . (2.48)

Because during the numerical solution of the SSRTE we will work with a wavelength discretization
instead of frequencies, we replace ν ′ in (2.48) with λ′. The frequency and wavelength descriptions
are equivalent and the SSRTE does not change except the derivative of I ′ with respect to ν ′.
Because

dλ′ = −
1

ν ′2
dν ′

the sign of the ∂(ν′I′)
∂ν′ changes, and the time independent SSRTE becomes

ar
∂I ′ν
∂r

+ aµ
∂I ′ν
∂µ′

+ aλ
∂λI ′ν
∂λ′

+ 4aλI
′

ν = η′ν − χ
′

νI
′

ν (2.49)

with the coefficients

ar = γ(µ′ + β)

aµ = γ(1− µ′2)

[

1 + βµ′

r
− γ2(µ′ + β)

∂β

∂r

]

aλ = γ

[

β(1− µ′2)

r
+ γ2µ′(µ′ + β)

∂β

∂r

]
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In the following, we will drop the explicit dashed notation of the cmf quantities because from now
on, we describe the RTE in the comoving frame unless otherwise noted.

Again, though equation (2.49) describes the radiative transfer in a comoving frame, though
as a whole, a spherically expanding atmosphere is not an inertial system. The SSRTE describes
the radiative transfer in a tangential inertial system in (r,Θ,Φ) moving with β(r)~er(Θ,Φ), which
instantaneously coincide with the moving matter. Hence, to describe radiative transfer through
layers of different velocities, we follow and discretize the way of a photon through the atmosphere
and transform its properties into the comoving frame individually at each discretization point.

2.5 Line Transitions

The implementation of the numerical solution scheme we present in the following chapter needs
to be tested seriously. For that, we computed a series of line transitions for a hypothetic two-level
atom. The atom in this model consists of only two levels l and u, between which radiative and
collisional transitions can occur. Of course, this model is not very realistic, but it provides an
adequate description for resonance lines that originate from ground state transitions. Furthermore,
the two-level model provides an excellent possibility for a testing environment, because it allows
us to determine the dependency of our solution on the wavelength coupling in the SSRTE.

2.5.1 The Einstein Relations for Bound-Bound Transitions

We describe the emission and absorption rates between the lower level l and the upper level u
statistically by introducing the Einstein rate coefficients. We consider the following processes:

Radiative Excitation

Radiative Excitation describes the direct absorption of a photon which leads to an upward tran-
sition from level l to u. The rate of this process for radiation of specific intensity Iν can be
described by the Einstein coefficient Blu

nl(ν)Rlu(dω/4π) = nl(ν)BluIν(dω/4π) (2.50)

where nl(ν) is the number of atoms per cm3 in state l which can absorb radiation at frequencies
on the range (ν, ν+dν). The spectrum line in general is not sharp because of various perturbation
effects in a stellar atmosphere. For example, nearby atoms, ions and molecules shift the energy
levels l and u slightly due to electromagnetic interactions so that the transition energy is not
sharp. Furthermore, the uncertainty principle connects the finite lifetime of the state u with an
uncertainty in energy and causes the natural or intrinsic linewidth.
Thus the transition is not a sharp line but is described by an absorption profile φν . It describes
the dependency of nl(ν) = nlφν on the frequency ν, where nl is the total number of atoms in
state l. It is normalized so that

∫

φνdν = 1. The transition energy between the levels l and u
is given by Eu − El = hνul. We can then describe the rate, at which energy is removed from a
beam, by a macroscopic true absorption coefficient aν

aνIν = nl(Bluhνlu/4π)φνIν (2.51)

where aν now describes the true absorption which is not corrected for stimulated emission (in
contrast to χν).
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Spontaneous and Induced Radiative Deexcitation

There are two possible radiative processes when the excited atom returns from the upper level u to
the lower level l. The first one is the spontaneous emission of a photon. The Einstein coefficient
Aul denotes the probability per unit time for an excited atom to deexcite by spontaneous emission.
The rate of energy emitted by spontaneous emission is described by

ην(spontaneous) = nu(Aulhνlu/4π)ψν (2.52)

with the emission profile ψν and the total number of excited atoms nu.
The second possibility is the induced emission. The probability per unit time is described by the
Einstein coefficient Bul. The rate of emitted energy by induced deexcitation becomes

ην(induced) = nu(Bulhνlu/4π)ψνIν (2.53)

We noted explicitly that the emission profiles for spontaneous and induced emission are the same
as can be shown in quantum mechanics. It is important to notice that the energy emitted by
induced emission is proportional to and has the same angular distribution as the incident specific
intensity Iν . That is why spontaneous emission is sometimes considered as negative extinction.
In fact, this is not quite correct, because in general, the absorption profile φν and the emission
profile ψν are not the same.

Collisional Excitation and Deexcitation

In contrast to the radiative excitation and deexcitation processes, collisional processes change the
states of atoms without absorbing or emitting photons. There is a wide variety of possible collisions
that may occur between the atoms, ions and electrons in the plasma of a stellar atmosphere. But
since in thermodynamic equilibrium the velocities of the electrons are a factor of (mHA/me)

1

2

larger than those of ions of atomic weight A, we only consider electron collisions causing a
transition from state l to u with the rate

nlClu = nlne

∫

∞

v0

σlu(v)vf(v)dv (2.54)

with ne denoting the electron density, σlu the electron collision cross-section, f(ν) the normalized
velocity distribution and v0 the threshold velocity with 1/2mv2

o = hν0.

Einstein Relations

The Einstein coefficients are coupled by the Einstein relations. These are derived from the calcu-
lation of the absorption and emission rates in thermodynamic equilibrium (TE). In this case, the
occupation numbers in TE n∗l and n∗u are determined by the Boltzmann law

n∗u
n∗l

=
gu

gl
exp(−hνul/kT ) (2.55)

where gl and gu are the statistical weights of the lower and upper levels. In a TE situation,
emission and absorption processes have to be balanced, and the emission and absorption profiles
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are the same. With the use of the Planck function for the emitted energy, we derive the Einstein
relations

glBlu = guBul Aul = (2hν2/c2)Bul

n∗lClu = n∗uCul

which are important for the formulation of the line source function. Although the Einstein relations
are derived for the TE case, they describe the statistical properties of an atom itself. Therefore
they have to be independent from the radiation field and must be valid in general.

2.5.2 The Source Function for the Two-Level Atom

For the formulation of the line source function, we consider only absorption and emission processes
from the line itself. We neglect the contributions from the continuum. The extinction coefficient
can then be described with the Einstein coefficients by accounting for the stimulated emission
rates as a negative contribution. The emissivity is determined by spontaneous emission processes

χν = (nlBlu − nuBul)(hν/4π) ηul = nuAul(hν/4π)

We assumed complete redistribution so that the emission and absorption profiles are equal. Now
we can obtain an expression for the line source function by using the Einstein relations

Sl =
nuAul

nlBlu − nuBul
= (2hν3/c2) [(nlgu/nugl)− 1]−1 (2.56)

Equation (2.56) is called the frequency-independent source function, because the line profile φν

is usually sharped peaked. Therefore, the factor ν3 only varies slightly over the profile. Here, Sl

in given in an implicit form, because the occupation numbers nu and nl depend on the radiation
field.
By using the equations of statistical equilibrium, we can derive an explicit term for the line source
function. In the case of statistical equilibrium, the total amount of radiative and collisional
excitation and deexcitation rates have to be identical

nl

(

Blu

∫

φνJν dν + Clu

)

= nu

(

Aul +Bul

∫

φνJν dν + Cul

)

(2.57)

We can now obtain an expression for the quotient of the occupation numbers nl/nu by the
Einstein coefficients. The line source function becomes

Sl =

∫

φνJν dν + ǫ′Bν

1 + ǫ′
≡ (1− ǫ)J̄ν + ǫBν (2.58)

with

ǫ′ ≡ Cul(1− e
(−hν/kT ))/Aul

ǫ ≡
ǫ′

1 + ǫ′

In equation (2.58) we noted the line source function in a form we already know from the coherent
source function (2.10). But in contrast to the coherent source function the line source function
Sl now contains a non-coherent scattering term J̄ν . It describes the energy transported to the
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region of interest from all over the atmosphere by continuous scattering processes. The thermal
source part ǫ′Bν describes the energy emitted by local radiative deexcitation.
It is interesting to notice that in the case of large densities the collisional Einstein coefficient
Cul will obviously dominate and ǫ′ becomes ≫ 1. Then we get an LTE situation with Sl ≈ Bν .
However, in the outer regions where observable line formation takes place, the atmosphere is
optically thin and ǫ′ becomes ≪ 1. The source function will then dramatically differ from the
Planck function.



