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Abstract

Sunspots are regions where the solar magnetic field inhibits the convection process in the
photosphere, resulting in cooler zones, which are perceived as darker spots on the solar
surface. This work describes the simulation of sunspots and starspots with the multi
purpose stellar atmosphere code Phoenix. We have modified a mostly plane parallel
3D atmosphere structure with several different models for sunspots. These models range
from simple cylindrical regions of constant temperature to more complex models with con-
tinuous temperature gradient between spot center and quiet atmosphere. The radiation
transfer problem was solved in three dimensions for these configurations.

Our goal was to study, in what way three dimensional temperature features like
sunspots affect the radiative transport within a stellar atmosphere and what effects on
the total spectrum of a star can be expected. Since a sunspot or starspot, as a cooler
region of the stellar atmosphere, affects molecular lines more strongly, we have focused
on several carbon monoxide bands as an example.

The models were tested with an NLTE two level atom solver. Here, the temperature
was modified without consideration of the resulting change to the chemical composition of
the atmosphere. As as second step, the simulation was expanded to include a solution of
the LTE equation of state for each voxel. With this, it was possible to determine, in which
regions of the spot model the CO concentration was affected the most, and, furthermore,
what these effects meant for the resulting spectra. As we expected, CO lines are affected
more strongly than atomic lines originating from deeper, hotter layers of the atmosphere.

The results for the chemical composition where transferred back to the two level atom
solver, which is capable of including line scattering with complete redistribution into the
calculation. Here, we found that scattering strongly influences the profile of the visible
part of the spot.

Finally, we investigated how three dimensional structures appear from different angles
of view. We compared center to limb variation for the spot umbra with the normal
center to limb variation of simple plane parallel structures. The presence of the sunspot
with its non plane parallel opacity structure results in a more complex difference between
direct view and view from high angles. The umbra is actually brighter, compared to its
surroundings, when seen at high angles. Here, the shape of the spot model has a strong
influence on the result.
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Zusammenfassung

Sonnenflecken sind Zonen, in denen die Konvektion innerhalb der Photosphäre durch das
solare Magnetfeld behindert wird. Die sich daraus ergebende Abkühlung ist als dunk-
lerer Bereich auf der Oberfläche der Sonne wahrzunehmen. Diese Arbeit beschreibt die
Simulation von Sonnen- und Sternflecken mit Hilfe des Sternatmosphären-Codes Phoe-
nix. Grundlage der Berechnungen bildete eine hauptsächlich planparallele Schichtung,
deren Temperaturstruktur innerhalb eines gewissen Bereichs durch verschiedene Modelle
modifziert wurde. Hierbei reichten die verwendeten Modelle von einfachen Zylindern von
konstanter Temperatur bis zu komplexeren Formen, in welchen ein kontinuierlicher Über-
gang zwischen der reduzierten Temperatur des Umbrae und dem ungestörten Außenraum
berücksichtigt wurde.
Ziel war es, zu untersuchen in welcher Art und Weise dreidimensionale Strukturen wie
Sonnenflecken sich auf den Strahlungstransport innerhalb einer stellaren Atmosphäre aus-
wirken. Es wurden sowohl oberflächenaufgelöste Spektren, als auch integrierte Spektren
der gesamten Oberfläche berechnet. Aufgrund der reduzierten Temperatur von Stern-
und Sonnenflecken ist mit einer vermehrten Bildung von Molekülen zu rechnen, die sich
nur bei diesen Temperaturen bilden können. Aus diesem Grund wurden in erster Linie
Kohlenstoffmonoxid (CO) Linien- und Bandspektren untersucht.
Zunächst wurde der Strahlungstransport mit Hilfe einer NLTE Simulation eines Zwei-
Level-Atoms für eine einzige Linie berechnet, um die Auswirkungen einer reinen Tempe-
raturänderung ohne Berücksichtigung der veränderten Atmosphärenchemie zu bestimmen.
Anschließend wurde in einem zweiten Schritt auch die Zustandsgleichung im lokalen ther-
mischen Gleichgewicht abhängig von den veränderten Temperaturen gelöst. Hierdurch
konnte bestimmt werden, in welchen Bereichen des Flecken-Modells besonders viel zu-
sätzliches CO zu erwarten ist. Als Grundlage diente hierbei das Modell eines normalen
G-Typ Sterns.
Wie erwartet ist die Wirkung auf temperatursensible Spektrallinien wie CO deutlich aus-
geprägter als die Wirkung auf atomare Linien, welche in tieferen Schichten, bei höhe-
ren Temperaturen entstehen. Mit der gleichen chemischen Zusammensetzung wurde die
Rechnung anschließend im NLTE Zwei-Level-Atom wiederholt. Hierbei zeigte sich, dass
Streuung einen starken Einfluss auf das Profil des an der Oberfläche sichtbaren Flecks
hat.
Abschließend wurde untersucht, in welcher Art und Weise dreidimensionale Strukturen
in der Atmosphäre unter unterschiedlichen Sichtwinkeln erscheinen, insbesondere im Ver-
gleich zur normalen Mitte-Rand-Verdunklung der planparallellen Vergleichsstruktur. Hier-
bei zeigte sich, dass das Sonnenfleckenmodell am Rand deutlich heller erscheint als im
Zentrum des Sichtfelds, wobei das genaue Verhalten von der Größe des Modells abhängig
ist.
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Chapter 1

Introduction

It has been known for a long time that the surface of the sun is not perfectly uniform. It
is frequently covered by darker spots, at rare times even large enough to be observed with
the naked eye. These so called sunspots have been observed for well over two thousand
years from all over the world. The oldest known references to sunspots date back to
ancient China during the times of the Han Dynasty in 28 B.C. However, it was still a long
time before a conclusive interpretation of the phenomenon was found. As far as we know
today, sunspots were, if explained at all, mostly mistaken to be transiting inner planets.

The first one to correctly identify sunspots as being part of the solar surface, was
the Italian astronomer and natural philosopher Galileo Galilei at the beginning of the
seventeenth century in Istoria e Dimostrazioni intorno alle Macchie Solari, which was
published in 1613. [Galilei, 1613] One of the effects that was confirmed by use of this
assumption was the rotation of the sun. In this way, sunspots have proven to be an
instrument in observing other properties of the sun for almost four hundred years.

In modern times, the nature of sunspots as cooler regions of the stellar photosphere
has long since been accepted. Sunspots are observed and measured by high resolution
imaging of the solar surface as well as techniques like helioseismology, which allows to
probe into deeper layers beneath the solar surface, thus, giving us information about the
depth structure of sunspots.

Yet, while we have a multitude of methods to observe spots on the surface of our
own sun, observing spots on other stars is still extremely difficult. We can assume that
many, if not all, stars show spots of some sorts, since it is unlikely that this is a unique
feature of our own sun. Nevertheless, it is impossible to resolve the surface of distant
stars directly. Of course, it is possible, and has first been suggested and applied by Kron
[1947], to measure measure changes in a stars light curve and thus detect spot coverage by
variations due to the stars rotation and the effect that the spot forms and decays within
a time-frame of days or month. However, today a similar method of detection is used for
the identification of extrasolar planets and even while those do not tend to vanish after
any observable amount of time, the possibility of false detection exists both ways.

Nevertheless, extrasolar planets prove to be not only a possibility for false detection,
but a chance for observation of starspots, since they allow a limited possibility to recon-
struct parts of a stars surface from a planets transit lightcurve. The interested reader is
here referred to Huber [2010].

Since a spot represents not only a darker part of the stellar surface but first and
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CHAPTER 1. INTRODUCTION

foremost a cooler region of the stellar atmosphere, we can validly assume to see an in-
creased concentration of molecules like water, titan oxide or carbon monoxide inside them,
and, therefore, a deepening of molecular lines and band spectra, even in the non-surface-
resolved spectra we observe for distant stars. In this way, starspots have been identified
by the so-called line-depth ratio method, where different spectral lines are compared to
obtain information about the temperature variations across a stars surface. See e.g. Cata-
lano et al. [2002].

Over the last ten years, the available computer power has been vastly increased due to
the implementation of multi processor computing on large scales with clusters of several
thousand central processing units and several terabytes of total available memory. This
means that the simulation of a three dimensional structures in stellar atmospheres is
finally possible within a reasonable amount of time and we are no longer limited to stars
of spherical symmetric geometry, where structures that require a lateral variation in the
stellar atmosphere cannot be included.

In this work, we begin to implement simple models of spot structures into the 3D
radiative transfer simulation part of the multi purpose stellar atmosphere code Phoenix.
Comparison between synthetic spectra calculated with Phoenix/1D have been used for
interpretation of spectroscopic data for over a decade. [Hauschildt, 1992, 1993, Hauschildt
and Baron, 1999]

By simulating radiative transfer for distinct three dimensional structures like starspots,
we expect to improve our synthetic spectra for comparison with observations, and thus
better interpretation of stellar spectra. Of course, it is impossible to simulate any of
the infinite number of possible configurations of sunspot coverage for a stars surface.
Nevertheless, by improving our synthetic spectra, we can, at least, investigate, what we
can expect to observe in the spectra of a starspot covered star.

From observations of the sun, we know that there is some CO present in the upper
regions of the solar atmosphere, which can be observed close to the limb of the solar disk.
The formation of CO in the solar atmosphere has been investigated e.g. by Uitenbroek
[2000a,b]. In this work, we have focused on the effects that a simple model of a starspot
would have on the formation of CO in a stellar atmosphere and, therefore, what changes
to different lines in a CO band we can expect to observe.
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Chapter 2

Theory of Stellar Atmospheres

Stellar atmospheres cannot be described without considering both matter inside the atmo-
sphere and radiation passing through the atmosphere, as well as the interaction between
them.

The atmosphere itself consists of layers of atoms and molecules gravitationally bound
to the mass of the star and shaped by a balance of inward gravitation and outward gas
pressure. Energy produced by nuclear fusion inside the stellar core is distributed into
the atmosphere by both radiative and convective processes. Any radiation originating
from the inside of the star is bound to interact with atmospheric matter while traversing
the atmosphere. Therefore, the outgoing radiation is influenced by the atmosphere’s
physical conditions such as temperature, density, chemical composition and atomic state
of excitation. Likewise, as an important source of energy, the traversing radiation has a
strong feedback onto these physical conditions.

Thus, the state of the atmosphere has a strong influence on any light that leaves the
star and, therefore, on every observation of the star.

This chapter summarizes the central mechanism of interaction between radiation and
matter, the principles of radiative transfer and several effects that are direct consequences
of this process such as Limb Darkening, which is important for this work. Where not
specified otherwise, the descriptions in this chapter are based upon the works of Rutten
[2003], Mihalas [1970, 1978] and references therein. For a more detailed description of
how the problem of radiative transfer is solved numerically see chapter 3.

2.1 Radiative Transfer

Any volume element of matter dV crossed by a beam of light can add energy to and remove
energy from the beam. The net intensity Iν at a specific frequency ν of the traversing
beam is, thus, either increased or reduced during the passage. Processes that increase the
intensity are called emissive, while, on the other hand, processes that reduce intensity are
called extinctive.

For the emission along a path ds we can define the emissivity jν for a frequency ν as
the local intensity contribution to the beam per unit length:

dIν = jν (s) · ds (2.1)
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CHAPTER 2. THEORY OF STELLAR ATMOSPHERES

Likewise we can define the opacity by writing

dIν = −χν(s) · ρ · Iν(s) · ds (2.2)

for purely extinctive media. The absolute extinction from the beam is, hence, proportional
to the intensity Iν of the beam itself. The opacity is given per unit mass and length, so
that ρ is the mass density along the path.