Chapter 3

The Solution of the Equation of

Radiative Transfer

In this chapter we describe the basics of numerical radiative transfer which is crucial for solving the
RTE. We describe the numerical methods we use for solving the RTE, especially the Λ iteration
scheme and the operator splitting method.

3.1 Introduction

This chapter presents the solution methods we are using to solve the SSRTE (2.49). It is based
on the 1D solution method described in [Mihalas 1980] which we extend in order to solve the
radiative transfer problem in 3D. In section (2.3.1), we derived a formal solution (2.21) of the
basic RTE (2.19). But to calculate the formal solution, we need to know the source function.
We know this already as the scattering problem (section 2.2) and it is caused by the non-locality
(section 2.7) of the interaction processes between radiation and matter. However, for highly
opaque atmospheres, it is possible to solve the RTE analytically and find consistent solutions of
the source function and the radiation field. This is possible, when the mean free path of a photon
is short relative to the gradient of the temperature structure of the atmosphere. In this case,
the radiation field is dominated by the local thermodynamic properties, because a photon is not
able to transport energy far between layers of different thermodynamic properties. Thus, we can
assume an atmosphere determined by an LTE situation. The source function is then determined
by the local thermal emission (2.12), and we can solve the RTE with the formal solution (2.21).

The problem with the LTE assumption is that we neglect any global interaction processes of
the radiation field with the matter. Especially in the outer regions of a star, where the atmo-
sphere becomes optically thin and light can leave the star, any assumptions of thermodynamic
equilibrium becomes inaccurate. In these areas the propagation of a photon is not any more
dominated by thermal but by scattering processes. Therefore, the scattering contribution of the
source function becomes important (2.10), and we need to find consistent solutions of the integro-
differential RTE (2.20).
In the NLTE situation, an analytical approach of solving the RTE is limited due to the non-linearity
of the transfer problem (section 2.3). However, most of the analytical approaches originate in
the pre-computer era. With the power of modern computers, we are no longer forced to make
simplifying assumptions to obtain analytical approximations. We are able to verify and approve
the theory behind the model atmosphere for a variety of realistic astronomical objects.

31
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The numerical approach is based on finding consistent solutions of the source function and the
the mean intensity by iterative methods. This is a demanding task, because it is not trivial to
find a fast converging iteration scheme. The demand of computational power and memory of
the 3D radiative transfer solution even pushes the envelope of modern supercomputers. Parallel
computing and well-considered memory management are essential in the process of implementing
computational solution methods [Hauschildt and Baron 2006].

3.2 Modeling Atmospheres in PHOENIX

PHOENIX is a scientific computer code for the computation of model atmospheres. It can calcu-
late atmospheres and spectra of stars and planets, including main sequence stars, giants, white
dwarfs, stars with winds, TTauri stars, Novae, Supernovae, brown dwarfs and extrasolar giant
planets. The goal of the PHOENIX code is to construct self-consistent model atmospheres. The
mathematical model describes the physical dependencies of the atmosphere on some fundamental
physical quantities which characterize the atmosphere. PHOENIX uses the temperatures T , the
gas pressures Pgas and the population numbers n at each discrete point in the atmosphere as
fundamental variables. These variables are connected (mostly non-linearly) in the following basic
equations which describe the dynamics of the atmosphere

• hydrodynamic equilibrium

• equation of state

• rate equations

• radiative transfer equation

• radiative equilibrium

The fundamental variables determine a lot of additional physical quantities which determine the
structure and dynamics of the atmosphere, e.g., the densities, the population densities and the
specific and mean intensities. To construct a self-consistent model atmosphere, we have to find
sets of fundamental variables determining a physical structure of the atmosphere, which fulfils the
basic equations (Figure 3.1).
To find a set of consistent physical quantities, PHOENIX uses a scheme of nested iterative solutions.
This solution scheme accounts for the strong couplings between important physical variables di-
rectly and iteratively for the indirect couplings between variables. The problem of constructing a
consistent model atmosphere is then reduced to a number of smaller problems. By this, PHOENIX
uses the fact that the level of coupling between the variables is different [Hauschildt and Baron
1999].

From (Figure 3.1) we can see that the solution of the radiative transfer equation, which is the
topic of this thesis, is only one small step in the problem of finding a self-consistent model at-
mosphere. Nevertheless, it is a crucial one, because the radiative transfer equation allows us to
account for the global couplings of physical variables in the case of NLTE.
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Figure 3.1: The PHOENIX flowchart; It describes the relations between (some of) the mathematical equa-
tions which describe the physics of an atmosphere. In order to calculate a model atmosphere,
we have to find consistent solutions of all equations. Unfortunately, most of the dependencies
are non-linear (from [Hauschildt and Baron 1999], by courtesy of Peter H. Hauschildt).
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3.3 The Method of Characteristics

The idea of the method of characteristics is to reduce a partial differential equation (PDE) to
a parameterized ordinary differential equation (ODE). The parameter describes a characteristic
curve along which the PDE becomes an ODE which can be solved by piecewise integration along
the characteristic. If we find solutions for all initial conditions of the ODE, we can solve the
original PDE. This is called the method of characteristics [Olson and Kunasz 1987].

In the case of the SSRTE (2.49), we have to find the characteristics of the radiation field.
These can be interpreted as the paths of photons of a certain wavelength which are travelling
through the atmosphere (Figure 3.2). For a static atmosphere, the characteristics are straight
lines because for an observer in an inertial frame, the optical path is always straight. For an
observer in a comoving frame in a certain layer of the atmosphere, the optical path is straight as
well. But because of the different velocities of the layers in the atmosphere, a photon experiences
continuous wavelength shifts, and the way of a photon of a fixed wavelength seems to be curved.
In fact, there is no frame in which this curvature is observable because for an observer in a single
tangential comoving inertial frame, the optical path is still straight. The curvature is an effect of
continuous Lorentz transformations between the Eulerian frame and the Lagrangian frames the
photon passes on its way through the atmosphere.

~er5

µ > 0µ < 0

~nµ

~er4~er3~er2~er1

Figure 3.2: The geometrical situation of a photon travelling through different layers of an atmosphere
in the Eulerian frame; each layer is crossed under an individual angle given by µ(Θ,Φ, ~n) =
~er(Θ,Φ)·~n. When the angle cosine is known in the Eulerian frame, it can easily be transformed
into a tangential Lagrangian frame according to (2.34).

We introduce the parameterization by the line element ds which describes an infinitesimal move-
ment of a photon in the atmosphere. We then define the total derivative of I with respect to s
as

dI

ds
=
dr

ds

∂I

∂r
+
dµ

ds

∂I

∂µ
(3.1)

The comparison with (2.49) gives us the definition of the characteristic rays

dr

ds′
= ar = γ(µ+ β) = n′r

∂r

∂r′
(3.2)

dµ

ds′
= aµ = γ(1− µ2)

[

1 + βµ

r
− γ2(µ+ β)

∂β

∂r

]

= − sin θ n′θ
∂θ

∂θ′
(3.3)
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With (3.2) and (3.3) we can now reduce the partial differential SSRTE to a more simple form.
(2.49) becomes

dIλ
ds

+ aλ
∂λIλ
∂λ

= ηλ − (χλ + 4aλ)Iλ . (3.4)

Equation (3.4) is still a PDE but with a parameterization of the spatial derivatives. To solve (3.4)
we have to discretize the differential quotients and convert it to a form like (2.19). Then we can
solve (3.4) by a piecewise integration of the formal solution (2.21).