The standard form of the radiative transfer equation can be derived by summation
over extinction from the beam and emission into the beam, which net to a total of

dIν(s) = jν · ds− ρχνIν · ds

Therefore the change of intensity dIν along a line element ds is

dIν
ds

= jν − χνρIν (2.3)

or, by defining the source function Sν as

Sν =
jν
χν

(2.4)

can be written as

dIν
χνρ · ds

= Sν − Iν (2.5)

For the purpose of describing radiative transfer in stellar atmospheres it is far more
convenient to use an optical path length defined by the extinction, called the optical depth
τ , where dτ is differentially defined via

dτν = −ρχνds (2.6)

This leads to the radiative transfer equation along the path of a photon ds, which is
usually called a characteristic.

Under the assumption of a plane parallel or a spherically symmetric atmosphere, it is
possible to use τ as a depth scale parallel to ~ez or ~er. The different possible characteristics
through the plane parallel structure can then be distinguished by use of the angle ϑ from
the z direction with

dz = cos(ϑ) · ds = µ · ds

Now the radiative transfer equation (2.5) can be rewritten into its standard form for
plane parallel atmospheres:

µ
dIν
dτν

= Iν − Sν (2.7)

This equation describes the transport of radiation along a specific characteristic of
angle µ to the normal. At this point, it would be possible to calculate a solution for any
single angle of view, as long as the source function Sν is already known, which is usually
not the case, as is described below.
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2.2. PHOTON-MATTER INTERACTIONS

In the three dimensional case, the basic equation of radiative transfer is similar, though
a characteristic can not only be described by ϑ or µ = cos(ϑ), since both the phase space
coordinates of the characteristic, and the spatial coordinates of the boundary point of the
characteristic are needed. This is described in more detail in chapter 3.

2.2 Photon-Matter Interactions
There are several different processes that contribute to extinction, or, more pricisely, the
interactions between the photons of a radiation field and electrons or atoms. Atoms have
a ground state, defined by the electron configuration of lowest energy, and a theoretically
infinite number of excited states. In real conditions, the number of excited states is
limited by the existence of other atoms in the vicinity. Each configuration of the electron
shell corresponds to a distinct energy level, so that any transition between two possible
configurations requires either the introduction of additional energy into the system or the
removal of energy that was previously bound in the system. The energy that is either
required or released is the energetic difference between the two states that are involved in
the transition. For a transition j → i this results in

Eji = Ei − Ej (2.8)

This permits several possible interactions between atoms and a radiation field. A
photon of energy Eν = hν can be absorbed by an atom in at least two ways:

If Eν ≥ Ei where Ei is the energy of any currently populated atomic level, the bound
electron in said state can be removed into the continuum with the excess energy as kinetic
energy and the photon is destroyed. This process is called photo ionization or bound-free
absorption.

A+ γ −→ A+ + e−

The second possibility is that the photon energy Eν matches the energetic window ∆E
between two atomic states thus exciting an electron into one of its upper energy levels in
a process usually called photo excitation.

A+ γ −→ A∗

The atom eventually returns to its ground state. The excess energy is, hereby, released
by emission of at least one photon, which is likely to be slightly different both in wavelength
and in angle of emission, due to the finite width of the transition.

A∗ −→ A+ γ′

−→ A+ γ′′ + γ′′′ + ...

This process is known as line scattering. The other possibility is that the atom col-
lisionally distributes the excess energy into the thermal pool of the atmosphere without
creation of another photon. This is called collisional de-excitation.

A∗ −→ A+ Ethermal
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CHAPTER 2. THEORY OF STELLAR ATMOSPHERES

Furthermore, photons can be absorbed or scattered not only by atoms, but also by
free electrons which may exist among the atoms. Upon absorption, the electron receives
the photon energy as additional kinetic energy. This is called the free-free absorption. If
the photon is not absorbed but redistributed with respect to wavelength or scattered into
a different angle, we speak of Thomson scattering.

Both different types of scattering and different types of absorption contribute to the
total opacity χν as defined by equation 2.2, which can be written as

χν = κcν + κlν + σν (2.9)

where κcν is the so called continuum absorption coefficient or continuum opacity per gram
of stellar matter for bound-free transitions and κlν is the line opacity for bound-bound
transitions, while σν is similarly defined for the sum of all scattering processes.

Stimulated Emission
Atoms may not only absorb or scatter photons that are already present in the radiation
field. An atom that is in an excited state may return to an energetically preferable state
under emission of a photon carrying the excess energy. Furthermore, an excited atom A∗

in the upper level of a transition with energy Eij can interact with a photon γ of identical
energy Eν = hν = Eij by dropping back to the lower state A under emission of a new
photon γ that has the same wavelength, phase and angle as the original photon. We can
write this reaction as

A∗ + γ −→ A+ 2 · γ

This process is called stimulated emission. It is common practice to treat stimulated
emission not as additional emission, but instead as negative absorption, because of its
dependence on intensity, and, thus, correct the respective absorption coefficients.

Molecular Absorption
Molecules can interact with radiation in exactly the same way as atoms do. However,
the number of possible energy levels a molecule possesses is considerably higher. Atoms
have only a single atomic nucleus and therefore an atomic configuration that is complex,
but has only a relatively small number of degrees of freedom. In the case of molecules
the same number of freedoms for the electronic shell are supplemented by the degrees of
freedom for the interactions between the nuclei of the atoms forming the molecule. This
is an additional multi body problem, which allows for both rotational and vibrational
energy levels.

This results in a great number of energetic levels with small energetic differences,
corresponding to the same electronic structure, but a different state of rotation or vibration
of the different atomic nuclei that are forming the molecule. In this way, the molecular
spectrum shows band spectra with a great number of lines within close proximity. These
structures are usually called band spectra.

In this work, we have focused on Carbon Monoxide (CO), which is a diatomic molecule,
consisting of one carbon 6C and one oxygen 8O atom, connected by triple covalent bonds
with six shared electrons, and a total of 14 electrons. With two atomic nuclei, there are
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2.3. FORMAL SOLUTION

two rotational and one vibrational degree of freedom for the nuclei themselves. CO is
transparent in the visible part of the spectrum, but has several band spectra in the near
and deep infra-red around 23000 Å and 44000 Å.

For more details on molecular physics, see e.g. Haken and Wolf [2006].

2.3 Formal Solution
If the Source function S would be known throughout the atmosphere, it would be possible
to solve the problem of radiative transfer by integration due to the fact that equation (2.7)
is a linear first order differential equation in I(τν). Since S = S(τν) itself is depending
on the optical depth, and as we will show below the mean intensity J(τ), one cannot
obtain a full solution analytically. Nevertheless, it is possible to write the formal solution
of equation (2.7) as

Iν(τν , µ) = I(0, µ) · e−
τν
µ +

∫ τν

0

S(t) · e
t−τν
µ · 1

µ
dt (2.10)

here written for a case, with I(0, µ) as boundary conditions.

In thermodynamic equilibrium (TE), a state where the temperature T would be uniform
throughout a perfectly absorbing medium, the source function is quite simple. The state
of excitation of all atoms and molecules inside this kind of medium is then given by the
Boltzmann distribution function[

nr,s
nr,t

]
TE

=
gr,s
gr,t
· e−(Er,s−Er,t)/(kT ) (2.11)

k is Boltzmann’s constant, nr,s is the number density of atoms in level s of ionisation
stage r, and gr,s is the statistical weight of level s of stage r. In this case, (r, s) = (r, 1)
would be the ground level of ionisation stage r. (Er,s − Er,t) = Eν = hν is the transition
energy between for a radiative transition between levels (r, s) and (r, t).

As as result, we would see the well known Planck function for the blackbody radiation:

Sν = Bν(T ) =
2hν3

c2

1

exp
(
hν
kT

)
− 1

(2.12)

Therefore, solving the radiative transfer equation (2.7) is simple for this kind of
medium, where we already know the source function for all points. Still, a star is anything
but in thermodynamic equilibrium with a uniform temperature. There is a strong differ-
ence between a stars surface temperature and the stellar core region where temperatures
of several million K are caused by nuclear fusion. Thus, it can be expected that even in
the outermost layers of the star, there is a temperature gradient.

Despite, we can often assume that the relevant thermodynamic properties such as
atomic occupation numbers, opacity χν and emission jν inside a finite volume element
at position ~r of the atmosphere are the same as the TE values for the local Temperature
T = T (~r), so that equation (2.12) can be assumed as valid. This assumption is called
the local thermodynamic equilibrium (LTE) approximation. It requires that the mean free
path of photons is short compared to the dimensions of the medium.

7



CHAPTER 2. THEORY OF STELLAR ATMOSPHERES

Obviously, this approximation is not valid for all cases, so that there needs to be a
method to include different effects of non local thermodynamic equilibrium (NLTE). In
full NLTE the level population is no longer given by equation (2.11), so that we need to
solve the rate equations for each level directly, which is extremely time-consuming.

The Influence of Scattering
One such effect that renders a direct solution of the radiative transfer problem im-

possible is photon scattering. If σν 6= 0, the emission of an element of volume dV does
not depend solely on the temperature of the medium inside this element, since scattering
causes emissions that are proportional to the number of photons available, and, therefore,
dependant of the intensity Iν . In this way, scattering connects different parts of the at-
mosphere, hence, any assumption that is based solely upon local conditions may not be
valid.

The actual dependence of the scattered emission jsν is related to the type of scattering,
i.e., the solid angle and frequency redistribution of scattered photons. This dependence
can be expressed as a function R(ν ′, n′; ν, n) so that it is possible to write any form of
scattering as

jscatteringν = σν

∮
4π

∫ ∞
0

I ′ν ·R(ν ′, n′; ν, n) · dν ′dΩ

4π
(2.13)

Under the assumption of coherent and isotropic scattering, the redistribution function
is R(ν ′, n′; ν, n) = δ(ν − ν ′) and the emission by scattering is proportional to the mean
intensity Jν which is defined as

Jν =
1

4π

∮
IνdΩ (2.14)

With this, it is possible to derive the source function for a combination of LTE thermal
emission with coherent and isotropic scattering. The total emission jν then adds up to

jν = jthermal
ν + jscatteringν

= κν ·Bν + σν

∮
4π

∫ ∞
0

Iν′δ(ν − ν ′)dν ′
dΩ

4π

= κν ·Bν + σνJν (2.15)

The source function S is then derived as

Sν =
jν
χν

=
κν

κν + σν
Bν +

σν
κν + σν

Jν

Now a scattering parameter εν can be defined as

ε =
κν

κν + σν
(2.16)

which results in

Sν = (1− εν) Jν + ενBν (2.17)
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2.4. ITERATIVE SOLUTION

This means that in all but the most simple cases of pure LTE, the source function Sν
itself, which is needed to compute the formal solution of the radiative transfer equation
(2.7), is dependant of Iν . This is the reason why it is usually impossible to compute Iν
directly.

2.4 Iterative Solution
In plane parallel geometry the formal solution (2.10) can be written as

Iν(τν , µ) =

∫ ∞
τν

Sν(t) · exp (− (t− τν))
dt

µ
(0 6 µ 6 1) (2.18)

Iν(τν , µ) =

∫ τν

0

Sν(t) · exp (− (τν − t))
dt

−µ
(−1 6 µ 6 0) (2.19)

for both outgoing and incoming rays. In this case the boundary conditions are applied so
that there is no incoming radiation (Iν (τν = 0, µ < 0) = 0) and the boundary for outgoing
rays is at τ =∞. Insertion of this form of the formal solution into equation (2.14) yields

Jν(τν) =
1

2

∫ 1

−1

Iν(τν , µ)dµ (2.20)

=
1

2

[∫ 1

0

∫ ∞
τν

Sν(t) · exp (− (t− τν))
dt

µ
dµ+

∫ 0

−1

∫ τν

0

Sν(t) · exp (− (τν − t))
dt

−µ
dµ

]

This equation can be rewritten into a more convenient form by interchanging the
order of integration which is possible because µ and τ are independent of each other.
Furthermore it is possibly to shorten the expression by introduction of the exponential
integral which is defined as

En(x) =

∫ ∞
1

t−ne−xtdt n ∈ N (2.21)

Applied to equation (2.20) this provides the so called Schwarzschild equation for Jν
(for the complete derivation see Mihalas [1978] page 40):

Jν(τν) =
1

2

∫ ∞
0

Sν(tν)E1 |tν − τν | dtν (2.22)

This allows to compute Jν directly when the Source function is known. This equation
is usually written in operator form as:

Jν = Λ [Sν ] (2.23)

where Λ is an abbreviation for

Λ [f(x)] =

∫ ∞
0

f(x) ·E1 |tν − τν | dt (2.24)
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CHAPTER 2. THEORY OF STELLAR ATMOSPHERES

Thus far it is possible to calculate both Iν and Jν in the case of an already known source
function Sν as well as to express the source function itself in terms of Jν and Bν . What
is still needed is a scheme that allows for calculation of Sν without prior knowledge of Jν .
We start by simply inserting (2.17) into equation (2.23) as follows:

Jν = Λ [Sν ] = Λ [(1− εν) Jν + ενBν ] (2.25)

The problem is now reduced in such a way that Jν is only dependent on itself and the
form of Bν , where the latter is known from the temperature structure of the atmosphere.
Jν can now be calculated by use of an iterative scheme using the LTE condition Sν = Bν

as a starting condition and an iteration of the form

Jnew = Λ [(1− εν) Jold + ενBν ] (2.26)

This simple scheme is usually named Λ iteration. Unfortunately this kind of iterative
solution shows an extremely slow convergence behaviour for large optical depth and small
values of εν , see e.g. Hauschildt and Baron [2006], so that it is impossible to achieve a
solution within a reasonable amount of time.

Operator Splitting
The basic scheme of Λ iteration can be modified to improve convergence behaviour by
employing an operator splitting method, see Cannon [1973]. This is done by modifying
equation (2.23) and adding a zero by adding and subtracting a new operator Λ∗:

Jν = ((Λ− Λ∗) + Λ∗)[Sν ] = Λ∗[Sν ] + (Λ− Λ∗)[Sν ] (2.27)

From this a new iteration scheme for J (n) → J (n+1) can be derived as

J (n+1)
ν = Λ∗S(n+1)

ν + (Λ− Λ∗) ·S(n)
ν (2.28)

using equation (2.17) this leads to

(1− Λ∗(1− εν)) [J (n+1)
ν ] = Λ

[
S(n)
ν

]︸ ︷︷ ︸
JFS

−Λ∗(1− εν)[S(n)
ν ]

where the brace marks the formal solution JFS that results from application of Λ to the
old source function S(n). This gives the next iteration step as

J (n+1)
ν = (1− Λ∗(1− εν))−1 [JFS − Λ∗(1− εν)[S(n)

ν ]
]

(2.29)

To solve this equation, only the approximate lambda operator Λ∗ has to be inverted,
which reduces the numerical effort of the problem considerably. [Hauschildt and Baron,
2006].
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2.5. LIMB DARKENING

(a) ϑ = 0◦ (µ = 1) (b) ϑ = 60◦ (µ = 0.5)

Figure 2.1: Characteristics for different ϑ drawn from the surface of the plane parallel
grid to the level of τ = 1, which is marked by the black horizontal line. The color shows
the temperature of each layer in logarithmic steps between 3300 and 9400 K.

2.5 Limb Darkening
It is known from observations that a star is less bright at its rim, than compared to a
direct look at its center - even if the surface of the star is completely spherically symmetric
in its structure. This so called limb darkening, thus, is not caused by lateral variations of
the physical conditions in the stellar atmosphere.

In a plane parallel case, which is at least true for a point of view close to the star and
a uniform surface structure, this effect can be derived directly from equation (2.6) with
dz = µ · ds and therefore

dτν = χν
dz

µ
(2.30)

The direct view into the center of the star is hereby equivalent to ϑ = 0 or µ = 1,
while the characteristic to the rim of the star is equivalent to ϑ > 0 and therefore µ <
1. Assuming that all relevant physical variables are dependant on z only, we can see
immediately that for any µ < 1 the same optical depth τν is reached at shallower depth
z.

The radiation that reaches the surface and can thus be observed is dominated by
radiation produced at τν = 1. In the photosphere the temperature typically rises with
depth and the emitted radiation depends on the temperature, we see into shallower and
thus darker regions of the atmosphere, if the characteristic we follow increases in angle.
(See figures 2.1 and 2.2)

It is also possible to write the emergent radiation from a star in the same terms as in
section 2.1 with τµ as a scale of depth:

I+
ν (τ = 0, µ) =

∫ ∞
0

Sν(tν) exp(−tν/µ)dtν/µ (2.31)

this can be rewritten by approximation of the Source function as S =
∑∞

n=0 anτ
n, which

leads to

11
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Figure 2.2: Center to limb variation of Iν(ϑ) for an arbitrary ν and a plane parallel test
case, intensity is normalized to direct view of Iν(ϑ = 0◦).

I+
ν (τ = 0, µ) = a0 + a1µ+ 2a2µ

2 + ...+ n!anµ
n (2.32)

Truncation of S and I after the term of first order leads to the Eddington-Barbier
approximation

I+
ν (τ = 0, µ) ≈ Sν(τν = µ) (2.33)

which leads to the same conclusion that the outgoing radiation is dominated by shallower
levels at shallower angles of view with µ −→ 0.

If we leave the 1D plane parallel (χ = χ(z)) or spherical symmetric (χ = χ(r)) case
and allow for a three-dimensional one, where the opacity is χ = χ (x, y, z), this effect can
not be directly assumed. If χν is still strongly z dependent, we can expect limb darkening
to some extent, but as we will show later on, this is not generally the case in distinct
structures with temperatures and opacities that vary strongly in lateral direction like the
center of a starspot.
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Chapter 3

Computational Method

This chapter gives an introduction to the implementation of 3D radiative transfer in the
multi purpose stellar atmosphere code Phoenix that was used for the sunspot simulations
in this work. The descriptions in this chapter are based upon the paperss of Hauschildt
and Baron [2006, 2008, 2010], Baron and Hauschildt [2007] and Seelmann [2011].

The physical conditions are parametrized on a Cartesian, cylindrical or spherical voxel
grid. In this work we used a Cartesian grid with (2 ·nx + 1) × (2 ·ny + 1) × (2 ·nz + 1)
voxels, so that the voxel (0,0,0) is always at the grid center. We also applied periodic
boundary conditions in x and y. Z is the direction perpendicular to the surface of the
star. This set-up represents a semi infinite slab. In Cartesian coordinates, each voxel is
an equally sized volume element dV (ix, iy, iz) of the atmosphere with constant physical
conditions inside the voxel, so that voxel size limits spatial resolution.

Figure 3.1: Voxel grid structure for a grid width nx = ny = nz = 8 (4,913 voxel).

3.1 The Characteristics Method

Radiative transfer in Phoenix/3D is solved along characteristics. A characteristic is the
mathematical representation of the geodesic a photon with a specific momentum travels
along. This is similar to the characteristics method in 1D radiative transfer as described
in chapter 2, but each characteristic is specified by two phase space angles (ϑ, φ) instead
of just one.

13
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z

y

x

φ

ϑ

Figure 3.2: Left panel: Two dimensional projection in x-z plane of long characteristics
tracked for one set of (ϑ, φ) in a Cartesian voxel grid with periodic boundary conditions
(PBC). Right panel: Definition of ϑ and φ.

Here we use the full characteristics method (LC) where each characteristic is tracked
starting from one of the boundary voxels at either z = +nz for incoming or z = −nz for
outgoing characteristics trough the entire grid, as is shown systematically in figure 3.2
for a two dimensional slice of the grid. The periodic boundary conditions are applied by
continuing any characteristic that leaves the grid at ±nx or ±ny at the opposite boundary
of the grid at ∓nx or ∓ny. Along each characteristic the formal solution, as defined in
equation (2.10), can be computed by piecewise linear or piecewise parabolic interpolation
and integration.

If we define the optical depth τ as optical depth along each characteristic, then the
transport equation along a specific characteristic is simply

dIν
dτ

= Iν − Sν (3.1)

The optical depth along each characteristic depends on the opacities in the voxels
that are crossed by the characteristic. Even two characteristics with the same phase
space coordinates (ϑ, φ) may traverse different voxels, depending on their point of origin
at the boundary. In the 1D plane parallel case, the phase space coordinates of each
characteristic simply added a factor of µ to the optical depth, as was shown in (2.30).
Here, we have to compute the formal solution for each characteristic individually.

It is possible to solve equation (3.1) for each optical depth point τi in the voxel grid
along the characteristics, where τ1 := 0. The formal solution is then written as

I(τi) = I(τi−1) · exp(τi−1 − τi) +

∫ τi

τi−1

S(τ) · exp(τ − τi)dτ (3.2)

:= I(τi−1) · exp(−∆τi−1) + ∆Ii (3.3)

Assuming that the Source function Si and the opacities χi for every point i of the
voxel grid along the characteristic are already known, we can now calculate both ∆τi−1

and ∆Ii. The opacity between two optical depth points is interpolated linearly, which

14



3.1. THE CHARACTERISTICS METHOD

leads to

∆τi−1 =
(χi−1 + χi) · |si−1 − si|

2
(3.4)

where si is the spatial path length along the characteristic and χ is the opacity per unit
length.

For interpolation of the source function Si we interpolate either linearly as well or
parabolically and use

∆Ii = αi ·Si−1 + βiSi + γiSi+1 (3.5)

where α, β and γ vary depending on the method of interpolation and were derived by
Olson and Kunasz [1987]. In case of parabolic interpolation we have

αi = e0i + e2i −
(∆τi + 2∆τi−1) · e1i

∆τi−1 · (∆τi + ∆τi−1)

βi =
(∆τi + ∆τi−1) · e1i − e2i

∆τi−1∆τi

γi =
e2i −∆τi−1e1i

∆τi · (∆τi + ∆τi−1)

whilst for linear interpolation the coefficients are derived as

αi = e0i −
e1i

∆τi−1

βi =
e1i

∆τi−1

γi = 0

In both cases we used some supplementary functions which are defined as

e0i = 1− exp (−∆τi−1)

e1i = ∆τi−1 − e0i

e2i = (∆τi−1)2 − 2 · e1i

As was shown in sections 2.3 and 2.4 we need the mean intensity Ji at every point of
the grid to compute the full solution of the radiative transfer problem. Therefore we have
to solve the solid angle integral numerically at each grid-point:

J =
1

4π

∮
4π

I(ϑ, φ) · dΩ =
1

4π

∫ 2π

0

∫ π

0

I(ϑ, φ) · sinϑ · dϑ · dφ (3.6)

This integral is calculated by Monte-Carlo integration and therefore replaced by the Monte
Carlo sum

J ∼=
1

2π2

∑
(ϑ,φ)

I(ϑ, φ) sin(ϑ) (3.7)
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Figure 3.3: Structure of radiative transfer solution in 3DRT two level atom.

This summation is for every characteristic (ϑ, φ) that passes through the voxel it is calcu-
lated for. The phase space coordinates (ϑ, φ) for the characteristics can either be selected
randomly, as is typical for Monte Carlo methods, or preselected if the number of charac-
teristics is high enough to sample the whole solid angle space. In case of Phoenix /3D
we use a number of nϑ × nφ evenly distributed characteristics.

3.2 The two level atom

For the first tests we used a simple two level atom configuration, simulating a single
absorption line of variable center wavelength λ0, variable width ∆λ and variable line
strength x inside the periodic Cartesian grid. A plane parallel set-up is used for both
opacity and temperature structure. This structure was modified by incorporating the
temperature deviations for the sunspot models as described in section 4.3.

The line opacities are calculated from the continuous opacity, a free parameter x called
line strength and the line profile function φ(λ) as

χline(λ) = x ·χcont(λ) ·φ(λ) (3.8)

In terms of radiation transport, this solver is capable of NLTE calculations with a
source function consisting of LTE thermal emission plus complete redistribution scatter-
ing. This goes back to the works of Avrett [1965], who published an analytical solution
for NLTE two level atoms with complete redistribution scattering.