In general, the line element ds must be calculated for the comoving frame. That is impor-
tant to remember, because now, we lost all explicit connections to the Eulerian space coordinates
in the parameterized radiative transfer equation (3.4). The relations to the Eulerian frame are
given by (3.2) and (3.3). However, we must explicitly calculate ds by a Lorentz transformation
of the Eulerian space coordinates (section 3.5).

3.4 Discretization of the Radiative Transfer Equation

Because the SSRTE (3.4) has a spatial and a wavelength dependency, we have to solve it numeri-
cally on a discrete spatial and wavelength grid. The wavelength grid has to be ordered because we
will need the solutions of the previous wavelength point for the actual solution of the RTE (section
3.4.1). For the spatial grid, the volume of the atmosphere is divided into discrete elements of
space (Figure 3.3). Such a finite element of space is also called a volume element or voxel. Each
voxel is then assigned its physical quantities like opacity, emissivity, intensity, source function
and many more. The number of discretization elements, also called resolution, determines the
accuracy of the model atmosphere. In the case of the SSRTE (3.4), we already simplified the
solution of the spatial derivative to the solution along characteristic rays. The line element ds in
the Eulerian frame is then discretized on the voxel grid by

ds ≈ ∆s = |si − si−1| , (3.5)

where si is a discretization point on the characteristic. The finite line difference ∆s allows us to
compute the monochromatic formal solution (2.21) by a piecewise integration along the charac-
teristic ray if we know the opacities, the source function and the initial values (intensities at the
outer or inner boundaries of the atmosphere). The formal solution on a discretized characteristic
then becomes

I(τi) = I(τi−1) exp (τi−1 − τi) +

∫ τi

τi−1

S(τ) e(τ−τi)dτ (3.6)

= Ii−1 exp (−∆τi−1) + ∆Ii (3.7)

where ∆τi is a finite optical depth element given by a piecewise linear interpolation

∆τi =
1

2
(χi−1 + χi)∆s

χi is the opacity at the discretization point si on the characteristic and is given by the physical
quantities of the voxel the characteristic hits at si. The integral in (3.6) is solved analytically by
a linear or parabolic interpolation of the source function

∆Ii = αiSi−1 + βiSi + γiSi+1 (3.8)
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In the case of linear interpolation the γ-coefficient is zero. The coefficients αi, βi and γi depend
on the optical depths between si−1 and si+1. They are given in [Olson et al. 1986].

The SSRTE (3.4) and the formal solution (3.6) do not contain dependencies on solid angles
because of the parameterization of the characteristics. We did this, because we know that a pho-
ton is propagating through the spatial grid according to (3.2) and (3.3). By this, we simplified
the 3D transfer problem to a 1D solution along characteristics. However, the 3D information of
the specific intensity is recovered by many initial directions of the characteristics. As we chose
the atmosphere to be described in spherical coordinates, a single characteristic hits the voxels of
the grid under different angles ~n · ~er (Figure 3.2) and thus, it has different contributions to the
angular resolution of the mean intensity in the different layers. To calculate the mean intensity Jν

in 3D radiative transfer, we need an appropriate discrete angular resolution of the specific inten-
sity at each voxel. Therefore, we need each voxel to be passed by characteristics of all directions
on the solid angle grid. We can then compute the mean intensity at each voxel by a numerical
quadrature.

Figure 3.3: The atmosphere is approximated by a spherical voxel grid.

3.4.1 Wavelength Discretization

The formal solution (3.6) is only valid for a static atmosphere, where the RTE is of the form
(section 2.3)

dIλ
ds

= Iλ − Sλ (3.9)

We have to bring (3.4) into the form of (3.9). Thus, we have to discretize the wavelength depen-
dent differential quotient in (3.4) by approximating it with a difference quotient on a wavelength
grid. According to [Hauschildt and Baron 2004], this is done by

∂λIλ
∂λ

∣

∣

∣

∣

λ=λl

≈
λlIλl

− λl−1Iλl−1

λl − λl−1
(3.10)

Here, Iλl
is the specific intensity at the point λl on the wavelength grid. We have two different

choices for the wavelength discretization. We can insert (3.10) before the definition of the
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comoving frame opacity. By this, one part of the wavelength derivative becomes an additional
contribution to the opacity. The other part is included in the definition of the comoving frame
source function.
On the other hand, when we first define the comoving frame opacity and defer the wavelength
discretization (3.10), the whole derivative can be considered as an additional source term. It is
possible to mix both discretization schemes via a Crank-Nicholson scheme to remove numerical
instabilities. We introduce both discretization schemes and mix them afterwards.

First Discretization

We insert (3.10) into the SSRTE (3.4) and get the wavelength-discretized SSRTE

dIλ
ds

+ aλ

λlIλl
− λl−1Iλl−1

λl − λl−1
= ηλl

− (χλl
+ 4aλl

)Iλl

⇔
dIλ
ds

+ aλ
λl−1

λl − λl−1
Iλl−1

= ηλl
−

[

χλl
+ aλl

(

4 +
λl

λl − λl−1

)]

Iλl
(3.11)

We can now define the comoving frame optical depth with the comoving frame opacity χ̂

dτ = −
[

χλl
+ aλl

(

4 + λl

λl−λl−1

)]

ds

≡ −χ̂λl
ds

(3.12)

We defined the optical depth in (2.18) with a negative sign, because the line element ds gets
negative when we are going downwards into an atmosphere. The two signs then cancel out each
other, and the opacity increases inwards. During numerical calculations along a characteristic,
ds is approximated by ∆s according to (3.5) which is always positive. Thus, we do not need
the negative sign, when we calculate the optical depth during the numerical solution. However,
we keep it here for formal reasons because ds is infinitesimal. In fact, the formal solution does
not depend on the direction which is defined by a negative or positive ds. With (3.12) the RTE
(3.11) becomes

dIλ
dτ

= Iλl
−
χλl

χ̂λl

(

S +
aλ

χ

λl−1

λl − λl−1
Iλl−1

)

≡ I − Ŝ (3.13)

Additionally to the static source function S, the comoving frame source function Ŝ now contains
a wavelength dependent part which is caused by the velocity field. The optical depth (3.12) also
contains effects of the wavelength derivative and becomes very large in comparison to the static
optical depth χ. We can solve (3.13) by applying the formal solution (3.7).

Second Discretization

By inserting the discretization (3.10) directly into the RTE, the optical depth becomes dependent
on the wavelength derivative. We can also define an optical depth which is independent of the
wavelength derivative by deferring the discretization and defining the optical depth as

dτ = −(χλl
+ 4aλ) ds

≡ −χ̂λl
ds

(3.14)
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The RTE (3.4) becomes

dIλl

dτ
= Iλl

−
χλl

χ̂λl

Sλl
−
−aλ

χ̂λl

∂λIλ
∂λ

(3.15)

≡ Iλl
− Ŝλl

− S̃λl
(3.16)

The wavelength derivative is completely part of a new source term which describes the effects of
the velocity field. The RTE (3.16) can be solved by discretizing the wavelength derivative in the
additional source term Ŝ and applying the formal solution (3.7) by splitting the integral into two
terms. The formal solution then becomes

Ii,l = Ii−1,l e
−∆τi−1,l + ∆Îi,l + ∆Ĩi,l (3.17)

with ∆Îi,l = αi,lŜi−1,l + βi,lŜi,l + γi,lŜi+1,l

∆Ĩi,l = α̃i,lS̃i−1,l + β̃i,lS̃i,l (3.18)

Ŝi,l =
χi,l

χ̂i,l
Si,l

S̃i,l = −
ai,l

χ̂i,l

∂λI

∂λ

∣

∣

∣

∣

i,l

(3.19)

The indices i and l refer to a spatial grid point si on the characteristic and a point λl on the
wavelength grid. The integration of S̃ is done by using linear interpolation, because we restrict
our solution scheme to monotonically increasing or decreasing velocity fields. By this, we avoid
the need to solve a matrix equation [Knop et al. 2007] [Chen et al. 2007].