Here, complete redistribution means that we do not assume coherence, yet the line
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profil of the absorption of photons is equal to the line profil for the reemission of photons:

φλ = φabsorptionλ = φemission
λ (3.9)

so that, in this case, the redistribution function R(λ′, n′;λ, n) is not a simple delta distri-
bution. Instead, we allow scattering within the complete line profile φ(λ) of the transition.
This means that it is possible to rewrite the emission by scattering as defined by equation
(2.13), into

jscatteringλ = σλ

∮
4π

∫ ∞
0

Iλ′ ·φ(λ′) · dλ′ (3.10)

This is different from coherent scattering as discussed in section 2.3 in such a way that
the wavelength integral does not cancel out. This means that the emission by scattering
is not proportional to Jλ, but to the mean intensity integrated over the whole line profile
J .

In the following, it is possible to use a similar scheme as described in 2.3, so that we
can again define a source function for the line as

Sline
λ = (1− εlineλ )J + εlineλ Bλ (3.11)

The radiative transfer is solved by a combination of formal solution by characteristics
method and an implementation of the operator splitting method. In this case, due to the
use of complete redistribution, it is necessary to modify the iteration scheme and replace
Λ∗λ with Λ

∗, which is defined as

Λ
∗

=

∫ ∞
0

Λ∗λdλ (3.12)

The iteration is accelerated further by use of Ng’s acceleration method, as described
in Ng [1974]. The schematic of the radiative transfer solution of the two level solver is
presented in figure 3.3.

For the simple test without change to the opacity structure, we used a grey temperature
structure with Teff = 10000K, and an optical depth range of τ ∈ [10−4, 104]. Both the
planck function B and opacity χ were interpolated for each z layer of the grid. Each voxel
was then modified according to the sunspot models for the temperature from section 4.3
thereafter. The results are discussed in section 5.1.

3.3 LTE Atom

By using the line strength as a single free parameter throughout the grid we omit the
effect that three dimensional structures within our grid have on the opacity χ, which
was so far assumed to be constant in x and y. Of course it would have been possible to
introduce another free parameter and adjust the opacity as we did with the temperature,
but since this would mean externally setting the number density for each species, we
would of course not be able to attain any knowledge about the effects that the presence
of a sunspot has on the composition of the stellar atmosphere inside the spot.
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Figure 3.4: Flow chart for Phoenix/3D stellar atmosphere simulation.

To address this problem, we need to solve the equation of state (EOS) for the entire
voxel grid, so that we have the occupation numbers for each ionisation state of each species
for each voxel depending on the temperature T (x, y, z) and the pressure p(x, y, z) inside
the voxel. In the case of Phoenix, the EOS is solved by the ACES module [Barman et
al.], based on Smith and Missen [1982]. Here, we assume an LTE population of each level
and ionisation stage, as given by equation (2.11). The line opacity at wavelength point λ
for the transition l −→ u can be written as

[
κlλ
]LTE

=
π · e2

me · c
·nLTEl flu [1− exp (−∆E/(kT ))] ·φ(λ− λ0) (3.13)

where nLTEl is the LTE population density of l, flu is the oscillator strength of l −→ u
and φ is the line profile, which is usually given by a Voigt function:

H(a, v) ≈ e−v
2

+
a√
πv2

(3.14)

v = (λ− λ0)/∆λ

a =
λ2γ

4πc∆λ

See e.g. Rutten [2003]. Since a Voigt profile is a convolution of a Gaussian function and
a Lorentz profile γ, it can be approximated with a Gaussian shaped profile:

φ (λ− λ0) =
1

π∆λ
e−((λ−λ0)/∆λ)2

(3.15)

The total opacity can now be calculated by considering all transitions that are relevant
at a given wavelength point and summation over all line opacities. Theoretically, both
Voigt profile and Gaussian profile shaped lines would contribute to opacity for all wave-
length points. However, the contribution at wavelength points far from the line center at
λ0 is extremely small, due to the shape of the profile functions. Therefore, we consider
only lines within a certain wavelength range to limit the computational demands of the
problem.
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3.3. LTE ATOM

The EOS is solved for each voxel of the grid, the opacities are then calculated accord-
ingly. Once the opacities for all voxels are known, the radiative transfer for the grid is
solved. Here we use coherent and isotropic scattering as described in section 2.3, so that
the transfer problem can be solved for each wavelength point individually by operator
splitting. See figure 3.4 for a schematic of the program.

For our sunspot simulations, we used a Phoenix/1D model for a solar type star with
Teff = 5700 K, and log(g) = 4.5 as input data, which was taken from Hauschildt and
Baron [2010]. Here, we used the temperature structure given by the model to build a
plane parallel set-up, which was mapped onto our voxel grid. The resulting plane parallel
structure was then modified according to our simple starspot models as described in
section 4.3.

This temperature structure, together with the opacities calculated by solution of the
equation of state, where used in a second series of calculations with the two level solver.
This calculation featured both the opacity structure for a single line as well as total
redistributive scattering.
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Chapter 4

Modelling Sunspots

A sunspot or starspot is a region of the stellar surface, which has a lower surface intensity
I than the rest of the stellar disk and is thus perceived as a dark patch. Starspots are
known to be cooler by several thousand Kelvin compared to the so called quiet surface of
star.

To calculate the effects of starspots on the stellar atmosphere and the stellar spectrum,
we have created a simple model of a starspot and solved the radiative transfer problem
in three dimensions. A starspot has a complicated structure where the temperature T ,
and, therefore, the chemical composition and, of course, the opacity χ as well, depends
on all three spatial coordinates. For this reason, a 1D model and 1D solution of radiative
transfer is not sufficient to model a starspot.

This chapter gives a brief introduction into formation and physical properties of
starspots and details in which way these properties were implemented into a simple model
of a spot inside the framework of our 3D stellar atmosphere simulation code. The de-
scriptions of starspots and their formation are based upon the work of Thomas and Weiss
[2008], Chitre [1963] and references therein.

4.1 Formation of Sunspots

Sunspots are caused by the stellar magnetic field. This is the reason for the fact that the
sun is not constantly covered by the same number of spots, even though individual spots
might be longliving. The solar magnetic field is constantly changing during a 22 years
cycle between two recurrences of the same polarity. The number of sunspots on the other
hand has a cycle of about 11 years between two maxima. During the solar maximum, a
large number of spots can be observed on the stellar surface, while the solar surface is
almost bare of spots during the solar minimum. Furthermore, the regions in which spots
can be found depends on the solar cycle as well. We can see a migration of few spots at
the solar equator during solar minimum to many spots near the solar poles during solar
maximum - though it is of course not individual spots that migrate, but the region in
which they are formed.

A spot forms in a region, where magnetic field lines penetrate the solar surface with
high field strength of several thousand gauss and cause a reduction in convective energy
transport. The field lines of the solar magnetic field are in motion while the solar magnetic
field is slowly reverting its polarity, therefore, the regions where field lines can penetrate
the surface slowly migrates. This explains the shift of the principal spot regions over the
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4.2. PROPERTIES OF SUNSPOTS

Figure 4.1: Left: Schematic representation of a sunspot with dark umbral core (black)
and penumbra (grey). Right: Real image of a group of sunspots on the solar surface,
courtesy of SOHO (ESA & NASA).

solar cycle.
The formation process itself usually takes place over several days. After the spot has

fully formed, it begins to slowly decay back to the quiet level over a period of weeks and
sometimes even up to a few months. During this time, the spot itself remains fairly stable
over an extended period of time, though, of course it is not actually completely static.

In the region, where the magnetic field lines break through the solar surface, the
convective energy transport is partially suppressed by the magnetic field so that the
heat flux from the area below the sunspot towards the outside is considerably reduced.
Furthermore, all convective motions within the sunspot itself are channelled along the
magnetic field lines. Limited convective heat transport is possible, but not very effective.
In this way the spot is largely thermally isolated from its surroundings since it is limited
to radiation as a source of energy transport, thus reducing the rate at which energy can
be transported up into the spot region.

4.2 Properties of Sunspots

Under close observation, a sunspot is revealed to be much more complex structure than
just a uniform dark patch of the solar surface. It is common practice to distinguish
between two different regions of the spot. The darkest inner part of the spot is called
the umbra. It usually takes up around one third of the spots total area. Surrounding
the umbra is the penumbra, which serves as a transition region between the dark inner
parts of the sunspot and the bright quiet surface around it. The penumbra is still darker,
than the quiet surface but not as dark, as the umbra. In many cases, the penumbra is
very irregular in its shape, which most likely is influenced by the thermal structure of
the surrounding atmosphere. The penumbra of several spots can be joined, so that a
structure of several umbral cores within a single penumbra is created. Figure 4.1 shows
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a schematic of the spot in its most simple representation as well as a real picture of a
sunspot for comparison.

The entire sunspot of both, umbra and penumbra, combined, can have a diameter of
several thousand kilometers. The actual size of spots varies greatly. Where the smallest
spots are known to have a diameters of around 3500 km, the largest known spots have
diameters of 60.000 kilometers or more, which corresponds to almost 0.1 percent of the
solar surface.

The umbra of solar spots typically has a temperature between 1000 K and 2000 K
cooler than the surrounding quiet surface. This difference in temperature is not constant
over the entire height of the spot, but changes and of course finally drops to zero at the
bottom of the spot. In terms of intensity, the umbra radiates only about 20 percent of the
quiet sun intensity at its core and closer to 60 percent at the boundary to the penumbra.
This boundary is a question of definition, since the actual transition is continuous.

The penumbra is between 250 K and 400 K cooler than the surrounding photosphere
and has an intensity average of 75 percent of the quiet sun. In terms of area, it takes up
the majority of the spots total area, though the exact border depends on the definition of
the umbra-penumbra boundary. This area ratio is not a constant however, even with the
same boundary the ratio still depends on the size of the spot, while smaller spots tend to
have even smaller umbral sizes compared to the spot size.

4.3 Spot models

In this work we used static physical set-ups, simulating a spot that has already fully
formed. As a first approximation, we introduced a region of lower temperature into our
model of the stellar atmosphere to simulate the immediate effect that the sunspot has on
the solar spectrum directly as well as indirectly.

For this work, we assumed that sunspots or starspots would be rotationally symmetric
to the center of the umbra, so that the spot itself is a perfect circle, when seen from
above (µ = 1). Real sunspots are quite irregular in shape, so that this is, of course, an
approximation. However, it would be impossible to account for any possible shape of
spot without simulating the formation process. Besides, we are primarily interested in
the effect the spot has on the spectrum and the rest of the atmosphere, therefore, the
simple shape has the advantage of reducing the number of free parameters for the model
and being easy to recognize in the shape of the resulting spot.

A sunspot with one or even two regions of constant temperature or constant relative
temperature would obviously not be stable and any discontinuous drop in temperature
causes strong effects at the position of the discontinuity. For this reason we used simple
functions to simulate continuous transition between the temperature at the outside and
the temperature at the core of the spot, so that the transitions between umbra, penumbra
and quiet photosphere are as continuous as a discrete grid allows for.

The spot itself was structured so that it narrowed with increasing depth since spots
obviously have a lower boundary determined by the point where temperatures reach the
level of the quiet sun again.
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Constant Model

For test purposes, we set up a simple cylindrical box of constant temperature Tspot, which
is set between the depth z and z+∆z and for distances from the grid center of rxy ≤ rspot.
This model served as a test setup for our solver and was the base for the developement of
more complex models. A three dimensional structure cut of this simple test box can be
seen in figure 4.2.

Figure 4.2: Constant test model, temperature structure in three dimensions.