We carry out the wavelength discretization by using (3.10) and deriving

∂λIλ
∂λ

∣

∣

∣

∣

i,l

=
λl

λl − λl−1
Ii,l −

λl−1

λl − λl−1
Ii,l−1

By inserting the discretization into the definition of S̃ (3.19), we can rewrite the integral (3.18)
as

∆Ĩi,l = α̃i,l

[

−
ai−1,l

χ̂i−1,l

(

λl

λl − λl−1
Ii−1,l −

λl−1

λl − λl−1
Ii−1,l−1

)]

+ β̃i,l

[

−
ai,l

χ̂i,l

(

λl

λl − λl−1
Ii,l −

λl−1

λl − λl−1
Ii,l−1

)]
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By defining the coefficients

pi−1,l = −
ai−1,l

χ̂i−1,l

λl

λl − λl−1

pi−1,l−1 = −
ai−1,l

χ̂i−1,l

λl−1

λl − λl−1

pi,l = −
ai,l

χ̂i,l

λl

λl − λl−1

pi,l−1 = −
ai,l

χ̂i,l

λl−1

λl − λl−1

we can finally rewrite the formal solution (3.17) as

(1− β̃i,l pi,l)Ii,l = (α̃i,l pi−1,l + exp (−∆τi,1)) Ii−1,l

− α̃i,l pi−1,l−1 Ii−1,l−1 − β̃i,l pi,l−1 Ii,l−1

+ ∆Îi,l (3.20)

Equation (3.20) describes a recursive solution for the RTE (3.4). It can be calculated along a
characteristic with the appropriate initial values. The actual specific intensity Ii,l on an arbitrary
point on the characteristic depends on the previous intensity Ii−1,l on the spatial grid at the same
wavelength point and the previous and actual intensities Ii−1,l−1 and Ii,l−1 on the spatial grid of
the previous wavelength point (Figure 3.4).

Combination of the Discretization Schemes

The two discretization schemes show different behavior in 1D radiative transfer [Hauschildt and
Baron 2004]. The deferred discretization scheme is accurate to second order in ∆λ. It is more
accurate than the first method. But under certain circumstances, the deferred scheme can be-
come numerically instable. This instability appears as oscillations on the edges of spectral lines,
but it can be removed by a combination of both discretization methods via a Crank-Nicholson
scheme. We introduce the factor ξ ∈ [0, 1] which controls the mix between the two discretization
schemes. The comoving frame opacity and source functions then become

χ̂λl
=

[

χλl
+ aλl

(

4 + ξ
λl

λl − λl−1

)]

Ŝλl
=
χλl

χ̂λl

(

S + ξ
aλl

χλl

λl−1

λl − λl−1
Iλl−1

)

S̃λl
= −(1− ξ)

aλl

χ̂λl

∂λI

∂λ

∣

∣

∣

∣

λ=λl

For ξ = 1, we get the first discretization definitions and for ξ = 0, we get the deferred ones. For
both cases, we can use the recursive formal solution (3.20). This combination method allows us
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λl−1

i + 2i− 1i− 2 i + 1

Ii,l

λl+1

λl

λ

s

i

∆λ

∆s

ξ > 0

Figure 3.4: The discrete spatial and wavelength grid; the actual intensity Ii,l depends on the actual and
previous points of the characteristics of the actual and previous wavelength points. The con-
tribution from Ii+1,l−1 is only needed for a mix with the first discretization method.

to combine and implement both discretization schemes easily and dynamically and to find the
optimal combination of stability and accuracy by varying over ξ (Figure 3.4).

3.5 The Line Element in the Comoving Frame

Equations (3.2) and (3.3) form a system of two coupled differential equations. They describe,
how the direction of propagation of a photon changes during the transformation from the Eulerian
frame into a comoving frame. In the static case (β = 0), we get exactly the directional derivatives
from (2.24) and (2.25) which describe a constant and straight direction of propagation. As the
essential information of (3.2) and (3.3) is how ~n transforms, we do not have to solve them to get
the comoving frame angle cosine. From (2.34) we already know, how the angle transforms, and
we can use it to calculate the aλ coefficient.

We emphasized that r and µ are measured in the Eulerian frame, because this is the only inertial
frame in which the atmosphere can be described as a whole. As we already mentioned, the line
element ds and the finite line element ∆s must be measured in the comoving frame. To em-
phasize the difference to a static atmosphere, we explicitly note the cmf line element as ds′ in
order to show how we transform the Eulerian frame line element ds. We can make the relations
between the Eulerian and comoving frame line elements clear by rewriting the definitions in (3.2)
and (3.3) as

ar∂s
′ = nr∂s

aµ∂s
′ = nθ∂s

As mentioned above, solving the coupled differential equations (3.2) and (3.3) is not necessary,
because we already know how the angle cosine transforms. Instead we reduce the transformation
of the line element to a Lorentz transformation of the components of ds.
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To do the Lorentz transformations, we rewrite ds as a vector

ds′ =





dx′1
dx′2
dx′3



 (3.21)

and describe the relations between the cmf coordinates dx′i and the Eulerian coordinates dxj by

dx′i =
∂x′i
∂x1

dx1 +
∂x′i
∂x2

dx2 +
∂x′i
∂x3

dx3 (3.22)

The partial derivatives
∂x′

i

∂xj
are given by the Lorentz matrix in (2.29). As described in section 2.4,

equations (3.21) and (3.22) are only valid for the transformation between two inertial frames. But
in fact, the comoving frame characteristic passes an infinite number of tangential inertial systems.
Hence, the velocity β which determines the Lorentz transformation is not constant. Due to that,
we have to integrate over the Lorentz transformations to get the finite element ∆x′i.

In fact, we want to desribe the physics of the atmosphere in spherical coordinates, but the
direction propagation of a characteristic is described in Cartesian coordinates to simplify the vec-
tor calculations. Therefore, we switch to Cartesian coordinates and write the transformations of
the line element’s components as

∆x′ =

∫ x2

x1

(1 + (γ − 1)
β2

x

β2
)dx+

∫ y2

y1

(γ − 1)
βxβy

β2
dy +

∫ z2

z1

(γ − 1)
βxβz

β2
dz

∆y′ =

∫ x2

x1

(γ − 1)
βyβx

β2
dx+

∫ y2

y1

(1 + (γ − 1)
β2

y

β2
)dy +

∫ z2

z1

(γ − 1)
βyβz

β2
dz

∆z′ =

∫ x2

x1

(γ − 1)
βzβx

β2
dx+

∫ y2

y1

(γ − 1)
βzβy

β2
dy +

∫ z2

z1

(1 + (γ − 1)
β2

z

β2
)dz

where (x1, y1, z1) and (x2, y2, z2) are two adjacent intersection points on the characteristic in the
Eulerian frame. Then we obtain the finite cmf line element from

∆s′ = (∆x′2 + ∆y′2 + ∆z′2)1/2 (3.23)

The integration of the Lorentz transformations is done numerically by a Gauss-Chebyshev quadra-
ture (A.8). In the case of a constant velocity field, the transformation of the line element can be
done by a simple Lorentz contraction.

In fact, during the numerical solution of the recursive formal solution (3.20) we calculate the
two adjacent intersection points (x1, y1, z1) and (x2, y2, z2) on the characteristic in the Eulerian
frame, and then we can derive the cmf line element from (3.23). With this line element, we
compute the cmf optical depth.

3.6 The Accelerated Λ-Iteration

In the last section, we presented the numerical monochromatic formal solution (3.20) for the
SSRTE (3.4). The sum of all formal solutions for all characteristics on the wavelength and angular
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grid gives us the radiation field. Because according to (3.8), the source function determines the
mean intensity, we rewrite the formal solution (3.6) formally with the Λ-operator from e.g. [Olson
and Kunasz 1987]

Jλ = Λλ[Sλ] (3.24)

The problem is that the mean intensities Jν of the radiation field determine the source function
according to (see section 2.2.3)

Sλ = (1− ǫ)Jλ + ǫBλ (3.25)

which has to be consistent with the source function in the formal solution (3.6) and (3.24). While
deriving (3.20), we ignored the dependency of the source function on the specific intensities. That
is why we call it a formal solution. But the RTE in general is an integro-differential equation, as
the source function depends on the mean intensity (section 2.3).

To solve this problem, we have to find consistent solutions of the source function and the mean
intensities. This is done by a fixed-point iteration scheme called Λ-iteration. It is formally written
as [Hauschildt 1992]

Jnew
λ = Λλ[Sold

λ ], Snew
λ = (1− ǫ)Jnew

λ + ǫBλ (3.26)

But in situations with large optical depths and a small thermal coupling parameter ǫ, the Λ-
iteration does not converge fast enough. That is, because the convergence rate of a fixed-point
problem is determined by the spectral radius of the iteration matrix. The spectral radius is given
by the largest eigenvalue of the iteration matrix. The largest eigenvalue of the Λ-matrix is given
by λmax ≈ (1 − ǫ)(1 − T )−1 where T is the total optical thickness of the medium. Where
scattering processes become important and hence, the thermal coupling parameter ǫ is small, the
eigenvalue is close to unity in an optically thick medium. The convergence rate of the Λ-iteration
then becomes very poor [Mihalas 1980].

We can improve the convergence rate dramatically by splitting the iteration matrix and using
parts of the actual solution in the actual iteration step. By introducing the approximate Λλ-
operator, Λ∗

λ, we split the Λλ-matrix according to

Λλ = Λ∗

λ + (Λλ − Λ∗

λ) (3.27)

We rewrite the iteration scheme from (3.26) with the Λ∗

λ-operator by using partly the unknown
actual solution of the source function

Jnew
λ = Λ∗

λ

[

Snew
λ

]

+ (Λλ − Λ∗

λ)
[

Sold
λ

]

(3.28)

Formally, this is inaccurate, because (3.28) is not consistent with the formal solution from (3.26).
But when the iteration has converged and Snew

λ = Sold
λ , this inaccuracy is removed.

By using the source function from (3.26), the iteration scheme becomes

Jnew
λ = Λ*

λ

[

(1− ǫ)Jnew
λ + ǫBλ

]

+ Λλ

[

Sold
λ

]

− Λ*
λ

[

(1− ǫ)Jold
λ + ǫBλ

]

⇔ Jnew
λ =

[

1− (1− ǫ)Λ*
λ

]

−1
(

JFS
λ − (1− ǫ)Λ*

λ

[

Jold
λ

]

)

(3.29)

⇔ Jnew
λ − Jold

λ =
[

1− (1− ǫ)Λ*
λ

]

−1[
JFS

λ − J
old
λ

]

(3.30)
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where JFS
λ = Λλ

[

Sold
λ

]

is given by the recursive formal solution from (3.20). From (3.30) we
notice that the correction

[

JFS
λ − J

old
λ

]

between two iteration steps of the ordinary Λ-iteration
is now modified by an amplification matrix. That is why equation (3.29) is called accelerated
Λ-iteration (ALI).

3.6.1 The Construction of the Approximated Λ-Operator

The splitting of the Λ-operator in (3.27) does not invoke any restrictions to the choice of the Λ∗-
operator. But to improve the convergence rate significantly compared to the ordinary Λ-iteration,
we have to construct the Λ∗-operator in such a way that the eigenvalues of the amplification
matrix become very small.
It was shown in [Olson et al. 1986] that choosing entries from the original Λ-operator results in
optimal convergence rates. Therefore, to use Λ∗ = Λ would be the best choice with respect to the
convergence rate. But the construction of the whole Λ-matrix is very time consuming. Further-
more, a more simple structure of the Λ∗-operator makes the solution of the linear system in (3.29)
easier and faster. Equation (3.29) can be solved directly by inverting the amplification matrix, but
for a complex Λ∗, the matrix inversion becomes very time consuming. By choosing only the diag-
onal elements of the full Λ-operator, the inversion of the amplification matrix in (3.29) is reduced
to a scalar division, but this would not increase the convergence rate very much [Hauschildt 1992].

A good compromise between increasing the convergence rate and the complexity of solving (3.29)
is to choose the tridiagonal Λ∗-operator from [Olson and Kunasz 1987] which is constructed from
the tridiagonal elements of the original Λ-matrix. A tridiagonal Λ∗ improves the convergence rate
and can be constructed quickly. Though the solution of equation (3.29) then becomes more com-
plicated than with a diagonal Λ∗-operator, the whole solution process of the RTE is accelerated.

The Λ-operator (3.24) is a formal notation for the formal solution of the SSRTE (2.49). The
SSRTE can be solved by the method of characteristics if we assume a known source function Sλ.
Therefore, the voxel grid has to be sampled by numerous characteristics of different directions
along which the recursive formal solutions (3.20) are computed. The intensities from the solutions
of all characteristics are then averaged to get the mean intensity Jλ. The Λ-operator represents
this process and is constructed the exact same way.

In the case of a spherical symmetric atmosphere which is discretized by l layers, the source
function and the mean intensity become vectors with l entries, one for each layer. In this case,
the Λ-operator can be written explicitly as a matrix Λij . The jth column of the Λ-matrix is then
constructed by assuming a test source function which is zero everywhere except the jth entry and
performing a formal solution (see (5.35) from [Knop 2007])
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The jth entry from the source function which not equals zero, is called a pulse. From (3.31) we
notice that an entry Λi,j from the Λ-matrix describes the explicit influence of the source function
from layer j on the mean intensity from layer i.

In the case of 3D radiative transfer, the Λ-operator can not be described as a matrix, because it
becomes six dimensional. Three dimensions (r,Θ,Φ) are needed to describe a point in the atmo-
sphere. Another set of three local indices (l,m, n) is then needed to describe the contributions
of the local pulse to the intensities of the adjacent voxels. Hence, we have to construct a local
3D-ΛrΘΦ-operator for each voxel of the grid. The equivalence to a tridiagonal Λ-matrix in the 1D
case is to restrict the entries ΛrΘΦ

l,m,n-operator to l,m, n ∈ {−1, 0, 1}. This implies that we only
consider the contributions from the 26 adjacent voxels to the Λ-operator of the centered voxel
(nearest-neighbor, Figure 3.5).

Figure 3.5: A voxel and its 26 neighbors in a Cartesian grid; the nearest-neighbor approach allows the
intensity of the centered voxel to influence the source functions of its 26 adjacent neighbors.

However, the principle of the construction of the Λ-elements is the same as described above in
the 1D case because the formal solution along a characteristic is the same as in the 1D transfer
problem. We have to make sure that the mean intensity at each voxel (not only at each layer as
in the 1D problem) is sampled by enough characteristics of different directions.

In the 3D transfer problem, the indices i(k) and j(k) label the voxels that are hit along a charac-
teristic k of a specific direction, where j labels the voxel which Λ-operator we want to construct.
They have defined relations to the global coordinates in the grid (r(j),Θ(j),Φ(j)) and the local
indices (l(i),m(i), n(i)) of the ΛrΘΦ-operator at the voxel j 1.