Cylindrical Model

The first model that allows for a non constant temperature of the spot, affects the tem-
perature on a cylindrical part of the upper stellar atmosphere. The temperature at the
center of the cylinder is set constant to a value of Tspot = Tpp −∆Tspot, the temperature
then increases exponentially depending on the radial distance r from the center of the
umbra up to a distance rspot, outside of which the normal plane parallel structure of the
model grid is assumed. The spot is assumed to have a height ∆z and begins at z = zmin,
where z is the height above the bottom of the grid.

T (x, y, z) = Tpp(z)−∆Tspot exp

(
−
(
r(x, y, z)

rspot

)2
)
∀ r ≤ rspot ∧ z ∈ [zmin, z + ∆z]

(4.1)

where r =
√
x2 + y2 and Tpp(z) is the temperature of the plane parallel model. Like-

wise the spot is cut of at a maximum depth. The resulting temperature structure is shown
schematically in figure 4.3 as cuts through the model grid.

Conical Model

Models with a maximum radius and depth cause a discontinuity in temperature, which
would of course be thermally unstable. It seems more logical to have a structure that
is larger on the surface, than in the lower parts of the atmosphere, thus beeing spatially
compact without beeing discontinous. Therefore, the second model was set up as a non
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Figure 4.3: Cylindrical model, temperature structure in three dimensions.

regular cone with temperature gradients in both r and z direction. It begins at its full
radius at the top of the atmosphere and reduces its radius as it proceeds into deeper layers
according to

rspot(z) = rspot,max

√
− log(d(z)/dmax) ∨ rspot,max for d(z) = 0 (4.2)

where d in this case is the distance from the surface or d = zsurface − z and dmax is the
lower boundary of the spot. The temperature is calculated as

T (x, y, z) = Tpp(z)−∆Tspot · exp

(
−
(
r(x, y, z)

rspot(z)

)2
)
· exp

(
− d(z)

dscale

)
(4.3)

where dscale is a free parameter for control of the vertical temperature scale.
This model was implemented both into the two level solver, as well as the full Phoenix-

/3D program, for which the chemical composition of the atmosphere is calculated consis-
tently. The resulting temperature structure is illustrated in figure 4.4, for different sets
of parameters.

(a) 2 level model (b) Phoenix3D shallow model (c) Phoenix3D deep model

Figure 4.4: Conical model, schematic temperature structure for three different sets of
parameters.
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Chapter 5

Results

5.1 Temperature and Scattering Effects
In our first calculations, the temperature of the sunspot was lowered without considering
a change to the opacity. The lower temperature means that the source function inside
the spot region is lower, thus we can expect it to be darker even without an increase in
opacity. Furthermore we expect non-zero flux-vector components in x and y direction due
to the fact that the temperature gradient in the atmosphere is no longer parallel to ~ez
since we departed from the conditions of a plane parallel atmosphere.

In this case, the models were calculated for a grid structure with nx = ny = nz = 30,
and therefore a total number of 226 981 voxels, where each single voxel represents a cubical
element of volume with avoxel ≈ 16.39km, and a total size of the computational domain
of agrid = 1000km.
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Figure 5.1: Constant model, left panel: Intensity for the spectrum above the spot (red)
and for the quiet surface (black). Right panel: Lateral profile through the center of the
grid.

First, we tested the 3D radiative transfer simulation program by calculating the ra-
diation field inside a simple structure with a cylindrical zone of constant temperature T ,
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as introduced in section 4.3. As could be expected from this extremely simple model, all
surface voxels of the spot show a constant intensity, since huge parts of the grid below
have a constant temperature. As can be seen in figure 5.1b, the discontinuity in temper-
ature is reproduced in the lateral profile, where we see a jump from the quiet intensity
outside to the reduced intensity inside at the boundary of the anomaly.

In this calculation, the spot model is positioned in the center of the grid and does
not reach up to the top. For this reason, the line center is not affected as much, as the
continuum, since the line is due to its higher opacity, generated at shallower depth, so
that it does not see as much of the spot. The result is that the absorption line vanishes
above the anomaly and is replaced by a very weak emission feature, as can be seen in
figure 5.1a.

If we take a look at the flux in a two dimensional cut, shown in figure 5.2a, we find a
huge deviation from the z direction at the edges of the anomaly, where the temperature
discontinuity is located. The flux is redirected more strongly in the lower parts of the
atmosphere, where the outside temperature and, therefore, the temperature difference is
higher. Respectively, there is almost no flux in the center of the spot, where there is no
temperature gradient at all.

For obvious reasons, this configuration does not cause a spot with a clear distinction
between umbra and penumbra, but a simple dark patch on the surface, as seen in figure
5.2b. However, these are exactly the results we expected from a simple configuration like
this, therefore we have successfully tested our solver.
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(b) Surface Intensity

Figure 5.2: Constant model, left panel: Temperature and x and z components of the
flux as vectors in a plane through the center of the spot. Line flux ~F (λline) is drawn
in red, while continuum flux ~F (λcont) is drawn in white. The temperature T of each
voxel is shown as background color. Right panel: Visualisation of the surface intensity
Iλ(λ = λline) for a characteristic of (ϑ, φ) = (0, 0).

Cylindrical Model

With the results of the first tests in mind, we have replaced the constant temperature
settings with a simple cylindrical model with temperature gradients, as has been described
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Figure 5.3: Cylindrical spot model, temperature and flux in a plane through the center
of the spot. Line flux ~F (λline) is drawn in red, while continuum flux ~F (λcont) is drawn in
white. The temperature of each voxel is shown as background color.

in section 4.3. In this model the temperature is lowest in the upper center of the spot.
The temperature difference

∆T (x, y, z) = |T (x, y, z)− Tpp(z)|

where Tpp is the temperature of the plane parallel structure, is reduced exponentially
towards the rim of the spot with a steeper gradient in deeper layers. The spot still
features discontinuities in temperature at its maximum diameter and even more so at its
lower boundary.

The following parameters where set for the spot model as defined by section 4.3:

Tspot = 4000K

rspot = 250km

zmin = 350km

∆z = 650km

Figure 5.3 shows both temperature structure and the flux in x and z directions in a
x-z cut through our grid at y = 30 and, therefore, trough the center of the umbra, where
no flux in y direction is expected due to the cylindrical symmetry of the model.

We can still see the effect of the temperature discontinuity at the spots boundaries.
The flux is redirected into the spot, and the redirection is again most pronounced where
the temperature gradient is high, e.g. at the discontinuous lower boundary. This is most
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Figure 5.4: Cylindrical spot model, right: Spectra of surface voxels from the quiet sun
(green) to the center of the umbra (blue) along a diagonal of the voxel grid. Intensity is
normalized to quiet continuum intensity. Right panel: Intensity at λ = λline (red) and
λ = λcontinuum (black) for a lateral profile at the surface of the grid.

discernible in the continuum where the changes in flux are negligible outside the spot.
There is still almost no flux in the center of the spot, where the temperatures are more
or less constant.

Furthermore, the spot has a greater influence on the flux at the line centre, where it
is redirected more strongly by the same temperature gradient. Since the atmosphere is
optically thicker at the line than at a continuum point, this as not too surprising since
optically thin structures have less influence on the emerging spectrum.

In figure 5.4 we see the change in intensity along a diagonal of the grid surface. As
before, the effect of the spot is stronger in the continuum, since the temperature difference
is higher at the bottom end of the grid. Just as in the constant test model, we do not see
the line in the umbral spectrum. Furthermore, we can see that the line weakens in the
outer regions of the spot. Since we have implemented a transition between the outside
and the inside of the spot, this could be expected.

In this test case, the umbra is 4000K cooler than the quiet grid at its center, this
results in a drop in intensity to below 20 percent of the quiet continuum for the umbra
and about 20 to 60 percent for the penumbral region. The drop in line intensity is not
nearly as strong, but this is of course due to the fact that the opacity change due to the
lowered temperatures has not been considered yet.

Of course we are interested in the spot as it would be visible at the surface, therefore
we computed the formal solution for a view directly from above with (ϑ, φ) = (0, 0).
As shown in figure 5.5 for different wavelengths, the model has produced a spot with a
distinctive difference between umbral and penumbral region. Using I = 0.75 · Iquiet as
limit between umbra and penumbra, we have an umbra to penumbra ratio of about

Aumbra

Aspot
= 0.4

However, we see a non continuous drop by almost 40 percent in intensity at the rim
of the spot, which is obviously due to the use of a maximum diameter of the spot and the
resulting discontinuity in temperature at this radius.

28



5.1. TEMPERATURE AND SCATTERING EFFECTS

x axis [voxel]

y
ax

is
[v
ox

el
]

Figure 5.5: Cylindrical spot model, intensity as seen from above the spot, color coded
logarithmically from 4.6 · 109erg/cm2/cm/sr (black) to 9.7 · 1010erg/cm2/cm/sr (white).

Conical model

So far, we have seen that the calculation is strongly affected by discontinuities in the
temperature structure. For this reason, we have set up another model, in which we
ventured to remove these and replace them by smooth transitions. In this model the
temperature difference is reduced exponentially in z and r so that we see a conical shape.
This change applies to the entire grid in r, so that there is no discontinuity but those
generated by the discretization of the grid. There is still a discontinuity in temperature
at the lower boundary due to the finite size of the voxels inside which the temperature is
constant, though it is not as pronounced as before. The parameters as defined in the full
description of the model in section 4.3 were set up as follows:

Tspot = 4000K

rspot = 250km

dmax = 700km

dscale = 800km

so that this model is equal in size to the previous model at the surface.
In figure 5.6 the temperature structure and flux are shown for a vertical cut through the

center of the simulated spot. In this case, the flux is diverted from the z direction where
the temperature gradient is steepest and stronger for the line than for the continuum.
Without the temperature discontinuity at the rim of the spot, the effects of the rim of
the spot are not as strong. However, there is still some effect in the lowest affected voxel
at the bottom of the spot, where the temperature is not discontinuous, but the gradient
from one voxel to its neighbours is steep.

The reduction in surface intensity, compared to the quiet surface, is not as pronounced
in this spot, mainly because the temperature difference between the center of the umbral
region and the quiet sun is lower at greater depth than in the previous model. In figure
5.7 we show that the continuum intensity is lowered to around 80 percent in the penumbra
and down to just below 50 percent in the umbra. The darkening is still stronger in the
continuum, than in the line, since we yet have to account for opacity effects.
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Figure 5.6: Conical spot model: Temperature and flux in a plane through the center of
the spot. Line flux ~F (λline) is drawn in red, while continuum flux ~F (λcont) is drawn in
white. The temperature of each voxel is shown as background color.
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Figure 5.7: Conical spot model, left panel: Surface voxel spectra from the quiet sun
(green) to the center of the umbra (blue) along a diagonal of the voxel grid. Intensity
is normed to quiet continuum intensity. Right panel: Intensity at λ = λline for the
surface of the grid, color coded logarithmically from 3.7 · 1010erg/cm2/cm/sr (black) to
9.7 · 1010erg/cm2/cm/sr (white).
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Figure 5.8: Conical model: Intensity spectrum for different scattering coefficients εline =
1, 0.1, 0.01, 0.0001, left: above the spot, right: at the edge of the grid, normalized to quiet
continuum level.

On the surface, this spot appears to be considerably smaller than the first spot, with
a higher ratio of umbral area to penumbral area of:

Aumbra

Aspot
≈ 0.3

with I = 0.75 · Iquiet as border between umbra and penumbra. This is a result of the
inclusion of additional temperature gradients. Despite the fact that the spot is spread
farther on the surface without a strict outer boundary to the quiet atmosphere, the region
that has the lowest temperature is smaller. This is caused by the temperature gradient
in z direction.

Scattering

At this point, we used the same conical model but included line scattering with complete
redistribution, as described in section 3.2. In this case, we used line thermal coupling
parameters of εline = 0.1, 0.01 and 0.0001 as defined by equation (3.11). Scattering
connects spatially distant parts of the atmosphere, so that we expect to see an effect of
interaction between the cooler spot and the quiet atmosphere surrounding it.

Figure 5.8 shows the intensity spectrum for the surface voxel above the spot and
for another surface voxel at the edge of the grid for different grades of scattering. For
increased influence of scattering, the line depth in the region above the spot is reduced
while we see a deepening of the line in the region around the spot. The scattering, thus,
reduces the effect of the lower temperature in the immediate vicinity of the spot, but
increases the area of effect, thus enlarging the darkening of the solar surface.

To examine this effect more closely, we plot the intensity at the line center λline, where
the change due to scattering is most obvious, as a lateral profile over the grids x axis.
Figure 5.9 shows that the visible spot has indeed grown in size, but is less dark as well.
The outer boundary has grown slightly, while the darker part of the penumbra as well as
the umbra moved farther inwards. This means that the observed spot is actually larger
than the zone of reduced temperature suggests, because scattering spreads the total loss
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Figure 5.9: Surface intensity along a lateral profile through the center of the spot at
y = 30, λ = λline for different εline = 1, 0.1, 0.01, 0.0001. Left panel: normalized to quiet
non-scattering continuum intensity, right panel: normalized to quiet line of each case for
comparison of spot size.

of intensity over a larger area.

The redistribution of photons into the darker spot is seen even better if we take a
look at the scattering calculations for the first model in figure 5.10. In this model, the
reduction of the temperature is strong enough to black out the center of the umbra almost
completely to only a few percent of the quiet continuum level. With line scattering we see
emission features, which of course are generated by the photons that are scattered into
the spot. Figure 5.10b illustrates how the darkening of the stellar atmosphere is spread
beyond the region where the spot affects the temperature structure of the atmosphere,
as even parts of the lateral profile that are outside the spot region, which is limited to
a maximum radius in this model, are darkened. In this case, the discontinuity actually
helps to point out this effect.

Figure 5.11 shows the flux in x-z plane for different scattering coefficients εline. Here,
we see that scattering reduces the influence of the spot, as the flux is not redirected into
the spot as much, as in the case without scattering. The changes are large in the upper
part of the atmosphere, but small at the lower end of the spot model.

5.2 Carbon Monoxide in Sunspots

We have shown the influence the reduced temperature inside the spot has by itself without
consideration of the effect this change in temperature has on the equation of state and
therefore the opacities in our atmosphere. We have expanded our model calculation to
incorporate the latter effect. Since we are interested in the formation of molecules in the
cooler regions of a sunspot, we need to allow for a change in the chemical composition
of the atmosphere. We have lowered the temperature, therefore, we expect an increased
concentration of molecules such as CO.

The model we use is again conically shaped, so that we may compare our results with
the test case of the two level atom. We begin by using a model for the solar atmosphere as
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(b) Lateral profile

Figure 5.10: Cylindrical model with scattering, left panel: surface voxel spectra from the
quiet sun (red/green) to the center of the umbra (blue) along a diagonal of the voxel grid.
εline = 0.1 Intensity is normed to quiet continuum intensity. Right Panel: Lateral profiles
at λ = λline for εline = 1, 0.1 and 0.01, intensity is normalized to non scattering quiet line
level.

shallow model deep model

∆Tspot −2000K −2000K
rspot 250km 350km
dmax 900km 1800km
dscale 1000km 2000km

Table 5.1: Model parameters for the conical Phoenix3D sunspot models.

a base for a plane parallel model and again incorporate local changes to the temperature
in the center of the grid. For the model parameters, see table 5.1.

In this case, all calculations were done for a grid structure with nx = ny = nz = 32
and a total number of 274 625 voxels. Each single voxel represents a cubical element of
volume with an edge length of avoxel ≈ 22.4km, which gives the entire grid a total edge
length of agrid = 1455km.

Figure 5.12 shows a color coded plot with the opacity structure from a vertical x-z cut
through the atmosphere. We can see that the opacity inside the spot model is increased by
several orders of magnitudes for some wavelength points, while only negligible for others.
Furthermore, the shape of the region of changing opacity is wavelength dependent as well.

This is not very surprising, since the opacity is changed by the presence or absence of
various atomic and molecular species. We see huge changes, where a major contributor to
opacity at a wavelength point is able to exist due to a favourable temperature and small
or no changes in regions where the species that dominate the opacity for this wavelength
points are little or not affected by the change of temperature, for instance because the
respective lines are generated in different layers of the atmosphere.

We can test this hypothesis easily by plotting the CO concentration inside our atmo-
sphere. Figure 5.13 shows both the absolute CO concentration in parts per million, and
the increase in CO concentration compared to the quiet solar atmosphere. The structure
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(a) εline = 10−1
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(b) εline = 10−4

Figure 5.11: Conical model with different scattering coefficients εline with flux ~F (λline)

shown in red, compared to flux ~F (λline) of case without scattering εline = 1 (white). Each
vector in the graph represents the average over 4× 4 voxels. The color of the background
shows the Temperature T of each voxel.
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(b) λ = λcont

Figure 5.12: Opacity structure in x-z plane, calculated from the shallow conical model
in a solar type atmosphere. Difference between opacities for the line and the continuum.
Opacity χ color coded logarithmically from 10−20cm−1 to 100cm−1.

of the spot can be seen quite clearly as a region of comparatively high CO concentration,
with the highest concentration in the cool core of the spot. In the right panel, we find
that at the surface of the spot, the CO concentration is almost 20.000 times higher than
in the undisturbed parts of the atmosphere. Furthermore, we see that the change to the
CO concentration is high at the surface and the bottom of the spot, where in the quiet
atmosphere there is little or no CO present. If we compare this plot to the opacity struc-
ture of a CO line in figure 5.12, the region of highest change to CO concentration is, of
course, the same region that has the highest change to opacity.

In comparison to the plane parallel model we used for our two level calculations, the
model for the atmosphere of a G-type star we used here has a less steep vertical temper-
ature gradient and the upper region we are interested in is optically thinner than before.
Thus, the first result we obtain is that the effect on the continuum is almost non existent
if we use similar model parameters for the sunspot as in the test environment of the two
level solver, as shown in figure 5.14. This makes sense, if we consider that molecules like
CO can only exist where the temperature is low enough, so it is only natural that the CO
lines we are looking at emerge in the upper atmosphere and, therefore, are a much better
tell-tale for temperature changes in this region, than the continuum, for which the local
medium is optically thin. Figure 5.15 shows the relative line opacity of a CO line with
λline = 44674.6 Å and the CO concentration in the atmosphere for the pure plane parallel
case. We see that for this atmospheric model, CO molecules are only formed in the upper
part of the atmosphere, in the same reason, where our spot model resides.

Since our model spots have been tiny compared to known real sunspots so far, we set
up a second model with the same structure, but increase both the diameter and the depth
untill which the sunspot affects the atmosphere. The opacity structure for this model is
shown in figure 5.16. Besides the obvious increase in size at the surface, which is due to
the increased diameter of the spot, we can see that the change in opacity at the lower end
is more pronounced within the line, and the continuum. If we look again at the change in
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Figure 5.13: Effect of the shallow sunspot model on the formation of Carbon Monoxide
(CO) in stellar atmospheres. Left panel: CO concentration in parts per million, color
coded from 0.1 ppm (blue) to 500 ppm (red). Right panel: relative CO concentration
compared to undisturbed atmosphere nCO

nquietCO
, color coded from 1 (blue) to 20000 (red).

Wavelength λ [Å]

In
te
n
si
ty
I
λ
[e
rg
/
c
m

2
/
c
m
/
sr
]

(a) Quiet Sun
Wavelength λ [Å]

In
te
n
si
ty
I
λ
[e
rg
/
c
m

2
/
c
m
/
sr
]

(b) Umbra

Figure 5.14: Shallow model: CO Band Spectra between 44000 Å and 46000 Å for the
quiet surface (left) compared with the umbral center (right).

CO concentration for this model, which is done in figure 5.17, we can see the reason for
this immediately. The lower temperature at the bottom of the spot allows for creation
of CO in a region that would be almost bare of it without the sunspot. In this way, the
relative increase is huge, even though not as high as at the surface.

If we take a closer look at figure 5.18, which shows the temperature structure of an
x-z cut through the grid and has markings for the τ = 1 level of both line and continuum
wavelength points, we can see, the different effect on CO lines and continuum directly.
In the shallow model, the continuum is dominated by radiation from a depth that is far
beyond the lower boundary of the spot model, so that the spot is entirely in the optically
thin region of the atmosphere and thus affects the outgoing radiation very little. Even at
an affected line wavelength point, where the increased opacity in the sunspot reduces the
depth of the τ = 1 level locally, the spot is barely in the CO line forming region of the
atmosphere and the darkening is dominated by the increased opacity, not by the reduced
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Figure 5.15: Relative line opacity χline
χcont

for the CO line λline = 44674.6 Å (black) and CO
concentration of the plane parallel atmospheric model in parts per million (blue).
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Figure 5.16: Opacity structure in x-z plane, calculated for the deep model for a wavelength
point at the line center and a continuum point. Opacity χ color coded logarithmically
from 10−20cm−1 to 100cm−1.
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Figure 5.17: Effect of the deep sunspot model on the formation of Carbon Monoxide
(CO) in stellar atmospheres. Left panel: CO concentration in parts per million, color
coded logarithmically from 0.1 ppm (blue) to 500 ppm (red). Right panel: relative CO
concentration compared to undisturbed atmosphere nCO

nquietCO
, color coded logarithmically

from 1 (blue) to 20000 (red).

temperature directly.
In the deep spot model, as shown in figure 5.18b, we see a different behaviour. Again

the affected line opacity lowers the depth of the τ = 1 level and shows us colder regions
of the atmosphere. This time however, the effect spreads farther out and is much more
visible. The continuum level is affected as well. Even though the reduced opacity allows
for a deeper look into the atmosphere, we see only the lower part of the spot, which is
still cooler than the level we would see in the quiet part of the atmosphere. Therefore, the
continuum intensity is reduced as well, though not by as much as at the line center. In
this, we can see an obvious difference to the shallow model, as illustrated by the spectra
for the deep model in figure 5.19.

Influence on different CO bands and atomic lines
We have set up two different models of sunspots with different sizes. Furthermore, we have
shown that even a shallow spot has a strong influence on line opacities that are generated
by molecules in the upper part of the atmosphere, because the reduced temperature
increases the number of molecules that form and the size of the region, in which formation
is possible. However, we must not forget that it is as of yet not possible to resolve a
starspot by observation directly. Therefore, it is of interest, to investigate how the changes
to temperature and opacity would affect the stellar spectra. The spectra in figures 5.14
and 5.19 show parts of the CO band spectrum with ∆ν = 1 for both models. We have
already seen that they are strongly affected by the presence of the sunspot.

For comparison, we have produced another spectrum for the shallow model for the
∆ν = 2 band spectrum, which is shown in figure 5.20. Here, we see that while the
band spectrum again shows stronger lines than the quiet surface, the darkening is not as
pronounced, and not all lines seen are affected. Blueward of the band head at 23000Å, we
see that few lines are affected at all. The unaffected lines are atomic lines like Fe I and Mg
I, which originate at a lower level of the atmosphere. This spot model is shallow and we
already saw that it does not effect the continuum. The not affected lines are, therefore,
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(b) Deep model

Figure 5.18: Temperature structure for the shallow model (upper panel) as well as the
deep model (lower panel). Temperature is shown color coded logarithmically from 1000
K to 10000 K. The white lines mark the optical depth τ = 1 for λ = λline, while the black
lines mark the optical depth τ = 1 for λ = λcont along characteristics with (ϑ, φ) = (0, 0).
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(b) Umbra

Figure 5.19: Deep model: ∆ν = 1 CO band spectrum between 44000Å and 46000Å for
quiet sun (left) compared with umbral center (right).
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Figure 5.20: Shallow model: CO Band Spectra with ∆ν = 2 between 22000Å and 24000Å
for the quiet surface (left) compared with the umbral center (right).

those that are formed in a lower region of the stellar atmosphere as well, as we can see
from the the τ = 1 level, plotted in figure 5.22 for a not affected Mg I line at λ = 22816
Å. In the case of the line shown, the opacity is even reduced in the spot region.