1For two characteristics k and k′, the indices i and j in the 3D case label different voxels and contribute to

different entries Λ
rΘΦ
l,m,n. This is an important difference to the Λ-construction in the 1D case, where the the indices
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We use the recursive formal solution from (3.20) to explicitly compute the contributions λi(k),j(k)

from a pulse in a voxel j on the intensity of another voxel i along the characteristic k. As de-
scribed above, we restrict the Λ-operator to the nearest-neighbor elements. This is equivalent to
only allowing explicit influence of the pulse at the voxel j on the intensity of the same voxel at
i = j and the adjacent ones i = j − 1 and i = j + 1. This situation is shown in Figure 3.6 for a
static atmosphere.
The contributions of the characteristic k to the entries ΛrΘΦ

l,m,n in the tridiagonal local ΛrΘΦ-
operator of the voxel at the intersection point j (where the pulse originates) are then computed
along the characteristic as follows

λi(k),j(k) = 0 i < j − 1

λj(k)−1,j(k) = (1− β̃j−1 pj−1,l)
−1 χj−1,l

χ̂j−1,l
γj−1 i = j − 1

λj(k),j(k) = (1− β̃j pj,l)
−1

[

λj−1,j (α̃j pj−1,l + exp(−∆τj−1)) +
χj,l

χ̂j,l
βj

]

i = j

λj(k)+1,j(k) = (1− β̃j+1 pj+1,l)
−1

[

λj,j (α̃j+1 pj,l + exp(−∆τj)) +
χj+1,l

χ̂j+1,l
αj+1

]

i = j + 1

λi(k),j(k) = 0 i > j + 1

For i < j−1 and i > j+1 the contributions vanish because of the nearest-neighbor structure we
chose for the Λ-operator. However, it is possible to compute the full bandwidth of the Λ-operator
by allowing the pulse from voxel j to propagate beyond the voxel i = j + 1, where it causes
exponentially damped contributions to the intensities [Hauschildt and Baron 2004]. In the 3D
case, this would cause a cubic growth of n3 (n = number of allowed adjacent voxels along the
characteristic to be influenced) of the Λ-operator and would cause the storage problems discussed
above.

Now we are able to build the ΛrΘΦ
l,m,n-elements. The intersection points i of the voxels along a

characteristic have to be transformed into the local coordinates (l(i),m(i), n(i)) of the ΛrΘΦ-
operator at the voxel (r(j),Θ(j),Φ(j)). If we sample the atmosphere with an appropriate number
of characteristics from different directions for each voxel, we then finally get the tridiagonal ΛrΘΦ

l,m,n-
elements by summing the contributions λi(k),j(k) from all characteristics

Λ
r(j)Θ(j)Φ(j)
l(i),m(i),n(i) =

∑

k

wi(k),j(k)λi(k),j(k) (3.32)

where the wi,j are the angular quadrature weights. The coordinate transformations are not done
analytically because they are a result of the numerical approach to build the Λ-operator by the
method of characteristics. Therefore, they are done stepwise during the formal solution along a
characteristic.

of different characteristics must always label the same layer and therefore contribute to the same entries Λi,j .
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Sj = 1

j − 1 j j + 1

Sj−1 = 0 Sj+1 = 0

+αj+1+βj

k

λj−1,j = γj−1 λj,j = λj−1 exp(∆τj−1) λj+1,j = λj exp(∆τj)

Figure 3.6: The characteristic k passes the adjacent voxels j − 1, j and j + 1; the construction of the
λi,j-contributions is done by a recursive formal solution along the characteristic. The test
source term in the centered voxel j contains the pulse which then determines the intensity
of the adjacent voxels because of the parabolic interpolation the formal solutions is based on
(compare to (3.7) and (3.8)). For simplification, the situation in this figure assumes a static
atmosphere and a cubic voxel grid. In fact, we use a spherical grid (Figure 3.3), and in the
presence of a velocity field, the λi,j-contributions have to be adjusted by the wavelength-
dependent terms according to the cmf recursive formal solution (3.20).

3.7 The Affine Method

The method from [Mihalas 1980], we described above, is based on an RTE that describes radiative
transfer in a comoving frame. Actually, this comoving frame is a mixed frame, because the spatial
coordinates are measured in the observer’s frame and the two momentum variables µ and λ in the
comoving frame. By this, we use the advantages of describing the physics of the moving matter
in its rest frame. But the mixing of observer’s spatial coordinates and comoving momentum
variables causes an apparent curvature of the characteristics (described by (3.2) and (3.3)) which
is in fact not observable.
The curvature of the characteristics can be avoided by only measuring the wavelength in the
comoving frame which is transformed easily according to (2.32). This ansatz is described in detail
in [Chen et al. 2007] and leads to an RTE of the form

∂Iλ
∂s

∣

∣

∣

∣

λ

+ a(s)
∂Iλ
∂λ

= −[χλf(s) + 5a(s)]Iλ + ηλf(s) (3.33)

which is written in terms of an affine parameter ξ. The parameter s measures the distance in the
observer’s frame and is related to the affine parameter by

s =
h

λ∞
ξ (3.34)

where λ∞ is the observer’s frame wavelength.
We use this method to compare and verify our results, as the affine method is already implemented
in the 3D framework of PHOENIX [Baron et al. 2009].



Chapter 4

Implementation and Tests

In this chapter we describe the implementation process of the solution methods described in the
previous chapter. We describe the tests we did to verify the implementation, and we discuss
computational aspects that are important for 3D radiative transfer.

4.1 Introduction

The implementation of the 3D solution scheme presented in the last chapter, also called solver,
has to be tested extensively before it can be applied to the problems of stellar atmospheres.
During the implementation process, we did several consistency tests in order to minimize the
number of error sources. First of all, we had to assure the inner consistency of the formal solution
and the Λ∗ construction. As described in section 3.6, the nearest-neighbor Λ∗-operator for a
certain voxel is constructed by assuming a pulse in that voxel and computing a formal solution.
Therefore, we tested the inner consistence of the solver by computing a formal solution for a grid
in which the source function of only one voxel is set to unity and zero everywhere else. Then the
formal solution of that voxel and its 26 nearest-neighbors and the 27 entries of the Λ∗-operator
of the centered voxel have to be identical. Furthermore, the recursive formal solution (3.20)
which includes the effects of a velocity field, has to reproduce the results of the static formal
solution (3.7) if v(r) equals zero for all r. Verifying this consistency was also very helpful during
the implementation process. Finally, we could test the wavelength coupling for the case of a
hypothetic two-level atom (see section 2.5). The solution scheme presented in chapter 3 has
already been implemented successfully in the 1D framework of PHOENIX [Hauschildt and Baron
2004] and acted as reference for a reasonable solution of our implementation in the 3D framework.

4.2 The Solution Scheme - An Overview

The solution scheme, we presented in chapter 3, consists of the following basic steps

a) the computation of a formal solution JFS or J̄FS

b) the construction of the Λ∗-operator

c) the solution of equation (3.29) which gives Jnew or J̄new

d) the accelerated Λ-iteration

47
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Hence, these steps determine the time needed to find a consistent solution of the RTE. In the
case of 3D radiative transfer, the time to solve the RTE is scaled dramatically because of the
increase in spatial and solid angle dimensions. This makes parallelization indispensable in the 3D
case.
In Figure 4.1 the pseudo code of the 3D solver is shown. The processes in the dashed-outlined box
can be parallelized because the method of characteristics allows us to compute formal solutions
for different directions independently. By this, we can simply reduce the time to solve the 3D RTE
by scaling up the number of central processing units (cpu). Each cpu gets a task to compute the
formal solution of certain solid angles only.

for each direction ~ni

for each voxel vj

create characteristic k that

hits vj from direction ~ni

compute and store stepwise

formal solution I(~ni)

compute Λ∗-contribution λ(~ni)

compute mean itensities JFS =
∑

~ni
wi ∗ I(~ni)

compute Λ∗ =
∑

k wi ∗ λ(~ni)

for each voxel hit along characteristic k

for each wavelength point

Figure 4.1: The pseudo code for the solver; the formal solution process for a certain wavelength point
is shown. The processes in the dashed-outlined box can be parallelized, because the formal
solution for a certain direction does not contain contributions from any other directions.