Moreover, lines that are already strong are more strongly affected than those which
are faint on the quiet surface. However, if we compare the absolute darkening of the CO
lines in both bands, as was done in figure 5.21, we see that the absolute darkening in the
band at 23,000Å is greater, than in the 4µm band. This is not surprising, since the overall
intensity in the 2µm band is more than one order of magnitude higher.

5.3 Center-to-limb variation of Sunspots

As we have described in section 2.5, the apparent brightness of the solar disk varies from
the center to the limb. This effect is commonly known as limb darkening. This is true
only for the quiet sun and the mean brightness of any part of the solar surface that is
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(b) ∆ν = 1 band

Figure 5.21: Shallow model: Darkening of the Umbra, shown as Intensity difference
between umbra and quiet surface ∆Iν = Iumbra

ν − Iquietν between 22000Å and 24000Å (left
panel) as well as 44000Å and 46000Å (right panel).

large against the size of the three dimensional structures, especially sunspots.
Our model calculations show that the opposite is true for a sunspot structure, which

appears less dark, if observed close to the edge of the solar disk. In case of sunspots
we, thus, have limb brightening instead of limb darkening. This effect is visible in the
images shown in figure 5.23, which panels represent color coded plots of the intensity at
the surface of our voxel grid for a single wavelength and angle of view, and figure 5.24,
which shows the intensity Iν at line wavelength λ = λline of the darkest voxel of the spot
compared to a reference voxel far outside the spot plotted over angle of view µ.

We have already discussed the reason for limb darkening in section 2.5 for the plane
parallel case. The sunspot is, of course, breaking the symmetry of the underlying plane
parallel structure since the opacities seen along a specific characteristic are not indepen-
dent of the beginning of the characteristic on the surface of the star. If we look at the
sunspot directly from above, all characteristics that pass through the sunspot traverse
its entire structure from the lowest boundary up to the top (see figure 5.25). However,
if we look at a spot from a point above the rim of the grid, we see the spot through a
characteristic with (ϑ, φ) 6= (0, 0). This characteristic does not traverse the entire spot
from bottom to top but only part of it. This effect is increasing the farther we depart
from the direct view from the top.

The increased opacity inside the spot reduces the atmospheric depth to which we can
see, so that the spot usually appears darker than its surrounding, as shown in figure 5.25
where the lower black line marks the level of τ = 1 for all characteristics. If we now
increase the angle of view, the characteristics that pass through the center of the spot at
its lower end do not traverse the upper regions of the spot at all, but a region of lower
opacity outside the spot. Since this effect is different for each characteristic and angle, the
shape of the τ = 1 line begins to change, so that we see different parts of the spot. The
spot itself is smeared out because every characteristic passing through it only traverses a
fraction of it. The darkest region of the spot gets brighter. (See figure 5.26)

Figure 5.24 points out that the spot brightening peaks between at about µ = 0.2
depending on the model and, consequently, remains fairly constant in relative brightness
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Figure 5.22: Opacity structure in x-z plane, calculated from the shallow conical model in
a solar type atmosphere. The opacity is shown at a line wavelength point for an Mg I
line at λ = 22816 Å, which is not affected by the sunspot. The opacity χ is color coded
logarithmically from 10−20cm−1 to 100cm−1. The black line marks the τ = 1 level for a
characteristic with (ϑ, φ) = (0, 0).

to the quiet sun but drops in absolute intensity much in the same way that the quiet
surface intensity does. A characteristic with an angle of µ ≤ 0.2 would correspond to
an observation close to the rim of the stellar disk, where the line of sight runs almost
parallel to the surface. This would not be a problem in a spherical star model, but in this
case we used a grid with lateral periodic boundary conditions, which represents a semi
infinite slab. The same sunspot is repeated over and over, so that even if not a single
characteristic traverses the entire spot, every single characteristic passes through the top
region of the spot multiple times. Since the top of the spot is one of the two zones of
strongest increase in opacity at line wavelength, the darkening is stronger once more, than
at steeper characteristics which traverse the top region only once. We can see the result
of this effect, if we look at the visualisations in figure 5.23, where the spot gets smothed
out first and is later smeared out so much that it spreads over the entire grid. If we look
at characteristics even closer to the rim of the stellar disk with µ −→ 0 (ϑ −→ 90◦), this
effect would increase, since the number times the characteristic passes through the spot
would go to infinity.

The brightening of sunspots is one of the effects that depend on the 3D shape of the
spot, as can be seen by comparison of the two different models. A change to the shape of
the spot changes the regions, in which the opacities change. Since limb variations allow us
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5.3. CENTER-TO-LIMB VARIATION OF SUNSPOTS
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Figure 5.23: Intensity Iλ(λ = λline) at the surface of the grid seen under different an-
gles of view µ = cos(ϑ) and φ = 0. Intensity is color coded logarithmically between
2.5 · 1011erg/cm2/cm/sr (black) and 6 · 1011erg/cm2/cm/sr (white).
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Figure 5.24: Center to limb variation for two different sunspot models, shown is intensity
Iλ(λ = λline) for different characteristics µ, normalized to quiet Iλ(ϑ = 0) and direct
view of (ϑ, φ) = (0, 0). Black: Limb darkening in quiet continuum. Red: Umbra of deep
conical sunspot. Blue: Umbra of shallow conical sunspot. Both calculations show signs
of numerical noise due to spatial resolution of the voxel grid.
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Figure 5.25: Opacity structure of the spot with characteristics and depth level of τ = 1
for (ϑ, φ) = (0, 0). The opacity χ is color coded from 10−20cm−1 to 100cm−1.
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Figure 5.26: Opacity of a vertical slab of the grid through the center of the spot λ = λline.
Dark lines mark characteristics and depth of τ = 1 for each characteristic of the grid and
φ = 0. The opacity χ is color coded from 10−20cm−1 to 100cm−1.
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5.4. NLTE TOTAL REDISTRIBUTION SCATTERING

to see different depth of the atmosphere, the shape of the τ = 1 boundary that the spot
produces is very important (e.g., figure 5.18). As shown in figure 5.24, even two models
with the same basic shape but different depth and sizes can produce different behaviours.

Up to this point, we have calculated the center to limb variation of the intensity of an
affected line at its center wavelength λline. We have shown that the continuum is affected
less in the deep model and not at all in the shallow model. The opacity structure of the
spot is quite different at continuum wavelength as well, as presented in figure 5.27. Thus,
it is not surprising that we find a very different behaviour in figure 5.28. While the shallow
model, where the intensity is not affected at all, does show the same limb darkening, as
the quiet surface, the continuum of the deep model shows a moderate limb darkening,
but then again a brightening, if we go to large angles ϑ. As before, this is an effect of the
periodic boundary conditions, where, in this case, the optical thin regions of the spot are
crossed multiple times, so that we see deeper into the atmosphere than without the spot.
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Figure 5.27: Opacity of a vertical slab of the grid through the center of the spot for
λ = λcont. Dark lines mark characteristics and depth of τ = 1 for each characteristic of
the grid and φ = 0. The opacity χ is color coded from 10−20cm−1 to 100cm−1.

5.4 NLTE total redistribution Scattering

In the previous sections, we have shown how the temperature difference of our sunspot
models affects the star’s surface intensity and how scattering enlarges the starspot in
an NLTE test case, in which the temperature is changed, but the opacity is constant.
Furthermore, we have calculated, how the change in temperature influences the opacity
structure within the boundaries of the star. In this section we will combine both cal-
culations. To achieve this, we use both the shallow and the deep model from the full
Phoenix/3D calculations and implement the temperature structure, and the opacities
for both line and continuum into the input data for our two level solver. This was done
by reading the continuum opacity from a point outside the CO line at λ = 44674.6 Å
into χcont and use it to calculate the line opacity χline for the line center. The opacities in
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Figure 5.28: Center to limb variation for two different sunspot models, shown is intensity
Iλ(λ = λcont) for different characteristics µ, normalized to quiet continuum and direct
view of (ϑ, φ) = (0, 0). Black: Limb darkening in quiet continuum. Red: Umbra of deep
conical sunspot. Blue: Umbra of shallow conical sunspot.

between are then interpolated by use of a standard Gaussian line profile with a line width
of ∆λ = 0.45 Å.

With this set-up, we have solved the problem of radiative transfer for an LTE thermal
emission and complete redistribution scattering. Once more, we used a grid of nx = ny =
nz = 32 and therefore 274 625 voxels. Due to the different presets of both solvers, the
size of each voxel is here 15.38 km which leads to a total grid size of 1000 km, so that the
spot is actually smaller.
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Figure 5.29: Comparison of intensity for deep model and different scattering coefficients
εline = 1.0, 0.1, 10−2, 10−3, and 10−4 both in spectrum at umbral center and lateral profile
for λ = λline. Original spectrum from Phoenix/3D Calculation is shown in black for
comparison.
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5.4. NLTE TOTAL REDISTRIBUTION SCATTERING

The results of this calculations for the deep models are presented in figure 5.29, which
shows both the spectra of the two level calculations for different scattering coefficients
εline, and the lateral profile at line center wavelength. We observe the same effect, as
we were led to expect from the first calculations with the simple set-up in section 5.1.
However, with the real temperature and opacity structure, the effect is more pronounced.
The quiet surface and the penumbra are darker then before, while the umbra itself is
likewise darker as before. Moreover, the contrast between umbra, penumbra and quiet
surface has been diminished. What is even more interesting is that here scattering causes
a much more pronounced change to the lateral intensity profile of the spot, than in the
simple calculations with plane parallel opacity. The umbra widens and now forms a large
center of the spot, where the intensity is spatially constant. This large umbral core is
surrounded by the penumbra that is larger than before, but has not grown as much as the
umbra. The formation of this umbral core proceeds with increasing influence of scattering.

The models with εline = 10−2,10−3, and 10−4 show that the constant umbra seems
to be fully formed by εline = 10−2, while any further increase affects the structure in
total without doing much to the shape of the lateral profile. Consequently, the difference
between the two models with the smallest epsilon is barely visible. At εline = 10−1 we
can see into a transition state between the fully formed constant umbral core and the
lateral profile that is produced by the non scattering case. In our calculations, the effect
is possibly limited by the fact that we included only line scattering.

This result is closer to the pictures of a very distinct sunspot umbra with little change
to the intensity inside it that can be observed on the solar surface. This is evident, if we
compare the visualisations in figure 5.30 to the real image in figure 4.1.

Shallow model

The same kind of simulation was done for a the shallow model configuration, to see if
the effects are the same for an even smaller and less deep spot structure. The resulting
umbral spectrum and lateral profile of the shallow spot model are shown in figure 5.31.
The consequence of the introduction of total redistributive scattering is similar to the
results we have presented for the deep model. Without scattering, the spot has a sharp
profile with a very distinct minimum of intensity. If we increase the scattering coefficient
εline, the overall contrast between spot and quiet surface is reduced, and the lateral profile
changes. Note that we do not see an almost constant core of the umbra, as we have
in the larger spot of the deep model. Nevertheless, the spot profile is smoothed out, as
radiation is scattered into the spot. Even if the umbra does not show a constant darkening,
the gradient of the profile is considerably smaller and spreads farther out. Even though
the resulting lateral profile is different, the transformation is once again complete by
εline = 10−2 and the difference between εline = 10−3 and εline = 10−4 is negligible.

The effects of scattering that we already saw in the simple calculations in section 5.1,
are definitely present again. The results of both calculations show that scattering reduces
the overall darkening of the spot area. In this way, we can assume that in order to achieve
the darkening of the spot, as expected from observations of the solar surface, we have to
cool down our spot further, especially in the mid layers of our model. Since even the deep
model is small for a sunspot, this is not too surprising.
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Figure 5.30: Surface Intensity Iλ for λ = λline, as seen from directly above the grid with
(ϑ, φ) = (0, 0). Intensity is color coded logarithmically, scaled to the maximum and
minimum intensity seen in each plot.
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Figure 5.31: Comparison of intensity for shallow model and different scattering coefficients
εline = 1.0, 0.1, 10−2, 10−3, and 10−4 both in spectrum at umbral center and lateral profile
for λ = λline. Original spectrum from Phoenix/3D Calculation is shown in black for
comparison.
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5.5. OBSERVABLE SPECTRA

5.5 Observable Spectra

We have compared the spectra of surface voxels of the umbra with the spectra of the quiet
sun outside the spot. This has helped us to build a model that creates a distinct structure
of umbra and penumbra on the surface of our grid structure. Yet, it remains impossible
to resolve the surface of any star but the sun and, therefore, the surface intensity as well.
For this reason, we have calculated the observable flux of our grid structure by summation
over the z component of all surface voxels.

However, this only gives us the result for a small fraction out of the surface of a
star. Of course, we could try to implement a sunspot like structure into the surface of a
three dimensional grid that represents an entire star. Yet, the spatial resolution would
have to be high enough to still resolve the spot with enough features, otherwise a too
low resolution would hide any effects. Furthermore, a single spot on a stellar surface is
unlikely to have any observable contribution to the total spectra. Conclusively, we would
have to set up a model for a complete three dimensional surface of the star with a relevant
coverage by a number of fully resolved spots. The computational demands for this would
be high and most of the parameters we would have to put into the model would later be
hidden by the integration over the surface.

With the current set-up, it is far more convenient to simply weight different surface
voxels differently and therefore virtually add additional quiet surface voxels without in-
creasing the computational demands. In this way, we can produce spectra for different
levels of spot coverage of a star.

Figure 5.32 shows the result in form of integrated flux spectra for the different levels
of coverage. Note that the total size of the surface, and thus the total flux is different for
all three calculations, since we had to add different amounts of additional quiet voxels to
achieve the different levels of spot coverage. The shown spectra were calculated with a
resolution of 0.2 Å for a small wavelength band, where there are three absorption lines,
from which two overlap each other, so that we see an even stronger effect, due to the
addition of two overlapping affected line opacities.

Due to the fact that a star is usually only partly covered with sunspots, the effect
on the integrated flux spectra is small. This might in part for the reason that our spot
models are not as strongly darkened, as we would expect from observations of spots on
the solar surface. With our current models, even if we assume a coverage of the stellar
surface of more than one third, the variation to the strongest affected spectral line is less
than one percent.

5.6 Resolution Tests

So far, every calculation was done with grids of either 226 981 or 274 625 voxels, so that
the spatial resolution was limited to the about 20 km size of each voxel, as far as the
physical set-up is concerned. In the earlier models, we have shown that discontinuities in
temperature can have a huge influence on the results, even though the discontinuities that
result from the finite size of the discretization of our physical parameters are small com-
pared to those that resulted from the pre-sets of the early models, it would be interesting,
in which way an increased spatial resolution has an influence on the results.
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Figure 5.32: Integrated spectra for different levels of spot coverage, calculated for the
deep model. Left panels show total flux Fλ for covered surface, quiet surface (blue) and
umbral spectrum (red). Right panels show flux difference ∆Fλ

F quiet
λ

in percent.
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5.6. RESOLUTION TESTS
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Figure 5.33: Comparison between calculation with n = 64 (red) and n = 32 (black). Left
panel: Spectrum of the center point of the umbra, normalized to maximum intensity of
low resolution model. Right panel: Lateral intensity profile through the spot at λ = λline.

For comparison, we have calculated the deep model as described in table 5.1 for a grid of
higher resolution with nx = ny = nz = 64, which is equivalent to a total of 2 146 689 voxels.
Each voxel then represents an element of volume with an edge length of avoxel = 11.19 km,
so that the total size of the grid is still about 1455 km.

Figure 5.33 shows a spectrum of the spots center surface voxel and a lateral profile
through the spot at a line wavelength. In the umbral spectrum, we can see that the
continuum points are brighter in the high resolution model, which means that the spot is
less dark than before - here the lines are not affected but show the same reduced intensity.
If we look at a line wavelength point’s lateral profile through the spot, we can see that
while the intensity at the center of the umbra is indeed unaffected, the intensity in the
outer regions of the umbra and the penumbra has increased slightly, which is equivalent
to a shrinking of the spot, which will appear smaller in this calculation than before.

If we just compare the temperature or opacity structures of different resolutions, we
do not see any significant change that would be sufficient to explain these differences
and why not the entire structure but different parts in different wavelength are affected.
To solve this, we look at the temperature structure of a vertical cut through the grid
and once again mark the levels of optical depth τν = 1.0, which are relevant for the
outgoing radiation and, as we have shown above, quite different for line and continuum.
As shown in figure 5.34, the continuum at the umbra is dominated by a region with a
high temperature gradient, thus the increased resolution has a stronger effect here, than
in parts of the grid, where the temperature changes are smaller, because the difference
between neighbouring voxels is smaller due to the increased spatial resolution.

The same is true for the changes to the lateral profile of the line wavelength. In
the center of the spot, the temperature gradient is relatively small, while the rim of the
umbra and the penumbra are generated by the transition regions, where the temperature
gradient is higher, so that the increased resolution has a stronger influence. Basically, a
voxel that has one temperature in the low resolution grid, is now represented by 8 voxels
with different temperatures, even if the change over the entire length of two neighbouring
voxels is the same.
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Figure 5.34: Temperature structure of the high resolution deep model with n = 64.
Temperature is shown color coded logarithmically from 1000K to 10000K. The black lines
mark the optical depth τ = 1 for λ = λline and λ = λcont along characteristics with
(ϑ, φ) = (0, 0).

If we measure the mean distance between the lateral profiles for both resolutions, we
find that the change in penumbral radius is of the order of

∆rp ≈ 11.8km

which is of the same order, as the increase in spatial resolution, and thus not very sur-
prising. Of course it would be possible to further increase the spatial resolution, but at
least as long as we use simple models, the gain does not seem to justify the increase in
computational demand and storage requirements.

The spatial resolution is only one factor that can affect our calculations. The mean
intensity J is calculated by Monte-Carlo integration with a uniform distribution of nϑ ·nφ
characteristics. As we have mentioned previously in section 3.1, it is necessary to cover the
full solid angle sufficiently. Otherwise the integral cannot be replaced by the Monte Carlo
sum. In all previously discussed models, we used nϕ = nϑ = 64 and therefore a total
of 4096 evenly distributed characteristics. We have already tested the effect of spatial
resolution on our calculations. It remains to study, if the number of characteristics we
used is sufficient for the Monte Carlo integration.

For this test, we did another calculation with the deep model, using nϕ = nϑ = 128,
which represents a total of 16,384 characteristics. The results of this calculation both for
the spectrum and the lateral profile can be seen in figure 5.35. The increase of the number

52



5.6. RESOLUTION TESTS

Wavelength λ [Å]

n
or
m
al
iz
ed

In
te
n
si
ty
I
λ

(a) Umbral spectrum
x axis [voxel]

n
or
m
al
iz
ed

In
te
n
si
ty
I
λ

(b) Lateral profile

Figure 5.35: Comparison between calculation with nϕ = nϑ = 128 (blue) and nϕ =
nϑ = 64 (black). Left panel: Spectrum of the center point of the umbra, normalized to
maximum intensity of low resolution model. Right panel: Lateral intensity profile through
the spot at λ = λline.

of solid angles has caused no significant change to the spectrum or the lateral profile. The
maximal difference in the umbral spectrum is of the order of

max

(
∆I

I

)
≈ 10−7

so a use of nϕ = nϑ = 64 seems to be sufficiently reliable for our current models.
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Chapter 6

Summary and Outlook

Over the course of this work, we successfully set up a number of different models to
simulate the effects that the presence of a sunspot has on the stellar atmosphere and
the stellar spectrum. We have shown that a region of reduced temperature in the solar
atmosphere causes a similar region of reduced intensity on the solar surface, above the
anomaly. The morphology of the dark spot on the surface depends on the shape of the
anomaly underneath.

Further, we have investigated in which way the region of reduced temperature allows
for the existence of molecules, in this case, carbon monoxide. As we expected, the carbon
monoxide concentration inside the sunspot model is significantly increased by up to 20000
times, compared to the quiet solar atmosphere, with the highest increase beeing located
at the surface of the star and at the bottom of our spot model. Again, the shape of the
three dimensional anomaly that creates the spot is important for the distribution of CO
molecules.

The overabundance of CO causes an increase in opacity inside the spot so that the
opacity structure of the model varies strongly between continuum or not affected line
wavelength points and those wavelength points of an affected molecular line such as carbon
monoxide. This results in a much stronger darkening of the surface at affected wavelengths
and, therefore, a deepening the lines. Even shallow models show an increase in line
depth while the continuum remains unaffected. Models that affect the atmosphere up to
deeper levels still show a more pronounce darkening at affected line wavelengths, than at
unaffected points.

Furthermore, we have seen how complete redistribution line scattering has a strong
influence on the lateral profile of a spot, especially in the penumbra, which is drawn
farther outwards. With high scattering coefficients, we see a large umbra that is of more
constant intensity than without scattering. The total area of the visible spot grows as well,
leading to the conclusion that NLTE scattering enlarges the visible spot compared to the
physical spot. This suggests that scattering is one of the reasons, if not the reason, while
the umbra is of fairly constant brightness, even if the underlying temperature structure
varies.

If we look at a resolved surface image of the sunspot, we can see that the three di-
mensional opacity structure of the spot model changes how the resulting spot is perceived
under different angles of view. Our spot model would appear considerably brighter if seen
close to the edge of the star, as opposed to the quiet surface effect of limb darkening.
This is, of course, no true brightening of the spot itself, but solely depending on the an-
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gle of view. Nevertheless, sunspots imaged under different angles of view would, in this
way, represent a possibility to obtain information about the depth structure of the spot
directly. However, it would be necessary to depart from the plane parallel and lateral
periodic grid to correctly simulate spots at high angles of view.

From our models, we produced surface integrated spectra for the total Flux Fλ, since
the surface of a distant star cannot be resolved directly with the currently available
telescopes. Even though our models produce sunspot configurations that are relatively
bright compared to observed solar sunspots, which is likely to be an indicator that even
the deeper models are still too small, we can see that spot coverage affects the total
spectra of a star. We have calculated different levels of spot coverage up to 35 % of the
stars surface. The strongest effect to a line was of the order of 0.6% of the quiet total flux
at the line center wavelength point.

In this work, we have shown that three dimensional spot structures in stellar atmo-
spheres have a significant influence on the emerging spectrum. Of course, it is not possible
to produce synthetic spectra for comparison for every possible configuration of starspots,
due to the fact that the number of free parameters would be far too great. However,
even the possibility to simulate different levels of coverage for a stellar surface would be
valuable.

So far, we have used a plane parallel set-up as base for our sunspot models and very
simple model assumptions. To produce synthetic spectra for comparison with observed
data, it would, first, be necessary to improve the model we have. While our simple
temperature structures prooved valuable for testing purposes, a more realistic temperature
structure and spot size would be needed for a comparison with observational data. For
this it would be possible to compare the model with data taken from sunspots, where we
have the advantage of fully resolved surface structures.

Furthermore, it would be interesting to fully model sunspots in magnetohydrodynam-
ics, which would provide a more realistic temperature structure and the possibility to
include a realistic velocity field into the calculations. Since sunspots are generated by
an magnetically induced anomaly in the stellar convection, we can expect that spectral
lines that are produced in a spot are broadened differently than at the quiet surface. The
inclusion of velocity fields into the radiative transfer simulations is possible either in the
Eulerian or the Lagrangian frame, where both are already implemented in Phoenix.
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