4.3 An Estimation of Memory Requirements

From the recursive formal solution (3.20) and Figure (3.4) we noticed that we need to know the
specific intensities Il−1 for all characteristics from the previous point on the wavelength grid in
order to be able to calculate the actual solution step. This coupling is a special relativistic effect
due to the velocity field. For the numerical solution of the RTE, we have to store these intensities.
But in the 3D case, we have to store the specific intensities for each voxel in the spatial grid and
for each solid angle ~n individually.
As we will see in the following section 4.4, the number of solid angles is essential for the accuracy
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of the 3D-RTE solution. But the angular resolution also scales the memory that is required for
the storage of the specific intensities dramatically.
In the following, we denote the number of angular points for φ and θ by nφ and nθ. The memory
requirement of the specific intensities Il−1 is then scaled by a factor of (nφ ∗ nθ) in comparison
to all other physical quantities that have to be stored for a certain voxel.
For an example, we assume that we need a resolution of 128 angular points for φ and θ which is a
typical resolution we used for testing purposes. This means that the memory requirement for the
specific intensities is scaled by a factor of 1282 = 16.384. As we want to use a double precision
accuracy (8 byte) during the computations, we can estimate the memory required for a 3D grid
of a spatial resolution of (128 ∗ 64 ∗ 128) voxels by

(128 ∗ 64 ∗ 128) voxel ∗ 1282 angle/voxel ∗ 8 byte/angle ≈ 137GB

Hence we need 137 GB of memory to store the specific intensities Il−1 for the whole grid in this
exemplary case. This becomes a problem as we have to store the grid data in the random-access
memory (RAM) for fast data transfer. Therefore, we could either parallelize the computation on
a shared memory system where several cpu’s share the same RAM, or we could also parallelize the
memory management. The latter uses the fact that a single cpu with its own RAM only needs
to store the specific intensities of the solid angles its task contains. When the computations
are finished, the grid data has to be exchanged between the cpu’s. This process is called data
reduction. Although the data reduction process slows the overall computation processes down,
the parallelization of memory management makes the scaling processes more dynamic when we
want to increase the grid resolution or the number of solid angles. If the resolutions exceed the
example above, as we will see is necessary, the memory required to store the specific intensities
Il−1 easily increases to terabytes or beyond.

4.4 Tests

For the following tests we devised a simple test model of a two-level atom with background
continuum to test the wavelength coupling in the formal solution (see section 2.5.2). The model
distinguishes between continuum and line opacities χc = ǫcκc+(1−ǫc)σc and χl = ǫlκl+(1−ǫl)σl.
The line of the two-level atom is parameterized by its relative strength to the continuum opacity
χl/χc and its thermalization probability ǫl = κl/χl. For the intrinsic line profile φl we use a
Gaussian profile which is discretized dynamically by 56 points on the wavelength grid.
For the spatial discretization of the test atmosphere we use a spherical 3D grid. The resolution
of the grid is defined by

• nr - number of radial grid points or layers

• nΘ - number of grid points in the Θ coordinate

• nΦ - number of grid points in Φ

The grid consists of a number of (nr ∗ nΦ ∗ nΘ) voxels. The resolution on the solid angle grid is
determined by

• nθ - number of angular points in θ

• nφ - number of angular points in φ
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The extension of the test atmosphere is 10 ∗ 106km with an inner radius at Rin = 0.1 ∗ 106km
and the outer radius at Rout = 10.1 ∗ 106km. The optical depth ranges on a logarithmic scale
from τin = 104 to τout = 10−4 in the continuum. The velocity field is linearly increasing with a
prescribed maximum velocity β(Rout) = βmax.

The total number of solid angles per voxel is given by (nθ ∗ nφ). It is crucial for the 3D so-
lution to choose an appropriate number of solid angles, as it determines the accuracy of the
angular integration. For the test calculations, we chose at least nθ = nφ = 32 so that we get a
minimum of 1024 solid angles.
In all of the following tests, we used a grid containing a spherically symmetric structure so that we
can compare the results directly to 1D solutions. Because of the spherical symmetry, the number
of layers (nr) in the voxel grid is also crucial for the accuracy of the 3D-RTE solution. We chose
at least nr = 64 layers.

4.4.1 The Transformation of the Line Element

The transformation of the line element ds is a crucial part in calculating the cmf opacity (see
section 3.5). The following test was done to verify the transformation of the line element ds from
section 3.5. In order to compare the line elements ds and ds′ of the Eulerian and Lagrangian
frame, we choose a radial characteristic and compare the spatial steps ds that are done during
the stepwise formal solutions along the characteristic with the results from equation (3.23).
In Figure 4.1 the quotient of ds′ and ds is compared with the Lorentz factor γ = (1 − β2)−1/2.
It is obvious that the result is almost identical with a Lorentz contraction

ds′ = γds (4.1)

Figure 4.2 shows the differences in detail. The quadrature solution 3.5 differs from (4.1) in the
case of relativistic velocities larger than c

2 with a maximum of 5%. The consistency originates
from the homology nature and the constant gradient of the velocity field (compare to 2.27).
Although the velocity field is restricted to a monotonic form, we must not approximate the cmf
line element with a Lorentz contraction in general because the velocity field may contain regions
of larger (smaller) gradients (e.g. supernovae). Nevertheless, the constant gradient allows us to
verify our results for the cmf line element as the Lorentz factor γ gives us a good indication for
a reasonable solution.

4.4.2 Continuum Tests

As a first test, we computed a purely absorptive continuum solution (ǫc = 1) for different maximum
velocities βmax because this should be reproduced by the algorithm. We tested the continuum
solution for a grid with a resolution of nr = nΦ = 2 ∗ 32 + 1 and nΘ = 2 ∗ 16 + 1 points along
each axis. For the angular resolution we used nθ = nφ = 64 points for a total of 4096 solid
angles. From Figure 4.3 we notice that the solutions for the discretization methods ξ = 1 and
ξ = 0 are identical for a zero expansion velocity and reproduce the flat continuum. The solutions
are also nearly identical for increasing βmax. For a maximum velocity of βmax = 0.1, we notice
a slight variation in the continuum for both discretization methods. This is caused by the initial
conditions on the wavelength grid. Once they are ”forgotten”, the flat continuum is reproduced.
Figure 4.3 also shows that the 3D continuum solution has a certain bandwidth in J . This is
because we plotted the cmf J for every voxel at the surface of the spherical voxel grid. Due to the
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Figure 4.2: Test of the line element transformation for a radial characteristic using 64 layers; the ratio of
ds′ and ds is compared to the Lorentz factor γ. The velocity gradient influences the solution
only for large relativistic velocities with a maximum of 5% compared to the Lorentz factor.
Near β=1, both (ds‘/ds) and γ become infinite.

limited angular and spatial resolution, J is not totally consistent at the surface. The consistency
of the surface solution depends strongly on the number of solid angles as we will show in the
following section.

4.4.3 NLTE Line Tests

For the line transition tests, the background continuum is assumed to be purely absorptive
(ǫc = 0). We set the line strength χl/χc = 100 to simulate a strong scattering dominated line
with ǫl = 0. Again, we used a grid with a resolution of nr = nΦ = 2 ∗ 32+1 and nΘ = 2 ∗ 16+1
points. We varied the number of solid angles to determine the influence on the consistency of
the surface J . For the line transition calculations, the accelerated Λ-iteration is applied to J̄ and
converged after 22 iterations. The computation for 64 ∗ 64 = 4096 solid angles took 48 hours on
the ”Seneca”-cluster at the Hamburger Sternwarte using 36 AMD Opteron 1.8 MHz processors.
The results for βmax = 0.0, 0.01 and 0.1 and different angular resolutions are shown in Figure
4.4. As in the continuum tests, the static solutions are reproduced successfully for βmax = 0.0.
With increasing velocities, we notice a red-shift in the lines shapes due to the velocity field. It
is obvious that a larger number of solid angles significantly improves the accuracy of the mean
intensities, when we compare the solutions for different numbers of solid angles. At the same
time, we reach a limit for reasonable computation times needed for testing purposes with 642

solid angles on 36 processors. This emphasizes the need for large scale computer clusters in order
to get accurate results.
In Figure 4.5, we compare the results of 3D calculations with the 1D solutions for different
maximum velocities. The line shape of the 3D results show excellent agreement with the 1D
calculations. But with increasing velocities, both the background continuum and the line of the
3D solutions show an offset downwards of about 5% for βmax = 0.05 and 12% for βmax = 0.1.
This may be an effect of our limited angular resolution. The comparison of the results from
Figure 4.4 and 4.5 also shows no difference between the two discretization methods. Neverthe-
less, the numerical instabilities for the ξ = 0 discretization described in [Hauschildt and Baron
2004] may also appear in the 3D case and have to be investigated in further spectral computations.
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Figure 4.3: The absorptive continuum; left part: discretization ξ=0, right part: discretization ξ=1; the
static continuum solution is reproduced successfully for βmax = 0. The solutions for increasing
velocities show slight variations in the continuum due to the initial conditions on the wavelength
grid. J is plotted in arbitrary units (a.u.), as we are not interested in absolute values.
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Figure 4.4: NLTE line transitions for different angular resolutions and maximum velocities for ξ = 1; left
part: the results for βmax = 0.0 and 0.01 and nθ = nφ = 16 and βmax = 0.1 and nθ = nφ = 8;
right part: the results for βmax = (0.0, 0.01, 0.1) and nθ = nφ = 64; the dotted line indicates
the original line shape for a static solution which is successfully reproduced by the solver for
βmax = 0.0. For an increasing βmax we notice how the line is red shifted due to the effects of
the velocity field. The number of solid angles is crucial for the bandwidth and accuracy of the
surface J solution.
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Figure 4.5: The results of 3D calculations for different scattering lines are compared with 1D-calculations for
the maximum velocities βmax = (0.0, 0.01, 0.05, 0.1); the dotted line indicates the original line
shape for a static solution. We used nφ ∗nθ = 642 solid angles and 64 layers for discretization.

To verify the offset between the 1D and the 3D solutions, we compare the results of the grey
solution. That means, we solve the RTE for the monochromatic source function from (2.10). We
can then increase the spatial and angular resolutions to improve the accuracy of the 3D solution
since we do not have to solve the RTE along the wavelength grid. Furthermore, we assume an
LTE situation with ǫ = 1 so that the iteration converges after the second step. By this, we were
able to increase the angular resolution to a maximum of nφ ∗ nθ = 1282 = 16384 solid angles
with 128 layers.
In Figure 4.6, we compare the solutions of J as a function of distance from the center. In addition
to the 1D and 3D calculations, the results of the affine method described in section 3.7 are shown.
Our extended Mihalas method turns out to be extremely dependent on a large number of solid
angles as it deviates from the 1D solution in the outer layers where the velocity is at maximum.
This may be an effect of the extreme curvature of the characteristics in the Mihalas comoving
frame. The curvature for relativistic velocities would then distort our observers frame number of
solid angles. With the power of local computation clusters with up to 48 AMD Opteron proces-
sors, we were not able to increase the number of solid angles to get an accurate 3D solution in a
reasonable time that reproduces the 1D calculation exactly.
Since for the line tests we plot the mean intensities of the surface voxels, an inaccurate angular
solution in the regions of maximum velocity would then cause the offset in the line calculations.
The affine method reproduces the 1D solution very well, because the angular integration is done
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in the affine comoving frame, where the number of solid angles stays accurate. The slight offset
of both our 3D Mihalas and the affine method in comparison to the 1D solution even in the inner
layers is also an effect of the limited angular resolution. As shown in [Baron et al. 2009], the
affine method reproduces the 1D Mihalas solution very well for a number of at least 2562 solid
angles. Computations in [Baron et al. 2009] were done by using up to 214 = 16.384 processors
on the Franklin Cray XT4.
However, the shape of the line profiles is reproduced very well by our 3D solver. For the verifi-
cation of the absolute intensity offset, further computations on large scale computer cluster are
required in order to achieve angular resolutions that are comparable to the ones used in [Baron
et al. 2009].

Figure 4.6: The results of the gray 3D-RTE solutions for βmax = 0.33, nθ ∗ nφ = 1282 solid angles and
128 layers are compared to the 1D solution.





Chapter 5

Conclusions and Outlook

For the solution of the special relativistic 3D radiative transfer equation, we extended the method
described by Mihalas in order to implemented it in the 3D radiative transfer framework of PHOENIX.
The intensities are calculated in a comoving frame with the momentum variables µ and λmeasured
in the comoving frame. Another solver had already been implemented in PHOENIX which is based
on the method described in [Chen et al. 2007]. This affine method measures only the wavelength
in the comoving frame so that the Lorentz transformations along the characteristics are avoided.
We have shown that our implementation of the Mihalas approach reproduces the 1D continuum
and the shape of line transition calculations for a spherically symmetric test atmosphere. But
it also became obvious that the number of solid angles used for the angular integration of the
intensity is crucial for the accuracy of the 3D solution. We calculated gray solutions of the RTE
with up to 1282 solid angles, but the Mihalas method still shows offsets in the total mean intensity
values. The affine method shows a better consistency with the 1D solution for smaller angular
resolutions. This may be a result of the solid angles being calculated in the observers frame so
that the curvature of the characteristics is avoided. In the Mihalas comoving frame, the curvature
of the characteristics may be the reason for the angular resolution being distorted. This has to
be a subject of further investigation of the Mihalas method being used for 3D radiative transfer.
Dynamic velocity dependent angular discretization may be desirable.

PHOENIX now contains two 3D and a 1D cmf solver for the calculation of special relativistic
radiative transfer with monotonic radial velocity fields. It is always important to solve the RTE
by different methods in order to check the consistency of the model. An approach to solve the
3D-SSRTE in the observer’s frame has also been implemented recently. The extension of the
PHOENIX 3D framework for special and general relativistic radiative transfer with arbitrary veloc-
ity fields as described in [Baron and Hauschildt 2004] and [Chen et al. 2007] is an actual subject
of research. The integration of the 3D radiative transfer framework into the full real world code
of PHOENIX and the application to real astrophysical problems will be object of future work.
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Gaussian Quadrature

The idea of the Gaussian quadrature, named after Carl Friedrich Gauss, is to approximate an
integral by a sum of weighted function values at specified evaluation points inside the integration
interval [Press et al. 2007]. The integrand function f(x) is separated in a weighting function
w(x) and a continuous function Φ(x) which is approximated by a polynomial

f(x) = w(x) Φ(x) (A.1)

The integration of f(x) in the intervall [−1, 1] then becomes

∫ 1

−1
f(x) dx =

∫ 1

−1
w(x)Φ(x) dx ≈

n
∑

i=1

wiΦ(xi) (A.2)

The evaluation points xi are chosen with respect to maximum accuracy. The Gaussian quadrature
yields exact results for polynomials of orders up to (2n−1). The optimal evaluation points for an
n-point Gaussian quadrature are determined by the roots the polynomials of a class of orthogonal
polynomials. The class of orthogonal polynomials is determined by the weighting function w(x).

A.1 Gauss-Chebyshev Quadrature

The Gauss-Chebyshev quadrature is a Gaussian quadrature with the weighting function

w(x) =
1

(1− x2)1/2
(A.3)

It is used for integrals of the form
∫ 1

−1

g(x)

(1− x2)1/2
dx (A.4)

For an arbitrary continuous integrand f(x), the Gauss-Chebyshev quadrature can be applied by
separating f(x) according to

f(x) = w(x) (1− x2)1/2 f(x) (A.5)

The evaluation points xi are given by the roots of the Chebyshev polynomials

xi = cos

(

2i+ 1

2n+ 2

)

, 0 ≤ i ≤ n (A.6)
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with the constant weights

wi =
π

(n+ 1)
(A.7)

The integral is then approximated according to A.2

∫ 1

−1
f(x) dx =

∫ 1

−1
w(x) (1− x2)1/2f(x) dx ≈

n
∑

i=1

wi(1− x
2
i )

1/2 f(xi) (A.8)

A.2 Gaussian Quadrature for an Arbitrary Integration Interval

The Gaussian quadrature can be applied on arbitrary integration intervals over [a,b] by a trans-
formation of the variable

t =
a+ b

2
+
a− b

2
x, dt =

b− a

2
dx (A.9)

The integral is then transformed into the interval over [−1, 1] by

∫ b

a
f(t) dt =

b− a

2

∫ 1

−1
f

(

a+ b

2
+
a− b

2
x

)

dx (A.10)

and the Gauss quadrature rule may be applied.
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